Chiparus Dis

Embed Size (px)

Citation preview

  • 8/2/2019 Chiparus Dis

    1/92

    BAGASSEFIBERFORPRODUCTIONOFNONWOVEN

    MATERIALS

    ADissertationSubmittedtotheGraduateFacultyoftheLouisianaStateUniversityandAgriculturalandMechanicalCollegeInpartialfulfillmentoftherequirementsforthedegreeofDoctorofPhilosophy

    in

    TheSchoolofHumanEcology

    byOvidiuIuliusChiparus

    B.S.,TechnicalUniversityGh.Asachi,Iasi,Romania,June1993May,2004

  • 8/2/2019 Chiparus Dis

    2/92

    Acknowledgements

    Iwouldliketoexpressmygratitudetomymajoradvisor,Dr.YanChenforhissinceresupervisionandguidancethroughoutthecourseofthisstudy.IalsothanktoDr.BillieJ.CollierandDr.JohnR.Collierfortheirhelpandsupport.Itwasanhonortoknowandtoworkwiththem.

    IwouldalsoliketoextendmyappreciationandgratitudetothepersonthatIconsiderittobemysecondfatherandmentor,Dr.IoanI.Negulescu.Hiswordofadviceandsupportmeantalotforme.

    Furthermore,Iamgratefultoallthemembersofmycommittee:Dr.BetsyGarrison,Dr.PamMonroe,andDr.KristyReynoldsfortheircooperationandtime.

    IalsoacknowledgethefinancialsupportreceivedbytheSchoolofHumanEcology.Specialthankstomycolleaguesandfriendsfromourinterdisciplinaryresearchgroups.

    Ideeplyacknowledgetheencouragement,support,guidanceandpatienceofmy

    friendsChristianandHoriaNegulescu.

    SpecialappreciationgoestoOlenaNesterukforherpermanentmoralandphysicalsupport,forherpatienceandlove.

    Iwouldliketoexpressmygratitudeandlovetomyparents,forwhomtheirchildrenshappinessistheirmeaninginlife.

    ii

  • 8/2/2019 Chiparus Dis

    3/92

    TableofContents

    Acknowledgements.............................................................................................................ii

    ListofTables......................................................................................................................v

    ListofFigures....................................................................................................................vi

    Abstract............................................................................................................................iix

    Chapter1ReviewofLiteratureandGeneralProcedures..................................................1

    1.1Introduction................................................................

    ...............................................1

    1.2ResearchObjectives..................................................................................................5

    1.2.1ToUsetheAtmosphericExtractionProcesstoObtainBagasseFibers............5

    1.2.2ToCreateNonwovensBasedonBagasseandOtherAnnualPlants.................5

    1.2.3ToDeterminePhysicalProperties,LengthandFineness,ThroughaNewMethodforBagasseandOtherUnconventionalFibers.....................................6

    1.2.4ToEstablishTestingProceduresandMethods..................................................6

    1.3ArrangementofThisResearchWork.......................................................................7

    1.4ReviewofLiterature.................................................................................................8

    1.4.1SugarCaneBagasse........................................................................................8

    1.4.2OtherPlantFibersKenaf,Ramie,JuteandFlax............................

  • 8/2/2019 Chiparus Dis

    4/92

    ...............15

    1.4.2.1Kenaf.........................................................................................................15

    1.4.2.2Ramie........................................................................................................20

    1.4.2.3Flax..........................................................................................................21

    1.4.2.4Jute...........................................................................................................23

    1.4.3ExtractionandEvaluationofFibers................................................................25

    1.4.4NonwovenComposites......................................................

    ..............................31

    1.4.5MechanicalProperties......................................................................................35

    1.4.6ImageAnalysis.................................................................................................39

    1.4.7ThermalAnalysis.............................................................................................42

    1.4.8Biodegradation.................................................................................................47

    1.5ExperimentalMethods............................................................................................50

    1.5.1ProcessingProcedure.......................................................................................50

    1.5.2NonwovensFormation.....................................................................................52

    1.5.3Thermal-Bonding.............................................................................................54

    1.5.4StaticMechanicalTesting.................................................

  • 8/2/2019 Chiparus Dis

    5/92

    ...............................55

    1.5.5ImageAnalysis.................................................................................................56

    1.5.6Thermo-GravimetricAnalysis.........................................................................57

    1.5.7DynamicMechanicalAnalysis(DMA)...........................................................57

    1.5.8ThermalConductivityandThermalTransmittance.........................................59

    1.5.9Composting......................................................................................................60

    Chapter2AnImageMethodtoEvaluateBagasseFiberDimensions..................

    ...........61

    2.1Introduction.............................................................................................................61

    2.2Experimental...........................................................................................................63

    2.2.1BagasseExtraction...........................................................................................63

    iii

  • 8/2/2019 Chiparus Dis

    6/92

    2.2.2VisualizingandMeasuringProcedures...........................................................63

    2.2.3DeterminationofFiberLengthandFineness...................................................64

    2.2.4StatisticalAnalysis...........................................................................................66

    2.3ResultsandDiscussion..........................................................................................67

    2.4Conclusions............................................................................................................69

    Chapter3ManufactureandAnalysisofNonwovenCompositesBasedonAnnualPlantFibersandPolymers..........................................................................................................71

    3.1Introduction............................................................................................................71

    3.2Experimental..........................................................................................................73

    3.2.1Materials..........................................................................................................73

    3.2.2ProcessingProcedures..74

    3.3TestingProcedures.................................................................................................75

    3.3.1MechanicalDeterminations.............................................................................75

    3.3.2ThermalAnalysis.............................................................................................75

    3.3.3DynamicMechanicalAnalysis........................................................................76

    3.4ResultsandDiscussion..........................................................................................76

    3.4.1ThermalTransitionsbyDSC...............................................

  • 8/2/2019 Chiparus Dis

    7/92

    ............................76

    3.4.2Thermo-GravimetricAnalysis.........................................................................76

    3.4.3Dynamo-MechanicalAnalysis.........................................................................81

    3.4.4MechanicalProperties.....................................................................................83

    3.5Conclusions............................................................................................................85

    Chapter4BiodegradableNonwovenMaterials...............................................................86

    4.1Introduction................................................................

    ............................................86

    4.2MaterialsandMethods...........................................................................................89

    4.2.1CellulosicFibers.............................................................................................89

    4.2.2BondingSyntheticPolymer............................................................................89

    4.2.3CardingandNeedle-punching........................................................................89

    4.2.4Thermal-Bonding............................................................................................90

    4.2.5ThermalAnalysis............................................................................................90

    4.2.6DynamicMechanicalAnalysis.......................................................................91

    4.2.7MeasurementofThermalConductivityandThermalTransmission..............91

    4.2.8BiodegradationofCompositeNonwovens....................................

  • 8/2/2019 Chiparus Dis

    8/92

    .................92

    4.3ResultsandDiscussion..........................................................................................92

    4.4Conclusions..........................................................................................................101

    Chapter5ConclusionsandRecommendations...............................................................102

    References......................................................................................................................107

    Appendix:LetterofPermission...111

    Vita.................................................................................................................................112

    iv

  • 8/2/2019 Chiparus Dis

    9/92

    ListofTables

    Table1-1AverageBagasseComposition.........................................................................11Table1-2Chemicalcompositionsofvegetablefibers(Batra,1993)...............................24Table1-3Lengthandlineardensityofvegetablefibers...................................................24Table1-4ConventionalFormsofTA...............................................................................45Table2-1DirectdeterminationsfortheAreaandthecorrespondingFineness...............66Table3-1Tensilepropertiesofnonwovencompositematerials......................................84Table4-1Constructioncharacteristicsofnonwovenbagasse/cotton/EBCsamples........90Table4-2Thermalconductivitydataforbagasse/cotton/EBCcompositenonwovens....98Table4-3Mechanicalpropertiesofnonwovenmaterialsbeforeandaftersoildegradation.....................................................................................................................100

    v

  • 8/2/2019 Chiparus Dis

    10/92

    ListofFigures

    Figure1-1Currenttechnologicalprocessforextractionofsugarjuice(Elsunni,1993).....2Figure1-2.Bagasse...........................................................................................................10Figure1-3.Land-fillingwithbagasse...............................................................................13Figure1-4.Cross-sectionalviewofkenafplant(Parikh,2002).......................................16Figure1-5.Harvestingkenafcrop(Nimmo,2002)..........................................................17Figure1-6.SEMofkenafbastribboncrosssectionshowingfiberscontainedinbundles(Akinetal.,1999).............................................................................................................19Figure1-7.Flaxharvestingandprocessing(CollierandTortora,2001)..........................22Figure1-8.Hanksofflax...22Figure1-9.Juteplants.......................................................................................................23Figure1-10.SchematicdrawingfortheTilbyMachine(Tilbyetal.,1976)....................26

    Figure1-11.BilletsofSugarCaneStalks..26Figure1-12Schematicdrawingofapilotscalecontinuousatmosphericreactorforbagasse..............................................................................................................................28Figure1-13.DelignifiedBagasse.....................................................................................29Figure1-14.Traditionaljutefibersextraction..................................................................30Figure1-15.Kenafbastfibersfromplantharvested180daysafterplanting.(a)Withnotreatment.(b)Treatedwithsodiumacetate(Akinetal.,1999)........................................31

    Figure1-16.Strain-stressplot............................................................................................37Figure1-17.Tensilestrengthplot.....................................................................................38Figure1-18.BlockdiagramofaTAinstrument...............................................................44Figure1-19.AtmosphericExtractionReactor..................................................................51Figure1-20.F105DUniversalCardingMachine............................................................52Figure1-21.MorrisonBenkshireNeedle-PunchingMachine..........................................53

    vi

  • 8/2/2019 Chiparus Dis

    11/92

    Figure1-22.ThreeLayer(sandwichtype)NonwovenComposite

    Ramie/Kenaf/Polypropylene.............................................................................................53Figure1-23.ThreeLayer(sandwichtype)NonwovenCompositeBagasse/Kenaf/Polypropylene..........................................................................................54

    Figure1-24.CarverLaboratoryPress...............................................................................54Figure1-25.InstronTesterModel4301...........................................................................55Figure1-26.ElectronScanningMicroscopicImageforBagasseFiberBundleCross-

    Section..............................................................................................................................57Figure1-27.Seikodynamo-mechanicalspectrometersDMS200...................................58Figure1-28.Seikodynamo-mechanicalspectrometersDMS110...................................58Figure2-1Length(a1-a3)andcross-sectional(b1-b3)visualizationsfor3samplesof

    bagassefibers....................................................................................................................65Figure2-2.Thedependencybetweenthecross-sectionalareaandfineness....................68Figure2-3.Theresiduals(error)distribution...................................................................69Figure3-1.DSCthermogramsofnonwovencompositesandPP.....................................77Figure3-2.Thermogravimetriccurvescorrespondingtoweightlossbydryingof

    nonwovencompositesandPP...........................................................................................77

    Figure3-3.Thermogravimetriccurvescorrespondingtoweightlossbydryingandthermaldecompositionofkenaf,flaxandjutenonwovencompositesandPP.................78Figure3-4.Firstderivativeofthermogravimetric(tg)curvesofkenaf,flaxandjute

    nonwovencompositesshowingthepeakscorrespondingtodegradationofcellulosicsand

    individualsyntheticpolymers79

    Figure3-5.Secondderivativeofthermogravimetric(TG)curvesofkenaf,flaxandjutenonwovencompositesshowingthepeakscorrespondingtodegradationofcellulosicsandindividualsyntheticpolymers79

    Figure3-6.Thermogravimetriccurvescorrespondingtoweightlossbydryingand

    thermaldecompositionofRamie/Kenaf/PPnonwovencomposite.....................

  • 8/2/2019 Chiparus Dis

    12/92

    .............80Figure3-7.TGcurvescorrespondingtoweightlossbydryingandthermaldecompositionofBagasse/Kenaf/PPnonwovencomposite...80

    vii

  • 8/2/2019 Chiparus Dis

    13/92

    Figure3-8.ThermogravimetriccurvescorrespondingtoweightlossbydryingandthermaldecompositionofRamie/Kenaf/PPnonwovencompositesamplesinairandinertatmosphere(N2)................................................................................................................81

    Figure3-9.Dynamo-mechanicalanalysisofKPBPnonwoveninbendingmode.

