Chip Ca3098e

Embed Size (px)

Citation preview

  • 8/22/2019 Chip Ca3098e

    1/12

    1

    TM

    CA3098

    Programmable Schmitt Trigger withMemory, Dual Input Precision LevelDetector

    The CA3098 Programmable Schmitt Trigger is a monolithic

    silicon integrated circuit designed to control high operating

    current loads such as thyristors, lamps, relays, etc. The

    CA3098 can be operated with either a single power supply

    with maximum operating voltage of 16V, or a dual power

    supply with maximum operating voltage of 8V. It can

    directly control currents up to 150mA and operates with

    microwatt standby power dissipation when the current to be

    controlled is less than 30mA. The CA3098 contains the

    following major circuit function features (see Block Diagram):

    1. Differential amplifiers and summer: the circuit uses two

    differential amplifiers, one to compare the input voltage

    with the high reference, and the other to compare the

    input with the low reference. The resultant output of the

    differential amplifiers actuates a summer circuit which

    delivers a trigger that initiates a change in state of a flip-

    flop.

    2. Flip-flop: the flip-flop functions as a bistable memory

    element that changes state in response to each triggercommand.

    3. Driver and output stages: these stages permit the circuit

    to sink maximum peak load currents up to 150mA at

    terminal 3.

    4. Programmable operating current: the circuit incorporates

    access at terminal 2 to permit programming the desired

    quiescent operating current and performance parameters.

    PinoutCA3098

    (PDIP)

    TOP VIEW

    Features

    Programmable Operating Current

    Micropower Standby Dissipation

    Direct Control of Currents Up to. . . . . . . . . . . . . . . 150mA

    Low Input On/Off Current of Less Than 1nA for

    Programmable Bias Current of 1A

    Built-in Hysteresis . . . . . . . . . . . . . . . . . . . . . 20mV (Max)

    Applications

    Control of Relays, Heaters, LEDs, Lamps, Photosensitive

    Devices, Thyristors, Solenoids, etc.

    Signal Reconditioning

    Phase and Frequency Modulators On/Off Motor Switching

    Schmitt Triggers, Level Detectors

    Time Delays

    Overvoltage, Overcurrent, Overtemperature Protection

    Battery-Operated Equipment

    Square and Triangular-Wave Generators

    LOW REF.

    IBIAS

    OUT

    V-

    1

    2

    3

    4

    8

    7

    6

    5

    +IN

    HIGH REF.

    V+

    CURRENTCONTROL

    Part Number Information

    PART

    NUMBER

    TEMP

    RANGE (oC) PACKAGE PKG. NO.

    CA3098E -55 to 125 8 Ld PDIP E8.3

    January 1999 File Number 896.5

    )

    ma

    itt

    ith

    ut

    )

    )

    ds

    duc

    e,

    tor,

    t

    ent,

    e

    ow

    l

    ut,

    ure

    itt

    ilt

    s,

    put

    OBSOLE

    TEPROD

    UCT

    NOREC

    OMMEND

    EDREPL

    ACEMEN

    T

    Call1-88

    8-INTER

    SILor3

    21-724-7

    143

    CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.1-888-INTERSIL or 321-724-7143

    |Intersil (and design) is a trademark of Intersil Americas Inc.

    Copyright Intersil Americas Inc. 2001. All Rights Reserved

  • 8/22/2019 Chip Ca3098e

    2/12

    2

    Block Diagram

    Schematic Diagram

    DIFF.

    AMP

    DIFF.AMP

    7

    1

    8 SUMMER

    HIGHREF. (HR)

    SIGNALINPUT

    LOWREF. (LR)

    FLIP-FLOP(MEMORY)

    2PROGRAMMABLEBIAS CURRENTINPUT (IBIAS)

    DRIVER OUTPUT 3

    5

    4 V-

    SINKOUTPUT

    OUTPUTCURRENTCONTROL

    SUBSTRATE

    6 V+

    COMPARATOR

    8

    7

    LOWREF. (LR)

    1

    4

    SIGNALINPUT

    5

    6

    3

    2

    V-

    Q1

    HIGHREF. (HR)

    Q2

    Q6 Q7

    Q3

    Q4

    Q5

    Q9

    Q8

    Q10

    Q11

    Q20

    Q26

    Q16

    Q14

    Q15Q12

    Q17 Q18

    Q19

    Q31

    Q30

    Q27 Q28

    Q22 Q23

    Q32Q33

    Q29

    Q34

    Q35Q36 Q38

    Q37

    Q25

    Q24

    Q39

    Q40

    Q41

    Q42

    Q46

    Q45Q44Q43

    R350K

    R14500

    SINK

    PROGRAMMABLE

    V+

    BIAS CURRENTINPUT (IBIAS)