    Dependenceoftanduponthetemperature........................................................................82Figure3-10.Dynamo-mechanicalanalysisofKPBPnonwoveninbendingmode.DependenceoftheviscouscomponentEuponthetemperature.....................................82

    Figure3-11.Dynamo-mechanicalanalysisofRPKPnonwoveninbendingmode.........83

    Figure3-12.Dynamo-mechanicalanalysisofKPBPnonwoveninbendingmode.DependenceoftheelasticcomponentEuponthetemperature.......................................84Figure4-1.Layeredcompositenonwovensmadeofbagasse/cottonwebsandEBCmelt

    blownnonwovensbeforeandafterhot-pressing..............................................................90

    Figure4-2.Thermaldegradationofnonwovenmaterialsininertatmosphere(nitrogen).......................................................................................................93Figure4-3.DependenceofEoftheEBCupontemperatureandfrequency..................93Figure4-4.DependenceofEofthecompositenonwovenupontemperatureand

    frequency..........................................................................................................................94Figure4-5.Glasstransition,meltingandsofteningoftheEBCpolyesterasreflectedby

    DSCandDMA(E)dataforthebondingpolymer(EBC)andfortheEBCbondednonwoven.........................................................................................................................96Figure4-6.DependenceoftheEBCglasstransitionuponfrequency..............................96Figure4-7.ThermaltransitionsofEBCpolyesterincompositenonwovens...................97Figure4-8.Blow-upofFigure4athighertemperatures:glasstransitionofcell

    ulosic

    chains................................................................................................................................97Figure4-9.Decayingintimeofthecomplexelasticmodulusofelasticity(E*)ofbagasse/cotton/EBCcompositenonwovensaftersoilburial..........................................101

    viii

  • 8/2/2019 Chiparus Dis

    14/92

  • 8/2/2019 Chiparus Dis

    15/92

    Abstract

    Rawmaterialsusedinnonwovenproductsvarygreatly,coveringtheentirespectrumfromsynthetictonaturalfibers.Thelimitationofuseforindustrialapplicationsofnonwovenproductshaslongbeensurpassed,todaynonwovensbeingfoundindiverseapplicationsrangingfromintimateappareltogeotextiles.

    Thepresentworkhasasitsultimategoaltodevelopacommercialmethodforcharacterizingsomeofthephysicalpropertiesofbagasseorotherunconventionalfibersobtainedthroughanewatmosphericextractionmethod,andalsotocreateandanalyzedifferentnonwovenstructuresbasedonbagasse,kenafandotherannualplants.

    Bagassefiberswereextractedfromsugarcanerindintwodifferentsteps:mechanicalseparationandchemicalextraction.Severalfactorswereconsideredsuchassolutionsofsodiumhydroxidewithdifferentconcentrationsandtimeofreaction.Asimilarprocesswasusedforkenaf.Thekenafrindcontainingouterbastfiberwas

    mechanicallyseparated(usingaTilbyseparator)andchemicallytreatedwithanalkalisolution.

    Eventhoughunderratedasapotentialfiber,bagassedrawsmoreandmoreattentionbecauseoftheincreasingconcernfordisposalofagriculturalresiduesandtheneedforenhancingthesugarcaneindustrysprofitability.However,thereisalackofaninstrumentalmethodtoevaluatebagassefiberlengthandfineness.Thispaperpresentsastudyonmeasuringbagassefiberfinenessusingimageanalysismethod.Cross-section

    imagesofbagassefiberswerevisualizedusingScanningElectronicMicroscopy(SEM).Therelationshipbetweenfiberfinenessandcross-sectionalareawasanalyzedusingthestatisticalmethodofregression.Themodelusedinthismethodcanbeextendedfor

    ix

  • 8/2/2019 Chiparus Dis

    16/92

    evaluatingconveselythecross-sectionalareawhenthefinessisknown,and/orforevaluatingotherunconventionalfibers.

    Differentstructuresofnonwovenmaterialswerecreatedthroughcarding,needle-punching,andthermal-bonding.Asbondingagents,differenttypesofsyntheticpolymershavebeenuseddependingonthefinalproductusage.

    Thefinalproductsweresubjectedtotestingprocedures(accordingwiththeirusage)suchasmechanicaldeterminations,thermalanalysis,dynamo-mechanicalanalysis,biodegradability.Theresultsprovidedinformationregardingthepossibilitytousethenonwovenstructurescreatedindifferentapplications.

    x

  • 8/2/2019 Chiparus Dis

    17/92

    Chapter1ReviewofLiteratureandGeneralProcedures

    1.1IntroductionIntropicalregionsoftheworldsugarcanerepresentsamajorcrop.Becauseoftheincreasingdemandforsugarinthelastcentury,largeareasinthetropicalandsubtropicalcountriesallaroundtheworldwereallottedforsugarcanecrops.Lowlevelofmaintenanceandgoodproductivitymadesugarcaneanattractivecropforfarmersintheseregions.

    IntheUSthesugarcaneindustrystartedtodevelopinthesecondhalfofthe19thcenturyoncesteampowerwasavailableforagriculturemachinery.Today,LouisianaisthesecondlargestproducerofsugarcaneintheUS,onlybehindFlorida.Besidesthemainproduct,sugarjuice,severalby-productsareavailableinthesugarcaneextractionprocess.Themostimportantisconsideredtobebagasse(Paturau,1989).

    AsitcanbeseeninFigure1-1,caneiscrushedinaseriesofmills,each

    consistingofatleastthreeheavyrollers.Duetothecrushing,thecanestalkwillbreakinsmallpieces,andsubsequentmillingwillsqueezethejuiceout.Thejuiceiscollectedandprocessedforproductionofsugar.Theresultingcrushedandsqueezedcanestalk,namedbagasse,isconsideredtobeaby-productofthemillingprocess(Elsunni,1993).Bagasseisessentiallyawasteproductthatcausesmillstoincuradditionaldisposalcosts.

    CurrentresearchintheUSagriculturalandforestryindustryisconcernedwiththe

    developmentofnewusesandaddedvaluetofarmandforestryproductsforgreatereconomicbenefits.Processingandrecyclingofthenaturalproductsisdoneinanenvironmentallyresponsiblemanner,usingtheseresourcesefficiently.Utilizationoftheagriculturalcropsasalternaterawmaterialsformanyindustriesismorethananoption.

    1

  • 8/2/2019 Chiparus Dis

    18/92

    Sugarcanebagasseisestablishedasthefuturefiberintropicalandsubtropicalregionsforpulpandpapermaking.

    Figure1-1Currenttechnologicalprocessforextractionofsugarjuicefromcaneinasugarcanemill(Elsunni,1993).AccordingtoAtchinson(1995),bagassewillbeaheadofothercropsasasourceforthepulpinpaperindustry.Itisestimatedthattheamountofbagasseproducedannuallyisabout80,000,000metrictons(MT),fromwhich25,000,000metrictonswillbeusedforpulping(equalto13%ofthetotalpaper-makingpulpcapacity).Also,kenafisaverypromisingmaterialforpaperpulpsandtextileapplications(KPProductsInc.,1993).Structurallysugarcane(SaccharumOfficinarum)stalkiscomposedofanouterrindandaninnerpith.AccordingtoPaturau(1989)themajorityofsucrosetogetherwithbundlesofsmallfibersisfoundintheinnerpith.Theouterrindcontainslongerandfiner

    fibers,inarandomarrangementthroughoutthestemandboundtogetherbyligninand

    2

  • 8/2/2019 Chiparus Dis

    19/92

    hemicellulose.Previousstudiesontheextractionofthefibersfromsugarcanerinddemonstratedthatcontrolledamountsofligninandhemicellulosecouldberemovedthroughalkalineandmechanicaltreatments,resultinginbundlesofrelativelythinfibers(Collieretal.,1992).

    Kenaf(HibiscusCannabinus),nativetosoutheasternAsiaandpartsofAfrica,hasbeenusedasanaturalfiberforhundredsofyears.ItcameintotheUnitedStatesonacommercialscaleatthebeginningofWorldWarII.Itisconsideredtobeanalternativeannualcrop,usedprimarilyforindustrialtextileapplicationsascordage,rope,andburlapcloth(Moreauetal,1995).Kenafissimilartojute,butifthetechnologicalprocessisconductedproperly,kenafismorelustrous,hasgreatertensilestrength,andhasgreaterresistancetorotthanjute.Thepriceforkenaffibersbecamereasonablewiththelatestimprovementsinthegrowing,harvesting,andmechanicalseparationoffiberand

    core.Eventheleavesandstemsofthekenafcultivarshavepotentialaslivestockfeed(Webber,1993).Driedleavescontain30%crudeprotein,comparedwithalfalfas1621%(USDA,1993).Thekenafplanthastwofibertypes:theouterbarkorthebastportion(40%oftheplant)andtheinnerwoodycorematerial(60%)(Sellersetal.,1993).Oneareathatoffersopportunityistheincorporationofkenaffiberintononwovencomposites.Kenafalsofoundgroundforapplicationinpulpandpaperindustries.

    Besidessugarcanebagasseandkenaf,otherbastfiberslikejute,ramie,andflaxwereconsideredbythescientistsinthenonwovenindustry.Duetotheirphysicalandmechanicalcharacteristicsthesefiberscanbringimprovementintotheoverallpropertiesofnonwovencomposites.Also,theycouldbeareplacementforthesyntheticfibersthat

    3

  • 8/2/2019 Chiparus Dis

    20/92

    dominatenonwovenindustry.Theirbiodegradationpropertiesmakethemmoreandmoreappealinginthecontextofnewregulationsforenvironmentprotection.

    Furtherdevelopmentofvalueaddedagriculturalproductswillrequirenotonlyoptimizationoftheextractionprocessanddeterminationoftheeffectofprocessparametersonfiberproperties,butalsothedevelopmentofavalidsamplingandmeasuringtechniqueforthefiberslengthandlineardensity(Romanoschi,1998).Newmethodsinvolvingimageanalysiswillallowdeterminingphysicalparametersforunconventionalfibersuchasbagasseandkenafinaneasyandinexpensiveway.

    Extractingsugarcaneandkenaffibersfromtheplantstalkswasconsideredtobeadifficultandcostlytask.Theextractionprocessshouldbeoptimizedintermsofchemicaluseandtimetomaximizethepotentialforcommercialuse(Romanoschi,1998).Theprimarygoalistoremovecontrolledamountsofligninandhemicellulose,soastoobtainfiberswithuniformlength,weight,andfineness.Anothergoalsetbythi

    sworkwastodevelopanextractionprocessthatwasasenvironmentallyfriendlyaspossible.

    Inthelastdecadesnonwovenproductsconqueredseveralsegmentsofthetextilemarketmakingthenonwovenindustryasuccessstoryinacrumblingworldoftextiles.Nowadays,nonwovensareeverywherefromchilddiaperstocarinteriors.Inthiscontextnewdesignandcharacterizationofnonwovenproductsrepresentaneedforthisnewindustry.Aparticularareaofinterestistheuseofcheapalternativecropsinmaking

    nonwovencomposites.Biodegradation,asoneoftheimportantcharacteristicsfornonwovenmaterials,isinvestigated.Thedesireforuseofnonwovencompositesindiversenewapplicationsalsorequiresfurthertestingfordifferentspecificconditions.Thermalanalysisanddynamicmechanicalanalysisaretoolsusedbythescientists

    4

  • 8/2/2019 Chiparus Dis

    21/92

    nowadaysinordertogivecomprehensiveinformationregardingmaterialbehaviorunderthermalandmechanicalfactors.

    ThisresearchwillhaveanimpactoneconomicdevelopmentinLouisianaandothersouthernstatesbyprovidingagriculturistswithalternativesincropchoicesandaddingvaluetothesugarcanecrop.Also,thesugarcanemillscanextendtheirworkperiodbeyondthetraditionalfallseason.Convertingagriculturalby-productstovalueaddedproductswillbenefittheeconomyofLouisiana,andnewmarketswillbedevelopedforagriculturalcrops(Romanoschi,1998).

    1.2ResearchObjectives1.2.1ToUsetheAtmosphericExtractionProcesstoObtainBagasseFibersFrompreviouswork,itwasdeterminedthatthemostinfluentialfactorsfortheextractionprocesswerealkalineconcentration,timeofthereaction,mixing,andpresenceorabsenceofsteamexplosion(Romanoschi,1998).Inthisstudy,theextractionprocesstookplaceatatmosphericpressure.Thegoalwastodesignanextractionprocessas

    affordableandasenvironmentallyfriendlyaspossible.

    1.2.2ToCreateNonwovensBasedonBagasseandOtherAnnualPlantsDifferentmethodologiescanbeusedtocreateavarietyofstructuresofnonwovenmaterials.Dependingonthefinalsoughtproduct,aspecifictechniquecanbeemployed.Bycomparingthefinalproductsaccordingtothephysicalandthermo-mechanicalcharacteristics,acertainpathforthetechnologicalprocessofcreatingnonwovenscanbedesigned.Thewebformationfollowsadrylaidcardedmethod.Thewebbondingaccordingtotherawmaterialsusedisaccomplishedthroughamechanicalneedle-punchingmethodfollowedbyathermalbonding.Thedesireistodesignasimple,

    5

  • 8/2/2019 Chiparus Dis

    22/92

    reliable,andeconomicaltechnologicalprocessthatwillcreatenonwovenswithcharacteristicsinaccordancewiththefinalproductproperties.

    1.2.3ToDeterminePhysicalProperties,LengthandFineness,ThroughaNewMethodforBagasseandOtherUnconventionalFibersInstrumentsusedtodeterminecottonslengthandfinenesseffectivelycannotbeemployedforthecoarsefiberswithunevenstructureascanbefoundinunconventionalfiberslikebagasseandkenaf.Acombinationofimageanalysisandstatisticalregressionanalysisprovidesaconvenientapproachformeasurementsofsomeofbagassesphysicalcharacteristics.Thismethodcanbeextendedtootherunconventionalfibers.

    1.2.4ToEstablishTestingProceduresandMethodsOneoftheresearchgoalswastoidentifytestingmethodsandtechniquesthatwouldallowassessmentofperformanceofthematerialsused.Inindustrialapplicationnonwoven-basedmaterialsmustsatisfycertainbehavioralexpectationsthatcanbequantifiedthroughmechanicalorthermalproperties.Standardtensilestrengtht

    estingevaluatedthestaticmechanicalpropertiesfordifferentnonwovencomposites.Severalparameterswereregistered-themostimportantbeingmodulus,strain,andstress.Thesewillallowassessmentofperformanceofacertaintypeofnonwovencompositeaccordingtothespecificationsforthefinalproductandincomparisonwithotherstructure-compositioncombinations.Theuseofnonwovensinproductsundertheeffectofvariablestressandtemperaturerecommendedthethermalanalysisanddynamicmechanicaltesting.Conductivityandthermaltransmittanceweredeterminedinordertoanal

    yzetheheattransferfordifferentstructure-compositioncombinationsofnonwovenasapplicationsforheatinsulation.Biodegradationisanotherimportantpropertyandwasusedtoassesthecapacityofnonwovenmaterialstodecomposeinaspecificamountof

    6

  • 8/2/2019 Chiparus Dis

    23/92

    time.Theresultswereanalyzedtodeterminethemostcriticaltestsandtoeliminateanyunnecessaryorrepetitivetests.

    1.3ArrangementofThisResearchWorkThisdissertationisorganizedinthreeparts.Thefirstpartdealswithexperimentalaspectsofdevelopingnonwovencompositesusedinindustrialapplications.Theliteraturereviewsubchapterpresentsdifferentapplicationsofsugarcaneandkenaf,anextendedoverviewofthepreviouslyusedbagasseextractionprocess,theemploymentofimageanalysisandthermalanalysisincharacterizingtextilescomponents,andanoverviewofbiodegradation.Intheexperimentalmethodssubchapter,alltheprocessingandtestingproceduresarediscussed.

    Inthesecondpartthreeproposedarticlesarepresented.ThefirstoneinChapter2,AnImageMethodtoEvaluateBagasseFiberDimensions,proposesanewmethodindeterminingsomeofthephysicalcharacteristicsforbagassefibers.Thesecond

    oneinChapter3,ManufactureandAnalysisofNonwovenCompositesBasedonAnnualPlantFibersandPolymers,describesthetechnologicalprocessofmakingnonwovensusingablendofnaturalandsyntheticfibers,andanalyzesthefinalmechanicalandthermalproperties.ThethirdoneinChapter3,BiodegradableNonwovensMaterials,isanextensionofthebiodegradabilitystudyinthepreviouschapter.Thisgoalisaccomplishedbyusingasabondingagentabiodegradablepolymer.Again,abatteryoftestsisconductedinordertoassessthephysical,mechanical,thermal,andbiodegradationproperties.Thethirdpart,Chapter5,presentsconclusionsandrecommendations.

    7

  • 8/2/2019 Chiparus Dis

    24/92

    1.4ReviewofLiterature1.4.1SugarCaneBagasseBastfibersrepresentfibersthatareobtainedfromthestemorstalkoftheplants.Grassessuchassugarcanehavestemswhichcontainbundlesoffibers,buttheyarenotclassifiedasbastfibers(Romanoschi,1998).Thedifferencecomesfromthearrangementpatternofthefiberbundles;inregularbastfibersthebundlesareinadefiniteringpattern,whileinsugarcanetheyaremorerandomlydispersed.Nowadaysseveralvarietiesofsugarcaneareusedinagriculture.Thesugarcaneplantsareknowntogrowbestintropicalandsubtropicalregions.

    Sugarcanestalkcharacteristicsvaryconsiderablydependingonvariety.Typicalcommercialvarietiesgrownundernormalfieldconditionshaveaheightof1.5to3metersandare1.8to5cmindiameter.Thestalksurfacecanbegreenish,yellowishorreddishincolorandiscoveredwithathinwaxylayer(vanDillewijn,1952).

    Thecanestalkismadeupofshortersegmentsandjoints.Thesejointsvaryinlengthfrom5to25cm.Thelowerjointsarelonger,largerindiameter,andolderthantheupperjoints.Eachjointhastwodistinctiveparts,thenodeandtheinternode(Elsunni,1993).Atthenodeandimmediatelyarounditaretheimportantstalkstructures:therootband,thebud,thegrowthring,andtheshoulderwheretheleafattachestothestalk(Clements,1980).Inacrosssectionintheinternodewecanobservetwodistinctiveareas.Thefirstone,knownastherind,istheouterdensehardlayer.Theinsidelayer,

    knownasthepith,isthesoftlightcoloredregionwherethefibrovascularbundlesareembedded.Therindvariesinthicknessandtexturealongthestalklength.

    8

  • 8/2/2019 Chiparus Dis

    25/92

    Thefibrovascularbundlesareratherwidelyspacedinthecentralpartofthestalk,buttowardstheperipherytheirnumbersincreasewhiletheirsizesdecrease.Thebundlesarecomposedofsmallerultimatefibercellswhichareboundtogetherbyligninandhemicellulose.Asthecaneages,thereisincreaseddepositionoflignin-likecompoundsinandaroundfibrovasculartissues(vanDillewijn,1952).Thisphenomenonresultsinwhatiscalledfiberhardeninguptothetimeofflowering.Afterthat,asthecaneageadvances,theprocessisreversedandtheligninisremovedfromthebundlescausingthemtobecomesoftandweak.Thesofterrindisprimarilycellulosicinnature(Elsunni,1993).Thefibrovascularbundlesarefibrousstrandswhichextendforlongdistancesinthestem.Attheinternodetheyareseparatedfromeachotherandeachissurroundedbypithtissue.Withintheinternodethesebundlesrunparalleltotheaxisofthestalkanddonotbranch.Althoughthefibrovascularbundlesarescatteredthroughouttheint

    eriorofthestalk,theyaremoreabundantintherindregionthantheyarenearertothecenterofthestalk.Thisbundlearrangementincreasesthestrengthandtherigidityofthestalk.

    Thehardnessofthecanestalkisapropertyofconsiderableconcernbothinthemillandinthefield.Hardcanevarietieshavebeenresponsibleformanymechanicalproblems(vanDillewijn,1952).Inthefield,thesugarcanevarietieswithhardrindsareknowntobedifficultformanualcanecutters,andaredirectcauseofexcessive

    breakdownsofmechanicalharvestingunits,resultinginlossofpartsandvaluablecrushingtime(Barnes,1964).Atthesametime,varietiesofhardrindhavesomeadvantagesoversoftercanevarieties.Rindhardnessiscloselyassociatedwithresistancetoattacksbyanimalssuchasrats,pigs,andmongooses.

    9

  • 8/2/2019 Chiparus Dis

    26/92

    Thegoalofsugarcaneharvestingistoproducesugarcanestalksofhighquality.Qualityisreducedbydamagedcane,increasedtrashindeliveredcane,anddelayincanedelivery(Meade,1977).Mostofthehighsucrosevarietiesarefullyripenedandreadyforharvestwhentheyare10to15monthsold.However,insomepartsoftheworldtherearevarietieswhichgrowfor22to26monthsbeforetheyarereadyforharvesting.Thelongerthegrowingseason,themorelikelyitisthatthecropmaylodgeandbecomeentangled,makingharvestingdifficult(Barnes,1964).Formorethan60yearstheentiresugarcanecropinLouisianahasbeenharvestedmechanically.However,muchoftheworldssugarcaneisstillharvestedandloadedmanually,andinsomepartsoftheworldtraditionaltransportofsugarcanebydomesticanimalsisstillinuse(Meade,1977).

    Baggasseisafibrousresiduethatremainsaftercrushingthestalks,andcontainsshortfibers(seeFigure1-2).Basically,itisawasteproductthatcausesmill

    stoincuradditionaldisposalcosts.Itconsistsofwater,fibers,andsmallamountsofsolublesolids.Percentcontributionofeachofthesecomponentsvariesaccordingtothevariety,maturity,methodofharvesting,andtheefficiencyofthecrushingplant.InTable1-1(Elsunni,1993)atypicalbagassecompositionispresented.

    Figure1-2.Bagasse

    10

  • 8/2/2019 Chiparus Dis

    27/92

    Table1-1AverageBagasseComposition

    ITEMBAGASSE(%)Moisture49.0Fiber48.7SolubleSolids2.3

    Fibersinbagasseconsistmainlyofcellulose,pentosans,andlignin.Celluloseisanaturallinearpolymerandhaspolymerchainsof2000to3000units(Paturau,1989)andaspecificgravityabout1.55(Elsunni,1993).Celluloseishighlycrystallineregardlessofthesource.Theorderedchainsaretightlypackedandhavestrongintermolecularhydrogenbondingbecauseofthepreponderanceofhydroxylgroups(Romanoschi,1998).Thecelluloseispresentinthreetypes:a,,and..Theacelluloseisknownaspurecellulose,whereasand.cellulosecombinedarecalledhemicellulose(Marthur,1975).Thehemicellulosesarechemicallylinkedwithcellulosemolecules.Theothermain

    compoundinsugarcanefiberbundlesisligninwhichisahighmolecularweightsubstance.Becauseitisnotpossibletoisolateligninquantitativelyfromplantmaterialswithoutchemicalormechanicaldegradation,itstruemolecularweightisnotknown.Theamountofligninthatnaturallyoccursinsugarcanedependstoagreatextentonthevarietyandageofthecane.Theamountsofsugar,lignin,andlignin-likecompoundsincreaseastheplantadvancesinageuntilthefloweringtime,whentheplantisconsideredtobefullymature.Beyondthefloweringtime,thesugarcaneplanttendsto

    consumeitsstockofsucroseandligninasaresultofphysiologicalchangesdueto

    11

  • 8/2/2019 Chiparus Dis

    28/92

    flowering.Thedepletionoftheorganiccompoundsmakestherindandthefiberbundlessofterandspongy(vanDillewijn,1952).