    OUTPUTCURRENTCONTROL

    OUTPUT

    CA3098

  • 8/22/2019 Chip Ca3098e

    3/12

    3

    Absolute Maximum Ratings Thermal Information

    Supply Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . .16V

    Voltage Between High Reference or Sink Output and V-. . . . . . .16V

    Differential Input Voltage Between Terminals 8 and 1 . . . . . . . . . 10V

    and Terminals 7 and 8

    Load Current (Terminal 3) (Duty Cycle 25%). . . . . . . . . . . . 150mA

    Input Current to Voltage Regulator (Terminal 5) . . . . . . . . . . . 25mA

    Programmable Bias Current (Terminal 2) . . . . . . . . . . . . . . . . . 1mA

    Output Current Control (Terminal 5). . . . . . . . . . . . . . . . . . . . . 15mA

    Operating Conditions

    Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC

    Voltage Range

    +IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V- to V+

    HIGH REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (V- +2.0V) to V+

    LOW REF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (V-) to (V+ -2.0V)

    Thermal Resistance (Typical, Note 3) JAPDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125oC/W

    Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . .175 oC

    Maximum Junction Temperature (Plastic Package). . . . . . . . .150oC

    Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC

    Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC

    CAUTION: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the

    device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

    Electrical Specifications TA = 25oC, Unless Otherwise Specified

    PARAMETER SYMBOL TEST CONDITIONS

    CA3098

    UNITSMIN TYP MAX

    Input Offset Voltage

    Low Reference (Figures 2, 5) VIO(LR) VLR = GND, VHR = V+ to (V- +2V),

    IBIAS = 100A

    -15 -3 6 mV

    High Reference (Figures 2, 6) VIO(HR) VHR = GND, VLR = V- to (V+ -2V),

    IBIAS = 100A

    -10 -1 10 mV

    Temperature Coefficient

    Low Reference (Figure 7) -55oC to 125oC - 4.5 - V/oC

    High Reference (Figure 8) -55oC to 125oC - 8.2 - V/oC

    Minimum Hysteresis

    Voltage (Figure 9) VIO(HR-

    LR)

    VREG = 0V (Note 1), V+ = 4V, V- = -4V,

    IBIAS = 1A

    - 3 20 mV

    Temperature Coefficient (Figure 10) -55oC to 125oC - 6.7 - V/oC

    Output Saturation Voltage(Figures 11, 12)

    VCE(SAT) VI = 5V, VREG = 6V (Note 1), V+ = 12V,IBIAS = 100A

    - 0.72 1.2 V

    Total Supply Current ITOTALON (Figures 3, 13, 14) VI = 6V, VREG > 6V (Note 1), V+ = 16V,

    IBIAS = 100A

    500 710 800 A

    OFF (Figures 3, 13, 14) VI = 10V, VREG < 10V (Note 1),

    V+ = 16V, IBIAS = 100A

    400 560 750 A

    Input Bias Current (Figures 3, 15) IIBIB(PNP) VI = 16V, VREG < 16V (Note 1),

    V+ = 16V, IBIAS = 100A

    - 42 100 nA

    IB(NPN) VI = 6V, VREG > 6V (Note 1), V+ = 16V,

    IBIAS = 100A

    - 28 100 nA

    Output Leakage Current ICE(OFF) Current from Terminal 3 when Q46 is OFF - - 10 A

    Switching Times (Figures 4, 16-27) IBIAS = 100A, V+ = 5V, VREG = 2.5V(Note 1)Delay Time tD - 900 - ns

    Fall Time tF - 30 - ns

    Rise Time tR - 2000 - ns

    Storage Time tS - 6.5 - s

    Output Current (Note 2) IO 100 - - mA

    NOTES:

    1. For definition of VREG see Figure 3.

    2. Continuous (DC) output current must be limited to 40mA. For 100mA output current, the duty cycle must be 40%.

    3. JA is measured with the component mounted on an evaluation PC board in free air.

    CA3098

  • 8/22/2019 Chip Ca3098e

    4/12

    4

    General Description of Circuit Operation

    When the signal input voltage of the CA3098 is equal to or

    less than the low reference voltage (LR), current flows from

    an external power supply through a load connected to

    Terminal 3 (sink output). This condition is maintained until

    the signal input voltage rises to or exceeds the high

    reference voltage (HR), thereby effecting a change in the

    state of the flip-flop (memory) such that the output stageinterrupts current flow in the external load. This condition, in

    turn, is maintained until such time as the signal again

    becomes equal to or less than the low reference voltage.