    Forafibertobesuitablefortextilepurposescertainqualitiesareessentialandothersaredesirable.Thelengthofthefibershouldbeseveralhundredtimesthewidth,whichenablesfiberstobetwistedtogethertoformayarn.Theactuallengthofthefiberisalsoimportant.Itcanbeinfinitelylong,butshouldnotbeshorterthan6to12mm,oritmaynotholdtogetheraftersinning(Batra,1983).Theapparentlimitationonlengthofthesugarcanerindistheinternodelength,andthisvariesfrom5to25cm.Thelengthoftheultimatefibercellsisfrom2to4mm(Paturau,1989).Thelengthofextractedfiberbundlesdependsonextractionconditionsandtheextractionprocess.Thewidthofthefiberbundlescanvarybetweenconsiderablelimits,andeventuallydeterminesthefineness.Theresultantsugarcanefiberbundlesconsistofseveraltohundreds

    ofultimatefibercells,withthewidthofthefiberbundlesbeingdependentonextractionconditionsandextractionprocesses.Theamountofligninremovedfromtherindaffectsthesizeofthefiberbundlesaswellastheirtensileandbendingproperties(Collieretal,1992).

    Fibersmustbestrongtowithstandspinningandweavingprocesses.Fiberstrengthistypicallynormalizedbyreportingtensilestrengthastenacity.Tenacityisthebreakingloadingramsdividedbythelineardensity.Lineardensity,themasso

    rweightofaunitlengthoffiber,isgivenasgramsper1000mandcalledtex,orasgramsper9000mandcalleddenier.Thetenacityofthesugarcanefibersextractedunderdifferentconditionsisvariableaccordingtoextractionconditions.

    Bendingpropertiesofthefiberareofgreatinterestinthespinningprocess.FiberbendingresistanceandhysteresiscanbemeasuredontheKawabataPureBendingTester

    12

  • 8/2/2019 Chiparus Dis

    29/92

    (Collier,1991).Theresultsofapreviousstudyshowedthatthebendingpropertiesofsugarcanefiberaresignificantlyaffectedbyextractionvariables(Collieretal,1992).Thosevariablesincludepretreatmenttime,temperature,concentrationofalkalisolution,andpresenceofsteamexplosion.

    Nowadaysbagasseismainlyusedasaburningrawmaterialinthesugarcanemillfurnaces.Thelowcaloricpowerofbagassemakesthisalowefficiencyprocess.Also,thesugarcanemillmanagementencountersproblemsregardingregulationsofcleanairfromtheEnvironmentalProtectionAgency,duetothequalityofthesmokereleasedintheatmosphere.Presently85%ofbagasseproductionisburnt.Evenso,thereisanexcessofbagasse(Figure1-3).Usuallythisexcessisdepositedonemptyfieldsalteringthelandscape.

    Approximately9%ofbagasseisusedinalcohol(ethanol)production.Ethanolisnotjustagoodreplacementforthefossilfuels,butitisalsoanenvironmenta

    llyfriendlyfuel.Apartfromthis,ethanolisaveryversatilechemicalrawmaterialfromwhichavarietyofchemicalscanbeproduced(Sharma,1989).Butagain,duetothelowlevelofsucroseleftinbagasse,theefficiencyoftheethanolproductionisquitelow.

    Figure1-3.Land-fillingwithbagasse.

    13

  • 8/2/2019 Chiparus Dis

    30/92

    Bagassepulpsareusedforallgradesofpaper:writing,toilettissue,toweling,glassine,andothers.Bagassenewsprintpaperisalow-gradeandlow-pricedsheetappropriateforhigh-speedprintingpresses,withresistancetodeformation,quickoiladsorption,highopacity,andsmoothprintingsurfaces.BagassenewsprintpaperisacommerciallysuccessfulproductinIndia,Mexico,andIndonesia(Romanoschi,1998).Researchhasshownthatsomekeyfactorsshouldbeconsideredintheproductionofbagassenewsprint.Theserelatetotheuseofahighcontentofmechanicalpulp(allorpartofwhichcanbeproducedfrombagasse),theuseofhighlyefficientdepithingsystems,andtheuseofastoragemethodthatassuresexcellentpreservationofthebagasseproperties,includingcolorandbrightness.

    ResearchatLouisianaStateUniversity(LSU)hasbeenconductedtodeterminethefeasibilityofsugarcanerindfibersfortextileandgeotextileapplications(Elsunni&

    Collier,1996).Oneproductisanonwovenmatformedbysuspendingthefiberbundlesonascreeninwater,thendewateringanddrying.Thematshavebeentestedasgeotextilesforsoilerosioncontrolincivilengineeringapplications(Romanoschi,1998).Asuitablenonwovenmatforgeotextilesshouldsustain,oratleast,preventerosion.Atthesametimeitshouldbepenetrablebygrowingplants,becapableofpermittinginteractionbetweenairandsoil,andallowraintopenetratethesoilanddrainexcesswater(Collieretal.,1995).Thus,alow-cost,biodegradablegeotextilecanbeproducedin

    localsugarcanemills,providinganeconomicbenefittoboththetransportationindustryandthesugarcaneindustry.

    14

  • 8/2/2019 Chiparus Dis

    31/92

    1.4.2OtherPlantFibersKenaf,Ramie,JuteandFlax1.4.2.1KenafKenafbastfibersarederivedfromthebarkoftheHibiscusCannabinusLplant.Kenafisanannualplantgrowninareaswithtemperateortropicalclimate.AtpresentitisgrownintheSunbeltregionoftheUS,southernRussia,China,Thailand,Indonesia,Bangladesh,India,andinsomeLatinAmericancountries.ItcanalsobepotentiallygrownthroughoutsouthandsoutheastAsia,Australia,andAfrica,aswellasinsouthernEurope,orwherevertherearenotsufficientorsuitableforestresources(Kalgrenetal.,1989).Thereareverylowrequirementsforgrowingkenaf.Theannualproductioncanbeuptosixtotentonsofrawfibersperacre.USDAfieldtrialsshowedthatkenafcouldyieldthreetofivetimesmorefiberperacreperyearthansouthernpine(KPProductsInc.,1993).

    Whenharvestedtheplantstemsaredecorticatedtoremovetheinnerpartofthestalkandthenrettedtoobtainthefiberbundles(Collier,2001).Thebastfibe

    rsareconstructedofthick-and-thinwalledcells(lengthof:2to7mm,anddiameterof:10to30m)thatareoverlappedandgluedtogetherbynoncellulosicmaterials(lignin,pectins,andhemicellulose)toformcontinuousribbons(Figure1-4).Theribbonsmayruntheentirelengthof3to4.5m(10to14ft)oftheplantstem.(Parikhetal,2002).Therefinedouterbastfibersmeasure3.6mmandaresimilartothebestsoftwoodfibersinstrengthandbursttests.Therefinedinnercorefibersmeasure0.6mm(Kaldor,1992).Theplants

    compositioniswellsuitedformakingnewsprint.Aswasdetermined,forkenaftobeaviablesourceforchemicalpulping,itwouldbenecessarytoseparateandtoprocessthe

    15

  • 8/2/2019 Chiparus Dis

    32/92

    bastandcorefibersindependently(Jeyasingam,1990).Thetwokindsoffiberscanbeblendedindifferentproportionstoproducenearlyanygradeofpaper.

    Figure1-4.Cross-sectionalviewofkenafplant(Parikh,2002)

    Theprocessofseparatingthelongandshortfibersdependsuponthemethodofharvesting.Infrost-freeregions,thekenafstalkiscutwhilegreenwithspecialequipment.Incoolerregions,theplantistypicallyfrost-killedandanaturaldryingofthestalkoccurs,makingharvestingwithconventionalfarmequipmentpossible.Theseparationequipmentisdesignedtoaccommodatetherawmaterialineitherwholestalkorchopped(KPProducts,1993).

    Fromaneconomicpointofview,akenafpulpmillwouldrequireahigherinvestmentforrawmaterialstorageandfiberseparationthantheregularwoodpulpmill;however,thisisoffsetbylowercostsinrawmaterialpreparation(Kalgren,1989).Becauseofthelowerlignincontentthanwood(7.7%),fewerchemicalsarerequir

    edforpulping,and,inaddition,thefibersrequirelessbleaching.Thus,thewastewatercontaminationisalsoreduced,andfewerchemicalby-productsareproducedinthepaper-makingprocess.Anotherfactorthatdistinguisheskenafbastmaterialfromwoodmaterialsistheorientationofthefibrils.Inbastfibers,thefibrilslieparalleltotheplantaxis,whereasinwoodthefibrilsarespirallywound.Thus,thekenaf,aswellasotherbast

    16

  • 8/2/2019 Chiparus Dis

    33/92

    fibers,canbesplitlengthwisebymechanicalaction,toyieldfineandlongfibrousbundles.Thehighhot-watersolubilityandthe1%NaOHsolubilityofkenafexplainalsothelossofyieldafteranythermalorchemi-thermo-mechanicalpulpingprocess,ascomparedwithwood.Thefungaltreatmentofkenaffollowedbypressurizedmechanicalpulpingresultsinenhancementofstrengthproprieties.Thecontrolledfibrillationthatrestrictstheformationoffinesisresponsibleforthisbehavior(Sabharwal,1994).

    Kenafplantscangrowtoaheightof3to4.5m(10to14ft)in5to6months,whichmakethemanabundant,renewableresource(Figure1-5).Kenafcancompeteincost,quality,andavailability,ifsuitableconditionsandlandareasexist.IntheUS,kenafisalsoacomplementarycropforsoybeans,cotton,andsugarcane.InAustraliaitcanreplacewheatorrice,dependingonlocation.InThailandkenafisanalternativetoplantationeucalyptusandcassava.Alsothereislandavailabilityinmostcount

    riesthatrelyontheimportoflongfiberpulpsforwhichtheyneedforeigncurrency(Romanoschi,1998).

    Figure1-5.Harvestingkenafcrop(Nimmo,2002)

    17

  • 8/2/2019 Chiparus Dis

    34/92

    Aswasstatedearlier,forkenaftobecomeaviablesourceforpulppaper,itisnecessarytoseparatethebastandcorefractions.Asaresult,thecorefibersgeneratedhavebeeninvestigatedassourcesforlow-densitycomposites(Sellersetal.,1993).Panelsofcorematerialwereconstructedandtestedforstrengthproprieties,dimensionalstability,waterabsorbanceproperties,andacousticalproperties.Phenol-formaldehyde,urea-formaldehyde,andpolymericdiphenylmethanediisocyanateresinswereusedasbinders.Theresultsshowedthatthepanelswouldbesuitableforsoundabsorption-typeproducts.Also,kenafcorepanelswereproducedforceilingtiles,decorativepanelsubstrates,floortilesubstrates,andcertainstructuralcomponents(Sellersetal.,1995).Kenafcanbeusedasreinforcingfibersintheformationofsynergisticpropertyenhancedfiber/thermoplasticcompositematerials.Ablendofkenaf/polypropylenehasgoodtensileproperties.

    Researchhasdeterminedalsothatkenaffibersareexcellentoilabsorbentmaterialsandpreventtheoilfromleakingafterabsorption.Allthesepropertieswillbebeneficialinminimizingindustrialwaste(Goforth,1994).Kenafcanplayasignificantroleinfluid/particleseparationoperationssuchasoiladsorption,coalescence,deep-bedfiltration,andasfilteraidsfordecreasingtheresistanceoffiltercakes.Fiberscanbeusedtoimprovefilteringcharacteristicsofmunicipalwastewater(Tiller&Zhon,1995).

    Becauseofthecoarsenessandstiffnessofthebastfiberbundles,theycanbecardedonlythroughacoarsewoolsystemorthroughamodifiedcottoncard.Forthefiberstobecardedonacottoncard,itisnecessarytoremovecontrolledamountsofthebindingligninandmakethefiberssufficientlyfineandpliable.Bycontrollingthelignin

    18

  • 8/2/2019 Chiparus Dis

    35/92

    thatisremoveditshouldbepossibletoobtainfibersthataresuitabletothecottoncardingsystem(Parikhetal,2002).

    Kenaffibershavebeenincorporatedintovarioustypesofnonwoventextiles,likekenaf/PPorkenaf/cotton/PPblends,whichmaybeusedforproductssuchasfabricsoftenersheets,furnitureunderlays,coverstocks,andbarriertextilesformedicalandagriculturalprotectiveclothing(Ramaswami&Boyd,1994).Kenaffiberswerealsobleachedtoagoodwhitewithhydrogenperoxide,andthendyedwithdirectandbasicdyes(Romanoschi,1997).Kenaffiberstreatedwithsodiumhydroxidehavebeencardedandneedlepunchedinto100%kenafandkenaf/cottonblendedmats.Thesematsarealsobiodegradableandhavepotentialinthepreventionofsoilerosion,thecontrolofweeds,andcleanupofwasteliquids(Tao&Moreau,1994).Kenaffibers,cleanedofcorefibers,havebeenmixedwithrefinedwood,syntheticandothernaturalfiberstomakeva

    riousnonwovenneedle-punchedproducts:lightweightseededgrassmats,wildflowermats,vegetablestrips,erosioncontrolmats,oilabsorptionmats,padsandpillows,substratesformoldedautomobileparts,andcomposites(Fisher,1994).

    Figure1-6.SEMofkenafbastribboncrosssectionshowingfiberscontainedinbundles(Akinetal.,1999)

    19

  • 8/2/2019 Chiparus Dis

    36/92

    Thefeasibilityofkenafforyarnsandfabricswasalsoevaluated.Sincejuteandpineapplefibershavebeenusedtomakecoarserfabrics,itwasexpectedthatkenafsgoodtensilepropertiesanditsresistancetomildewandrotmightmakekenafanalternativecropforindustrialtextiles.Thefiberswererettedbothchemicallyandbacterially,followedbyadegummingprocess.Thenthefiberswereblendedwithcotton,successfullyspunintoyarns,andknitted(Ramaswami&Boyd,1994).

    1.4.2.2RamieRhea,ramieorChinaGrasshasbeengrowninthefareastformanycenturiesanditsfiberusedformakingclothevenbeforetheintroductionofcotton.Ramiehasthelookandfeeloflinenbutishigherintenacityandlowerinprice.Itisstrongerwetthandry,doesnotshrink,andismildewandrotresistant.Ramiefiberisexceptionallylongandlustrouslikesilk.

    Recentresearchwasfocusedoncontrollingfiberquality.Bycontrollingthe

    growthandtheprocessing,fiberswithsimilarphysicalcharacteristicswereobtained.Despiteitsmanyexcellentpropertiesanddiverseuses,ramiefailedtobecomeahighlytradedtextilebecauseoflaborandotherproductioncostsassociatedwiththeprocessingofthefiber.Untilthechemicalrettingprocesswasdeveloped,onlyhandmethodscouldbeemployedtoremovethefiberfromthestem(Collier&Tortora,2001).Thedevelopmentofnewtechnologiesreducedthecostofproductionandincreasedtheattractivenessofthisfiber.Loweringproductioncostwillextenditsend-usesnotonlyin

    high-valuefinalproducts,butalsoinlow-valueproductslikenonwovens.Goodpropertiesoftheramiefibermayenhanceend-useperformanceofcotton-baseddiverseindustrialapplications.

    20

  • 8/2/2019 Chiparus Dis

    37/92

    1.4.2.3FlaxFlaxisabastfiberderivedfromthestrawofanannualplantofLinaceaefamilyoftheLinumgenus(Smithetal,2001).Theflaxplantisaggressivelycultivatedinseveralareasoftheworld(Russia,Canada,Belgium,Ireland,NewZealand,andothers),asitisthesourceofusefulcomponents:thestemgivesrisetotheflaxfiber,whichisthebasisforlinentextiles;theseedisthesourceforlinseedoilandlinseedcake,ananimalfeed;theremainingleavesandcoreofthestemaregenerallyreferredtoasbract,whichisalsoaproductofcommerce(deJong,1999).

    Itisinterestingtonotethatflaxwasthemajorsourceofclothfiberforcenturies,untiltherapidgrowthofthecottonindustry,whichoccurredafter1800.Priortothattime,flaxwasthekingoffibers.FineandcoarselinenmaterialswerepreservedinthedryclimateofEgypt,datingbackto4000B.C.

    Flaxplantsgrowupto0.6to1.5m(2to4ft)inheight.Stalksaredriedenoughsothattheycanbethreshed,combed,orbeatentoremovetheflaxseeds(Collier&Tortora,2001).Thefirststepistoloosenthebarkfromthestemandiscalledretting.Therettingprocesscanbedonenaturallyorchemically(Figure1-7).Afterrettingtheflaxstrawispassedoverflutedrollersorcrushedbetweenslattedframes.Thiswillbreakupthebrittlestemsbutdoesnotharmthefiber(Collier&Tortora,2001).

    Flaxfibercanbecomparedwithcottoninseveralrespects(Figure1-8).Ithas

    thesamespecificgravity(1.54g/d)ascotton,butbecauseofahigherdegreeofpolymerizationandahighlyorientedstructure,itisstrongerthancotton.Linenproductscanbefoundalmosteverywhereinthetextilecomplexfromextremelyfineproductsto

    21

  • 8/2/2019 Chiparus Dis

    38/92

    coarseindustrialapplications.Linenproductsarepresentinhouseholdtextilessuchasbedsheets,tablecloths,andwearingapparel.

    Figure1-7.Flaxharvestingandprocessing(CollierandTortora,2001)

    Figure1-8.Hanksofflax

    Theuseofflaxfibersforindustrialapplicationsissomewhatlimitedbytheproductioncost(18to35centsperpound).Withnewtechnologiesemployedtoprocessflax,itspricecandropmakingflaxaffordableforselectednonwovencomposites.Aninterestingapplicationforflaxnonwovencompositesisinaqua-culture.Thisinvolvesgrowingvegetablesandplantsinanutrientsolutionwithoutsoil.Thetraditionalsupport

    22

  • 8/2/2019 Chiparus Dis

    39/92

    usedinthismethodinvolvesmineralfibersthatcannotbeusedformorethanfiveyears,andtheirdisposalisamajorproblem.Flax,abiodegradablefiber,isanalternativesolution.

    1.4.2.4JuteJuteisthenameofthefiberextractedfromthestemsoftheplantsbelongingtothegenusCorchorus(Cook,1994).JuteisanotherbastplantmainlygrowninsouthernpartsofAsia.Theplantrequiresafertilesoil,andahotandhumidclimate.Theprocessofgettingthefibersoutofthestemfollowsbasicallythesametechnologicalprocessusedfortheotherbastfibers.Firstthestalksarerettedusinganaturalorchemicalprocess,andafterthatthestemsarebrokenandthefibersareremoved(Collier&Tortora,2001).

    Figure1-9.Juteplants

    Basedonthefiberstructureandcompositionthesefibersaremostsimilarwiththoseextractedfromsugarcanerind.Duetoitsphysicalandmechanicalcharacteristics,juteneverfoundgroundsforapplicationinapparel.Morethanthat,afterexposuretoairthejutefibersbecomebrittle.Foralongtimejutehasbeenusedforindustrialtextileslikebags,ropes,andcordage.Cheappolypropylenereplacedjuteinseveralapplications,primarilycarpetbacking.Recentfocusonbiodegradabilityoftheindustrialtextilemadejutefibersagainofinterest.Possibleusesareforgeotextilesinerosioncontrol.

    23

  • 8/2/2019 Chiparus Dis

    40/92

    Developingnewtechnologiesforfiberextractionwouldmakejuteamorecompetitiveplantinthetextilecomplex.Tables1-2&1-3provideancomparativeviewofthecompositionandsomeofthephysicalpropertiesforthemainbastandgrassfibersthatarethesubjectofthiswork.Table1-2Chemicalcompositionsofvegetablefibers(Batra,1993)

    FiberCellulose(%)Hemicellulose(%)Lignin(%)SugarCane50.030.018.0Kenaf65.713.221.6Ramie68.613.10.6Jute64.412.118.8Flax56.515.42.5(unretted)Flax(retted)64.116.72.0

    Table1-3Lengthandlineardensityofvegetablefibers

    FiberLength(cm)Lineardensity(tex)Celllength(mm)Cotton1.55.60.110.3715-56Sugarcane2.5-206.5014.002-4Kenaf7-151.504.501-7

    Flax201400.191.984-77Ramie401000.510.7140-250Jute1503601.443.000.8-6

    24

  • 8/2/2019 Chiparus Dis

    41/92

  • 8/2/2019 Chiparus Dis

    42/92

    extractionconditionsinfluencedthelineardensityofthefiberbundles,withalkalineconcentrationbeingthemostsignificantfactor.

    Figure1-10.SchematicdrawingfortheTilbyMachine(Tilbyetal.,1976)

    Figure1-11.BilletsofSugarCaneStalks

    Higheralkalineconcentrationyieldedfiberswithlowertexvalues.Also,itwasobservedthatthemostsevereconditionsyieldedfiberswithlowertenacityandtoughnessvalues,andlowerbendingrigidityandhysteresis(Collieretal.,1992).

    26

  • 8/2/2019 Chiparus Dis

    43/92

    Steamexplosionisatechniquedevelopedforseparationoffibersfromeachotherinlignocellulosiccomposites.Applicationofthistechniqueenablesasimplenonreactivesolventextractionofthefiberbondingcompoundswhileretainingthestructuralintegrityofthefiberbundles(DeLong,1990).Thepurposeofthesteamexplosionprocesswastoreplacetheconventionalchemicalandmechanicalpulpingforproducingfiberswithcertaincharacteristics.Themainchemicalcomponentsofthefiberarelignin,xylan,andcellulose(DeLong,1990).Ligninisaneasilyhydrolyzedpolymerwithameltingpointofabout125Candadegradationpointofabout195C.Ligninandxylanareheavilycrosslinkedwithinthefiberbundle.Above166Cthestrengthofthecross-linkisconsiderablyweakened.Atthistemperaturelevel,ligninbecomeshighlysolubleinalcoholandmildcausticsoda.Meanwhile,thecellulosehasatransitionorsofteningtemperatureof234Candadegradationtemperatureof260C.Thesetwotemperaturelimitsarewellabov

    ethoseofligninandxylan,allowingcellulosetoretainitsfullstructuralstrength(DeLong,1990).Steamexplosioncaneitherbeperformedbatch-wiseorinacontinuousmanner.

    Inlaterworka20-Lreactorfittedwithanoscillatingagitatorwasused(Elsunni&Collier,1996).Thebestfiberswereproducedbyasteamexplosionprocessmodifiedfromonethatwasusedforwoodfibers(Wolfgang&Sarkanen,1989).Steamwasinjectedinthereactoruntilapressureof100-150psiwasachieved.Afterafewseconds

    thedischargevalvelocatedatthebottomofthereactorwasopened,creatingasuddenreleaseofpressure,whichblewthefibersout,andalsoblewthemapart.Dry,separatedfiberswereobtained.FiberswiththebestproprietiesforspinningintoyarnswereobtainedwithsteamexplosionandlowerNaOHconcentration(Elsunni&Collier,1996).

    27

  • 8/2/2019 Chiparus Dis

    44/92

    Duetothesafetyconcernsinoperatingasteamexplosionreactor,atechnologicalextractionprocessthatwouldtakeplaceatatmosphericpressurewasdeveloped.Theextractionparametersinthiscasewerealkalineconcentration,tumblingspeed,andtime.InFigure1-12ispresentedtheschematicdrawingofacontinousatmosphericreactor.Theextractionprocesscanbecontinuous,improvingtheproductivity.Similarresultswiththesteamexplosionprocessregardingfiberquality(seeFigure1-13)canbeachievedbyincreasingthealkalineconcentrationofthesolutionandthetimeofreaction.Highlyconcentratedsolutionsofsodiumhydroxidethoughcreatedisposalproblems.

    Figure1-12Schematicdrawingofapilotscalecontinuousatmosphericreactorforbagasse.Thephysicalcharacteristicsofthesugarcanefibersextractedwereexaminedusing

    anenvironmentalscanningelectronmicroscope(Tao&Collier,1994).Thefiberswerecutto5-10mmlength,mountedonastub,andviewedwithoutdryingandcoating.

    28

  • 8/2/2019 Chiparus Dis

    45/92

    Figure1-13.DelignifiedBagasse

    Themicrographsobtainedshowedthelongitudinalandcross-sectionalmorphologyofthesugarcanefibersafterhightemperaturewaterpretreatment.Theamountofencrustingmaterialsbetweentheultimatefibers,aswellasthesizeofthefibers,wasobserved.TheSEMexaminationallowedunderstandingoftheeffectofhightemperaturewaterpretreatmentonthepresenceofencrustingmaterials.Tensileandbendingpropertieswerealsoevaluated.Itwasobservedthatthemostsevereconditionsyieldedthefinestfibersbutwithlowertenacityandtoughnessvaluesandlowerbendingrigidityandhysteresis(Collieretal.,1992).

    Delignificationofjuteisoftencarriedoutbyretting(Figure1-14).Theactionofrettinginvolvesmicroorganismsandenzymes,andtakesseveraldaystocomplete-theactualtimebeingdependentonthetemperatureofthewater(Batra,1983).

    Thesameprocess,usedfortheextractionofthefiberbundlesfromtherindofsugarcane,wasadaptedtokenaf(Collieretal.,1994).Differentkenafrindsourceswereused:greenwholestalk,drywholestalk,andpeeled,strippedandtwo-year-storedkenaf.

    29

  • 8/2/2019 Chiparus Dis

    46/92

    Figure1-14.Traditionaljutefibersextraction

    Theprocessconsistedoffourdistinctsteps:mechanicalseparation,chemicalextraction,steamexplosion,andproductformation.Usingthisprocessitispossibletoobtainfiberbundlesreducedincrosssectionandwithsufficientlengthfortextileapplications.Bychangingtheextractionparameters,thefinalpropertiesofthefiberbundlecanbecontrolled.

    ThefirststepformechanicalseparationisaccomplishedwiththeTilbycaneseparator.NextaRandoCleanermachinecanbeusedinordertofurtherseparatethefiberbundlesandtodisposeoftheveryshortfibersandotherimpurities.Thesecondprocessstepcanbeabacterialorchemicalretting.Bacterialrettingisasimpleprocessbasedonthenaturalactionofanaerobicbacteriaoraerobicfungi.Chemicalrettingisalow-concentrationalkalinesolution,hightemperatureandpressureprocess.Thisprocessisdifferentfromtheusualpulpingactionssincetheintentistoextractcontr

    olledlengthfiberbundlesfromrindstripswithminimalreductionofthefiberbundlelengthwhilereducingitscrosssection(Figure1-15).Asupplementalmechanicalaction,thatcanbeanoscillatoryagitationand/oratumblingmotion,isresponsibleforapreferentialreductionofthecross-sectionratherthanthelengthofthefiberbundles.

    30

  • 8/2/2019 Chiparus Dis

    47/92

    (a)(b)Figure1-15.Kenafbastfibersfromplantharvested180daysafterplanting.(a)Withnotreatment.(b)Treatedwithsodiumacetate(Akinetal.,1999)Thechemicalrettingisfasterthanthebacterialretting,butithassomeharmfulconsequencesforthefinalfibercharacteristics:lossintenacity,color,andluster.Bothchemicalandbacterialrettingencounterssomeenvironmentalproblemsregardingairqualityandchemicaldisposal.Intheoptionalthirdstepthekenaffiberbundlesaresteamexplodedtofurtherreducethecrosssections.Inthisprocess,asinthesugarcanefibercase,livesteamisinjectedintothereactorandthenthepressureisquicklyreleased.Themoistureinthefibersevaporatessuddenly,blowingthemapartintodryseparatedfiberbundles.Resultsshowedsimilarreactionconditionstothoseappliedtothecanerindcouldalsobeemployedtoobtainkenaffiberbundlesthatcanbeusedfornonwovenmatsoryarnapplications(Romanoschi,1998).Also,asinthecaseofbagassecase,t

    heextractioncantakeplaceinanatmosphericreactor.

    1.4.4NonwovenCompositesNonwovenasanindustry-especiallycomparedwithitstraditionaltextileandpaperrelatives-hasproventobeaninterestingandall-encompassingbusinesswithhundredsofendusesandproductniches.Forthosenewtotheindustry,themanyfacetsofnonwovensarewhatmakeittheinterestingandgrowingbusinessthatitis.

    31

  • 8/2/2019 Chiparus Dis

    48/92

    Themajorareasinnonwovenscangenerallybesplitintodisposable,orshortlife,anddurable,orlong-life,enduses.TheU.S.marketisdivided,60%fordisposablemarketsand40%fordurables,whileinEurope,salesleanmoretowarddurables.AccordingtoconsultantJohnR.StarrInc.,Naples,FL,disposableapplicationsaccountfor53%ofworldwiderollgoodssaleswhiledurablesrepresent47%.ThedevelopedmarketsoftheU.S.,Canada,WesternEuropeandJapanaccountedfor73%ofnonwovenssaleslastyear.Salesinthesemarketsareexpectedtoincreaseby7.4%eachyearforthenextfiveyears,accordingtoMr.Starr.Meanwhile,salesinthedevelopingareasbeyondtheseregionsareexpectedtogrow9.6%peryearduringthenextfiveyears.Paperprocessesandpolymerextrusiontechnologyhavebecomeimportantcontributorstononwovensmanufacturing.Theelectronicsindustrysdevelopmentofmicroprocessorsandthesubsequentdevelopmentofaffordable,high-speedcomputingarealsocontributingtothegrowingsophisticationofnonwovenprocessesandproducts(Mansfield,2001).

    IntheU.S.,theoverwhelmingvolumeofnonwovensisutilizedintheabsorbentproductmarketsofdisposablebabydiapers,femininehygieneitems(sanitarynapkinsandtampons),adultincontinenceproductsandmedicalfabrics.Themostinfluentialmarketfornonwovensisbabydiapers,amorethan$4billionmarketwithabout16billiondiapersproducedannually(Bitz,2001).Recentproductinnovations,suchasupstandinglegcuffsandcloth-likebacksheets,havedramaticallyincreasedtheuseofnonwovenfabricperdiaper,whilelineextensionsintotrainingpantsanddispos

    ableswimwearproductsarebroadeningthecategoryforbothbrandedandprivatelabelsuppliers.Relatedtothebabydiapermarketarethefemininehygieneandadult

    32

  • 8/2/2019 Chiparus Dis

    49/92

    incontinenceindustries,wherecomplementaryproductsandmachinerymeansimilarcompaniesinvolvementinthebusiness.Likewise,themarketforbabywipesisalsorelatedtothebabydiapermarketinthatwipesaresometimeslineextensionsofbabydiaperproducts.Wipeproductsarealsofindingapplicationsinthehouseholdcleaning,personalcareandpharmaceutical/cleanroomcategories.Anotherdisposablenonwovensendusemarket,onethathaswithstoodtheupsanddownsofeconomichardtimesandconcernsoverdisposingofdisposables,ismedicalnonwovens,wherethelife-threateningimpactofAIDSandothercontagiousdiseaseshaveputworkerprotectionaboveeconomicandenvironmentalconcerns.IntheU.S.,themedicalnonwovenrollgoodssegmenthasapplicationinarangeofproductsforuseintheoperatingroomonmedicalpersonnel,patients,andinmyriadotherusesthroughoutthehospital(Bitz,2001).

    Protectiveapparelisanothergrowingdisposablesmarketwhich,inadditiontomedicalapplications,alsoincludesmarketsinindustrialandcleanroomapparel,hazardouswasteandasbestosclean-upapplications,andagriculturalprotectiveapparel.

    Onthedurablessideofthenonwovensindustry,majormarketsaregeotextiles,whichobviouslyarethehighestvolumesegmentsfornonwovens.TheNorthAmericangeotextilemarketisfamousforitsvastopportunities.Yearsago,therewereextensivebattlesbetweenwovenandnonwovenfabricmanufacturers.Wovenmanufacturerstouted

    thehigheststrengthperweightandhighmodulus.Nonwovenmanufacturersproclaimedtheadvantageofhigherpermeability,betterfriction,betterconformability,andconstructionsurvivability.Thelargestsegmentofthegeotextilemarketisseparation/stabilizationgeotextiles.Theuseofseparation/stabilizationgeotextileskeeps

    33

  • 8/2/2019 Chiparus Dis

    50/92

    thesubgradesoilfrompumpingupintoaggregatethatsupportsthepavementorunpavedaggregatesurface.Recentdevelopmentsintheseparation/stabilizationmarkethaveincludedstudiesongeotextileinstallationandconstructionsurvivabilityandlongtermsurvivability(Marienfield,1995).Thenextlargestmarketisthepavingfabric.Pavingfabricisthegenerictermfornonwovengeotextilescombinedwithasphaltcementinthefield.Placedbetweenlayersofasphaltconcrete,thisinterlayersystemwaterproofsandretardsreflectiveandfatiguecrackinginpavements.Thethirdlargestandfastestgrowingsegmentofthegeotextilemarketisthelinerfabrics.Heregeotextilesareusedinlayeredgeosyntheticandnaturallineranddrainagesystem.Thepurposeofthegeotextilescanbegeomembraneprotection,drainageandfiltration,orsimpleseparationofmaterials.Veryheavynonwovensupto16oz/squareyardarenecessarywhereprotectionistheprimaryfunction(Marienfield,1995).Thenextsegmentincludesapplicationsintrenchd

    rainage,drainboards,drainpipewraps,andhighwayedgedrains.Thedrainagemarketsegmentwillcontinuetogrow.Thereisanincreasingawarenessbythepavementdesignersandmaintainersthatwaterinpavementscausesthemostdamageandshortensthepavementlife.Thelastsignificantgeotextilemarketsegmentwhichusespredominantlynonwovensistheerosioncontrolandslopeprotectionapplication.Thegeotextilesactasfilterstoallowwatertopasswhileretainingsoil.Thisretardserosiononslopes,shorelines,and

    streambanksbeneathrip-rapstoneoranotherarmorsystem.Themarketwillcontinuetogrowinthisareaduetoincreasinglystrictlawsonpollutionandenvironmentalprotection(Marienfield,1995).

    Besidesgeotextiles,nonwovenscanbefoundinautomotiveapplications,whichencompassanythingfromtrunklinersandpackageshelvestodoorpanelsandheadliner

    34

  • 8/2/2019 Chiparus Dis

    51/92

    materialsandfiltration.Compositesreinforcedwithnaturalfibernonwovenshavesuccessfullyproventheirqualitiesinthisfieldbecauseoftheirexcellentproperties,e.g.,highstrengthandstiffness,lowweight,etc.Oneoftheirmostimportantadvantages,however,isthepossibilityofdesigningthematerialitselfbyarranginglongfibersinthedirectionoftheappliedforcesinordertocreatelightweightstructureswithanisotropicpropertiesoptimallytailoredtoeachspecificrequirement(Mueller,2002).

    Alsoincludedonthedurablesideareapparelinterlinings,althoughheremorewovensthannonwovensareused.Interliningsegmentsincludewomensdresses,blouses,sportswear,shoes,hatsandhandbagsandmenstailoredclothing,tuxedos,waistbandsandlapels,collarsandpocketflaps.

    Despitecontinuingconsolidation,intensecompetitionandseveraleconomictroublespotsaroundtheglobe,nonwovenscompaniescontinuetoexpandandgrowthroughcapitalinvestments,capacityexpansions,jointventuresandacquisitions.Geographicandendusemarketexpansionalsocontinues,withcompaniesclaiming

    newglobalmarketsalmostdaily.

    1.4.5MechanicalPropertiesStrengthisamechanicalpropertythatweareabletorelateto,butwemightnotknowexactlywhatwemeanbytheword"strong.Thereismorethanonekindofstrengthdependingonthetypeofdeformationamaterialundergo.Thereistensilestrength.Tensilestrengthisimportantforamaterialthatisgoingtobestretchedorundertension.Fibersneedgoodtensilestrength.Thenthereiscompressionalstrength.Concrete

    isanexampleofamaterialwithgoodcompressionalstrength.Anythingthathastosupportweightfromunderneathhastohavegoodcompressionalstrength.Thereisalso

    35

  • 8/2/2019 Chiparus Dis

    52/92

    flexuralstrength,torsionalstrength,andimpactstrength.Asamplehastorsionalstrengthifitisstrongwhenonetriestotwistit.Asamplehasimpactstrengthifitisstrongwhenonehitshitsharplyandsuddenly,aswithahammer.

    Thereisaprecisedefinitionforstrength.Tomeasurethetensilestrengthofamaterial,asamplemustbestretched.Thestretchingisperformedbyatensiletestingmachine.Thismachineclampseachendofthesample,then,stretchesthesamplemeasuringtheamountofforce(F)neededtoresisttheextension.Dividingthisforcebythecross-sectionalarea(A)yieldsthesamplestress.Ifthesampleisstretchedtothebreakingpoint,thebreakingstressisobtained.

    .Likewise,onecanimaginesimilartestsforcompressionalorflexuralstrength.Inallcases,thebreakingstrengthisthestressneededtobreakthesample.Sincetensilestressistheforceplacedonthesampledividedbythecross-sectionalareaof

    thesample,tensilestress,andtensilestrengthaswell,arebothmeasuredinunitsofforcedividedbyunitsofarea,usuallyN/cm2.StressandstrengthcanalsobemeasuredinEnglishunits,commonlyusedarepoundspersquareinch.

    Allstrengthtellsusishowmuchstressisneededtobreaksomething.Itdoesnottellusanythingaboutwhathappenstooursampleduringdeformation.Thatiswhyitisusefultostudytheelongationbehaviorofthematerial.Elongationisthedeformationthat

    occurswhenatensileforceisapplied.Understress,thesampledeformsbystretching,becominglonger.Usuallyelongationismeasuredinpercentage,whichisthelengthof

    36

  • 8/2/2019 Chiparus Dis

    53/92

    thestretchedsample(L),dividedbytheoriginallengthofthesample(L0),multipliedby

    100.Thereareanumberofthingswemeasurerelatedtoelongation.Whichismostimportantdependsonthetypeofmaterialoneisstudying.Therearetwoimportantmeasuresofelongation:ultimateorbreakingelongationandelasticelongation.Ultimateelongationisimportantforanykindofmaterial.Itistheamountonecanstretchthesamplebeforeitbreaks.Elasticelongationisthepercentelongationonecanreachwithoutpermanentlydeformingthesample;thatis,howmuchcanonestretchit,andstillhavethesamplereturnstoitsoriginallengthoncethestressisreleased.

    Ifthegoalistoknowhowwellamaterialresistsdeformation,wemeasureitsmodulus.Tomeasuretensilemodulus,thesamethingisdoneasitwastomeasurestrengthandultimateelongation.Thestressismeasured,justasitwasdonefortensilestrength.Theamountofstressisincreasedataconstantrate,andtheelongati

    onthesampleundergoesateachstresslevelismeasured.Theprocesscontinuesuntilthesamplebreaks.Aplotofstressversuselongation,isshowninFigure1-16:

    Figure1-16.Stress-strainplot

    37

  • 8/2/2019 Chiparus Dis

    54/92

    Thisplotiscalledastress-straincurve.Strainisanykindofdeformation,includingelongation.Theheightofthecurvewhenthesamplebreaksisthetensilestrength,andthetensilemodulusistheslopeofthisplot.Iftheslopeissteep,thesamplehasahightensilemodulus,whichmeansitresistsdeformation.Iftheslopeisgentle,thenthesamplehasalowtensilemodulus,whichmeansitiseasilydeformed.

    Therearetimeswhenthestress-straincurveisnotlinear,suchastheplotinFigure1-17.Forsomematerials,especiallyflexibleplastics,wegetoddcurvesthatlooklikethis:

    Figure1-17.Tensilestrengthplot

    Theslopeisnotconstantasstressincreases.Theslope,thatisthemodulus,ischangingwithstress.Inacaselikethistheinitiallinearportionofthecurveisusedtodeterminethemodulus.Ingeneral,fibershavethehighesttensilemoduli,elastomers

    havethelowest,andplasticshavetensilemodulisomewhereinbetweenfibersandelastomers.Modulusismeasuredinunitsofstressdividedbyunitsofelongation.Sinceelongationisdimensionless,howeverithasnounits.Somodulusisexpressedinthesameunitsasstrength,suchasN/cm2.

    Tensilestrengthassessmentisdoneaccordingtoanestablishedtestmethodorstandard.Thetermstandardcanrefertotheactualmethodofassessment,tominimum

    38

  • 8/2/2019 Chiparus Dis

    55/92

    levelsafety,ortoperformancerequirements.Aproblemoftenoccurringinstandardtextiletestmethodsishowtosimulatereal-lifeenduse.Inthelaboratory,usuallyitcanbetestedonlyonepropertyatatime.Howeverinactualuseatextileproductissubjectedtomanyforcesatthesametime.Itishardtosimulatethiscombinationofeffectsinonestandardlaboratorytest.

    Thereareseveralorganizationsinvolvedintextiletesting.

    1.AmericanSocietyforTestingandMaterials(ASTM).Thepurposeofthisorganizationistodevelopstandardsoncharacteristicsandperformanceofmaterials,products,systems,andservices.ThestandardsdevelopedbyASTMincludetestmethods,specifications,anddefinitions,andusuallydealwithphysicalpropertiesofmaterials.2.AmericanAssociationofTextileChemistsandColorists(AATCC).Thisorganizationwasformedtopromotetheincreaseofknowledgeoftextiledyesandchemicals,and

    thereforeitisconcernedspecificallywithtextileproducts.Inadditiontodevelopmentoftestmethods,AATCCsponsorsscientificmeetingsandpromotestextileeducation.Alloftheactivitiesareconcernedwiththechemicalpropertiesoftextiles,incontrasttoASTMsphysicalemphasis.3.AmericanNationalStandardsInstitute(ANSI).ThepurposeofANSIistocoordinatevoluntarystandardsdevelopmentanduseintheU.S.ItalsoservesasliaisonbetweenstandardsorganizationsintheU.S.andothercountries.ANSIisconcernedwithphysical

    andchemicalpropertiesformanydifferentproducts.1.4.6ImageAnalysisSeeingisbelieving.Sightisfundamentaltoourunderstandingoftheworld.Thisisastrueinscienceasitisineverydaylife.Thecollectionofmuchstatisticaldatais

    39

  • 8/2/2019 Chiparus Dis

    56/92

    dependentuponhumanvision.Forexample,theexaminationofsamplesunderamicroscope,observinganimalbehavior,andtheidentificationandcountingofplantspeciesinafieldareallformsofimageanalysis.Humansdoagreatjobinprojectingimagesinourretinas,usingathirdofourbrainsforvision.However,computersarebeingusedmoreandmoretoautomateandextendthepotentialofimageanalysis.Computersarebetteratextractingquantitativeinformationfromimagesthanhumanobservers-theycanbemoreaccurateandmoreconsistentfromdaytoday.Furthermore,computersmayspareusfromtediousimageinterpretation.Progresswasexpectedtoberapidwhenresearchcommencedinthe1960soncomputer-basedimageanalysis.Thetask,however,hasprovedtobefarmoredifficult.Inpart,thisisbecausescientistswerenotconsciousoftheprocesseshumansgothroughinseeing.Biologicalobjectspresentanevengreaterchallengetocomputerinterpretationthanman-madeones,becausetheytend

    tobemoreirregularandvariableinshape.

    Manufacturingproductsthatadheretostrictindustryandcorporatequalitystandardsisnoeasytask.Withcompetitiongettingmorefierce,smarter,andincreasinglyglobaleveryday,organizationsmustdealwiththinningmarginsandpotentiallysevererepercussionsifinefficienciesandpoorproductivityarenotaddressed.

    Inthequalityassurancelab,thesituationisnodifferent.Manuallaboratoryproceduresarebeingslowlyreplacedwithinnovativeautomatedsolutionsthatprovideconsistentlyaccurate,objectiveandreproducibleresults.Onesuchtechnologyb

    eingimplementedintoleadinglabsaroundtheworldisimageanalysis.

    AtypicalPC-basedimageanalysissystemconsistsofacameramountedonamicroscopeandattachedtoaframegrabber.Withtheuseofsophisticatedimageanalysis

    40

  • 8/2/2019 Chiparus Dis

    57/92

    software,laboratorytechniciansareabletoeasilymanipulateimagesintotheiraccuratebinarycomponentsofinterest,andthenanalyzetheirbinarystructuresfromananalytical,statisticalpointofview(Glasbyetal.,1998).

    Withtheadventofthecomputerrevolution,today'simageanalysissystemshavecomealongwaysincetheirearlybeginnings.Thesesystemsusedintegratedlightpentechnologytodigitizeandquantifysingleobjectsofinterestwhenpointedatascreen.Significantadvancementsinhardwarecoupledwithnewdevelopmentsinmathematicalalgorithmsappliedtoimageprocessinghavecontributedtothegrowingacceptanceofimageanalysistechnologyasaneffectivetoolforimagequantification.Imageanalysisisnotatoolusedexclusivelyinqualitycontrollaboratories.Theuseofimageanalysisindifferentfieldsofsciencecreatednewdomainsofresearchandapplications:biomedicalimaging,industrialvision,remotesensing,scientificvisualization,andvirtualreality.

    Imageanalysishasbeenversatileinmeasuringvariouspropertiesinthetextileworld.Qualitycontrolspecificationsforyarnandfabricdensity,yarnconfigurationandtheknitgeometrywerecheckedbyimageanalysis(Zhang,1996).Thecompositesindustryusedimageanalysistostudythefiberbreakageinsomeinjectionmoldedplastics(ShortallandPennington,1982).Innonwovens,poresizesaswellasstructuralparametersofindividualfibersandbundleshavebeensuccessfullymeasuredwiththistechnology(Xu,1996).

    Thereisaneedinthetextileindustryforobjectivedetectionofnonuniformcolorationindyedblendedtextiles.Animageanalysissystemcanbeusedtofollowtheeffectsofvaryingcertainconditionsforthepretreatingoftextiles.Dyedfabricswereimagedandtheimagedatadigitized.Dataanalysisgavevaluesthatwereusedtoobtain

    41

  • 8/2/2019 Chiparus Dis

    58/92

  • 8/2/2019 Chiparus Dis

    59/92

    dynamicmechanicalanalysis(DMA).TAiswidelyemployedinbothscientificandindustrialdomains.Theabilityofthesetechniquestocharacterize,quantitativelyandqualitatively,alargevarietyofmaterialsoveraconsiderabletemperaturerangehasbeenpivotalintheiracceptanceasanalyticaltechniques.UndernormalconditionsonlylimitedtrainingofpersonnelisrequiredtooperateaTAinstrument.This,coupledwiththefactthatresultscanbeobtainedrelativelyquicklyandareaccurateandreproducible,meansthatTAisemployedinanever-increasingrangeofapplications(Hassel,1991).However,theoperationalsimplicityofTAinstrumentsbeliesthesubtletyoftechniqueswhich,ifimproperlypracticed,cangiverisetomisleadingorerroneousresults.Theabundanceofresultsofdubiousintegrityinboththeacademicliteratureandindustrialperformancereportsunderlinestheextentandseriousnessofthisproblem(Hatakeyama,1999).

    TheadvantagesofTAoverotheranalyticalmethodscanbesummarizedas

    follows(Hatakeyama,1999):

    (i)Thesamplecanbestudiedoverawidetemperaturerangeusingvarioustemperatureprograms;(ii)Almostanyphysicalformofsample(solid,liquidorgel)canbeaccommodatedusingavarietyofsamplevesselsorattachments;(iii)Asmallamountofsample(0.1g-10mg)isrequired;(iv)Theatmosphereinthevicinityofthesamplecanbestandardized;(v)

    Thetimerequiredtocompleteanexperimentrangesfromseveralminutestoseveralhours;(vi)TAinstrumentsarereasonablypriced.43

  • 8/2/2019 Chiparus Dis

    60/92

    Inpolymerscience,preliminaryinvestigationofthesampletransitiontemperaturesanddecompositioncharacteristicsisroutinelyperformedusingTAbeforespectroscopicanalysisisbegun.TAdataareindirectandmustbecollatedwithresultsfromspectroscopicmeasurements,beforethemolecularprocessesresponsiblefortheobservedbehaviorcanbeelucidated.Irrespectiveoftherateoftemperaturechange,asamplestudiedusingaTAinstrumentismeasuredundernoequilibriumconditions,andtheobservedtransitiontemperatureisnottheequilibriumtransitiontemperature.Therecordeddataareinfluencedbyexperimentalparameters,suchasthesampledimensionsandmass,theheating/coolingrate,thenatureandcompositionoftheatmosphereintheregionofthesampleandthethermalandmechanicalhistoryofthesample(Pierce,1996).

    ThegeneralconformationofTAapparatus(consistingofaphysicalpropertysensor,acontrolled-atmospherefurnace,atemperatureprogrammerandarecording

    device)isillustratedinFigure1-18.Table1-4liststhemostcommonformsofTA.

    Figure1-18.BlockdiagramofaTAinstrument.

    ModernTAapparatusisgenerallyinterfacedtoacomputer(workstation)whichoverseesoperationoftheinstrumentcontrollingthetemperaturerange,heatingandcoolingrate,flowofpurgegasanddataaccumulationandstorage.

    44

  • 8/2/2019 Chiparus Dis

    61/92

    Table1-4ConventionalFormsofTA

    PropertyTAMethodAbbreviationMassThermogravimetryTGDifferenceofTemperatureDifferentialthermalanalysisDTADifferenceofTemperatureAlternatingcurrentcalorimetryACCEnthalpyDifferentialscanningcalorimetryDSCLength,VolumeDilatometryDeformationThermomechanicalanalysisTMADynamicmechanicalanalysisDMAElectricCurrentThermostimulatedcurrentTSCLuminescenceThermoluminescenceTL

    Varioustypesofdataanalysiscanbeperformedbythecomputer.AtrendinmodernTAistouseasingleworkstationtooperateseveralinstrumentssimultaneously.

    Thermo-gravimetry(TG)isthebranchofthermalanalysiswhichexaminesthemasschangeofasampleasafunctionoftemperature(scanningmode)orasafunctionoftime(isothermalmode).Notallthermaleventsbringaboutachangeinthemassofthesample.Melting,crystallization,andglasstransitiondonotexhibitmasschange

    whereasdesorption,absorption,sublimation,vaporization,oxidation,reductionanddecompositiondo.TGisusedtocharacterizethedecompositionandthermalstabilityofmaterialsunderavarietyofconditionsandtoexaminethekineticsofthephysicochemicalprocessesoccurringinthesample.Themasschangecharacteristicsofamaterialarestronglydependentontheexperimentalconditionsemployed.Factorssuch

    45

  • 8/2/2019 Chiparus Dis

    62/92

    assamplemass,volumeandphysicalform,theshapeandnatureofthesampleholder,thenatureandpressureoftheatmosphereinthesamplechamberandthescanningrateallhaveimportantinfluencesonthecharacteristicsoftherecordedTGcurve.

    DifferentialScanningCalorimetry(DSC)isabranchofTAwherethedifferentialenergysuppliedbetweenasampleandreferencetomaintainaminimumtemperaturedifferencebetweenthesampleandreferenceinresponsetoatemperatureprogramisusedtoinvestigatethenatureofthesample.TheDSCcurveisagraphicrepresentationofthedatacollected,wherethedifferentialenergysuppliedisplottedasafunctionoftemperature(scanningmode)ortime(isothermalmode).Both,sampleandreferencearesubjectedtocontinuoustemperatureincrease(Negulescu,2001).

    Dynamicmechanicalanalysis(DMA)isabranchofthermalanalysiswherethebehaviorofasamplesubjectedtoanoscillatingstressinresponsetoatemperature

    programisusedtoinvestigatethenatureofthesample.MostDMAmeasurementsaremadeusingasinglefrequencyandconstantdeformationamplitudewhilevaryingtemperature(Foreman,1997).Thevalueofadynamictestismostsignificant,inthata30to60minuteexperimentyieldsatremendousamountofinformationonthesampleinquestion.Themodulusvaluebelowtheglasstransitionwilltellaboutlevelsofmolecularorientationandcrystallinity.Transitionsoccurringcanberelatedtothepolymersstructureandmaybeparticularlyusefulwhereamultiplecomponentblendisunder

    investigation.Dynamicmechanicalmethodsarethemostsensitivewayofmeasuringtheglasstransitionitself,whichisoneofthekeypropertiesofapolymerfromboththestructuralandprocessingviewpoint.Abovetheglasstransitiontherubberybehavioryieldsimportantfactorssuchastheeffectivecross-linkdensityandcluesto

    46

  • 8/2/2019 Chiparus Dis

    63/92

    processability.Finallydatacanbeobtainedinshearmodeafterthemeltingpoint.Thistechniqueiscomplementarytoinfra-redorNMRresultsonchemicalcomposition.Thesetestsyieldcomprehensivedetailonthemolecularmoietiespresent,whilstthemechanicaldatarevealhowtheyareconnectedtogether(www.triton-technology.co.uk).

    1.4.8BiodegradationConcernsforacleanenvironmenthaveimpactednotonlytextilemanufacturersbutalsoconsumersinthechoiceofrawmaterialstofinalproducts.Publicawarenessincreasinglydemandsbiodegradableorenvironmentallyfriendlytextiles,especiallydisposablenonwovenproducts.Thepossibilityofcompostingdisposablenonwovenproducts,suchasdiapers,incontinenceproducts,surgicalgowns,andlandfillshasattractedspecialattentioninanefforttosolvethesolidwastecrisis.Othernichesofthenonwoventextileindustry,suchasgeotextiles,dealwiththesameproblem.Unfortunately,thereareonlyafewbiodegradablefibersavailablethatcanserveasrawmaterialsinnonwovenproduction,andinmostcasesnewlydevelopedbiodegradabl

    efibersareexpensive(Suhetal.,1996).

    Biodegradationbydefinitionisabiologicalprocessandrequiresmicroorganismssuchasbacteria,fungi,algae,andacetinomyecetes(Suhetal.,1996).Biodegradationoftextilematerialsisusuallyassociatedwiththepresenceofnaturalfibers.Duetotherelativelymodestphysicalandmechanicalpropertiesofthenaturalfibers,theiruseinnonwovensislimited.Evenso,presenceofsyntheticmaterialsisrequiredasabonding

    agent,exceptforneedlepunchingbonding.Cotton,forcenturiesthemostimportantoffibers,isnowtakingsecondplacetosynthetics.Viscoserayonstaplefiberswere,in

    47

  • 8/2/2019 Chiparus Dis

    64/92

    1966,thecheapestmanufacturedfiber.Nowtheyarearoundtwicethepriceofthemainsyntheticwithouttheabilitytobeeasilyspun-laidorthermalbonded(Woodings,2001).

    Thebiodegradationmechanismisgenerallyexplainedbytheenzymaticcatalyzedprocess,whereenzymesareproducedbyvariousmicroorganismsinthepresenceofdegradablesubstrates.Requirementsformicrobialgrowthvarywithtemperature,pH,andoxygenavailability(Suhetal.,1996).Usuallythepresenceofmoistureandnutrientsisnecessary.Thebiodegradationprocessinvolvesanumberofdifferentmechanisms,includinghydrolysisandoxidation,whichresultinpolymerchainscission(Cooke,1990).Intermediateproductsfromthecontinuationofthechainbreakagesarewater-solublefragments.Astotalmineralizationproceeds,furtherdegradationproductsarecarbondioxide(CO2),water(H2O),methane(CH4),andbiomass(Cooke,1990).Thebiodegradationofcellulose-basedfibershasbeenintensivelystudied.Cellulose

    isbelievedtobereadilybiodegradedbymanymicroorganismsduetotheactivityofcelluloseenzymescatalyzingthehydrolysisandoxidation(FinchandRoberts,1985).Thecelluloseenzymesareclassifiedintothreegroupsaccordingtotheircatalyzedreactions:hydrolases,oxidases,andphosphorylases(FinchandRoberts,1985).Enzymaticactivitiesoncellulosicsareinfluencedbymanyfactorsdependingontheirmorphologicalandphysicalstructures.Theseenzymesactbyhydrolyzingoroxidizingthepolymer,andcanworkattheendofthechains(exo-enzymes)orrandomlyalo

    ngtheirlength(endo-enzymes).Thehigherthedegreeofpolymerizationandthegreaterthedegreeofcrystallinityandorientation,thelesssusceptibilitytomicrobialattackduetolimitedaccessibility.Themostbiodegradablefibersthereforetendtobehydrophilic,andmadeupofshort,flexiblechainswithlowlevelsofcrystallization.Theywilloftenhave

    48

  • 8/2/2019 Chiparus Dis

    65/92

    chainbackboneswithoxygenornitrogenlinks.Thisdescriptionclearlyfitsmostnaturalfibersandmanynaturalpolymers.

    Biodegradationwithinaspecifiedtimeframeinasolidcompostmediumiscalledcomposting.Compostingisamanagedprocessthatcontrolsthebiologicaldecompositionandtransformationofbiodegradablematerialintoahumus-likesubstancecalledcompost.Amaterialiscompostableifitiscapableofundergoingbiologicaldecompositioninacompostsiteasapartofanavailableprogramsuchthatthematerialisnotvisuallydistinguishableandbreaksdownintocarbondioxide,water,inorganiccompounds,andbiomassatarateconsistentwiththeknowncompostablematerials(ASTMD600296).

    Populationandsocialconcerns,theGreenmovementandgovernmentmandateshaveprovidedanincentivetodevelopandusebiodegradablepolymers(Hailleetal.,2001).Polymerscientistshavefacilitatedaparadigmshiftintheuseoftextiles,fromthe

    historicaldesiretoimprovedurability,weatherabilityandotherlonglifecharacteristics,toatriggeredorreproduciblebreakdownunderprescribedconditions.

    Biodegradationinfibers,includingsyntheticones,occurswhentheirconstituentpolymersaredepolymerized.Biodegradation-resistantpolymershavetheoppositecharacteristicsandunsurprisinglyareusedtomakethestrongermoredurablefibers.Oxygen-freepolymerssuchaspolypropyleneandpolyethyleneresistbiodegradationtotally.Polyester,despiteitsoxygencontentisdegradation-resistantprobablybecauseit

    hasrigid,rod-likechains.Thesameistrueforpolyamidesdespitetheirnitrogencontent.Unlikearomatics,aliphaticpolyestersaregenerallybiodegradable.Manufacturedbiodegradablealiphaticpolyestersare,however,stillbasedmainlyonindustrial

    49

  • 8/2/2019 Chiparus Dis

    66/92

    polymerizationofmonomerssuchasglycolicacid(PGA),lacticacid(PLA),butyricacid(PHB),valericacid(PHV)andcaprolactone(PCL)(Woodings,2001).Despitethesenewachievementsinbiodegradablepolymerdevelopment,theuseofthesematerialsislimitedbytheproductioncosts.Itisforecastthatbytheendofthisdecade,advancementsintechnologywillallowmanufactureofbiodegradablepolymersatapricelevelcomparablewiththeregularpolymers.

    1.5ExperimentalMethods1.5.1ProcessingProcedureBagassefiberusedinthisstudywasprovidedbyalocalsugarmill,fromthe2001crop.Therawbagassewasalreadycrushedatdifferentlengthsasanoutputfromthesugarextractionprocess.Toextractthebagassefibers,aseriesofmechanicalandchemicalprocedureswasused.WastebagassewaslaidoutonthegroundofanopenbutroofedareaintheLSUAudubonSugarFactoryforaperiodoftwoweeks.Toassur

    eauniformdryingprocessthelayerofbagassewasturnedoveronceaday.Themoisturecontentwasmeasuredforrandomlyselectedsamplesoffibers.Theresultsindicatedaconsistentlevelofmoisturelessthan15%.Smallfibersandimpuritieswereremovedthroughasiftingprocessusinga2ftby2ftwoodenframesievehavingascreenwith1/16ineyedimension.

    Forthealkalineextraction,anatmosphericprocesswasemployed.AnLSU-designed,previouslybuiltatmosphericreactorwasused(Figure1-19).Fromprev

    iousstudies,itwasdeterminedthata2.0NNaOHsoulutionisrequiredtoremoveasignificantamountoflignin.Themeasuredvolumeofthereactorwas200liters.Certified

    A.C.S.NaOHpelletswereused.Thesolutionwasheateduptotheboilingpoint50

  • 8/2/2019 Chiparus Dis

    67/92

    (approximately100C).Siftedbagassewasfedintoreactorgradually.Thefiber/liquidratiousedwas1:10.Inapproximately90minutesthewholeamountofbagasse,intendedfordelignification,wascollectedattheotherendofthereactor.Theextractedfiberswerer