    The CA3098 comparator is unique in that it contains circuit

    provisions to permit programmability. This feature provides

    flexibility to the designer to optimize quiescent power

    consumption, input circuit characteristics, hysteresis, and

    additionally permits independent control of the comparator,

    namely, pulsing, strobing, keying, squelching, etc.

    Programmability is accomplished by means of the bias

    current (IBIAS) supplied to Terminal 2.

    An auxiliary means of controlling the magnitude of load

    current flow at Terminal 3 is provided by sinking current into

    Terminal 5. Figure 1 highlights the operation of the CA3098

    when connected as a simple hysteresis switch (Schmitt

    trigger).

    26

    5

    CA3098

    IO

    RL

    EO

    V+ = 12VDC

    7

    8

    1

    LOW REF. = 4V

    HIGH REF. = 8V

    4

    INPUTSIGNAL

    EIN

    120k

    RB

    SEQUENCE

    INPUT SIGNAL

    LEVEL

    OUTPUT VOLTAGE (V)

    (TERMINAL 3)

    1 4 EIN > 0 0

    2 8 EIN > 4 0

    3 EIN > 8 12

    2 8 EIN > 4 12

    1 4 EIN > 0 0

    3

    FIGURE 1. BASIC HYSTERESIS SWITCH (SCHMITT

    TRIGGER) AND RESULTANT OUTPUT STATES

    Metallization Mask Layout

    Dimensions in parentheses are in millimeters and are derived

    from the basic inch dimensions as indicated. Grid graduations

    are in mils (10-3 inch).

    The layout represents a chip when it is part of the wafer. When

    the wafer is cut into chips, the cleavage angles are 57o instead

    of 90o with respect to the face of the chip. Therefore, the

    isolated chip is actually 7mils (0.17mm) larger in both

    dimensions.

    60

    50

    40

    30

    20

    10

    0

    61

    0 10 20 30 40 50 58

    63 (1.600)

    66 (1.676)

    CA3098

  • 8/22/2019 Chip Ca3098e

    5/12

    5

    Test Circuits

    FIGURE 2. INPUT OFFSET VOLTAGE TEST CIRCUIT FIGURE 3. TOTAL SUPPLY CURRENT, AND INPUT BIAS

    CURRENT TEST CIRCUIT

    FIGURE 4. SWITCHING TIME TEST CIRCUIT

    2

    6

    5

    CA3098 3 VO

    8

    7

    1

    4

    1.5k

    -6V

    VLRVHRVI

    IBIAS

    150

    +6V

    2

    6

    5

    CA3098 3

    8

    7

    1

    4

    1.1k

    VREGVI

    IBIAS

    110

    V+

    mA

    mA

    IIB

    ITOTAL

    26

    5

    CA3098

    8

    7

    1

    4

    450

    VREG

    IBIAS

    45

    V+

    VI

    3 VOtD

    tF tR

    tS

    VI

    VO

    CA3098

  • 8/22/2019 Chip Ca3098e

    6/12

    6

    Typical Performance Curves

    FIGURE 5. INPUT OFFSET VOLTAGE (LOW REFERENCE)

    vs PROGRAMMING BIAS CURRENT

    FIGURE 6. INPUT OFFSET VOLTAGE (HIGH REFERENCE)

    vs PROGRAMMING BIAS CURRENT

    FIGURE 7. INPUT OFFSET VOLTAGE (LOW REFERENCE)

    vs AMBIENT TEMPERATURE

    FIGURE 8. INPUT OFFFSET VOLTAGE (HIGH

    REFERENCE) vs AMBIENT TEMPERATURE

    FIGURE 9. MINIMUM HYSTERESIS VOLTAGE vs

    PROGRAMMING BIAS CURRENTFIGURE 10. MINIMUM HYSTERESIS VOLTAGE vs AMBIENT

    TEMPERATURE

    VHR = 6V, VLR = 6V

    TA = 25oC, V+ = +12V,

    VIO (LR) = VI - VLR

    10

    PROGRAMMING BIAS CURRENT (A)

    10 100 1000

    -1

    -2

    -3

    -4

    -5

    LOWR

    EF.INPUTOFFSETVOLTAGE(mV)

    VHR = 6V, VLR = 0V

    TA = 25oC, V+ = +12V,

    VIO (HR) = VI - VHR

    10

    PROGRAMMING BIAS CURRENT (A)

    10 100 1000

    1

    2

    3

    4

    HIGHREF.INPUTOFF

    SETVOLTAGE(mV)

    VIO (LR) = VI - VLR

    -75-1.5

    TEMPERATURE (oC)

    -50 -25 0

    -2.0

    -2.5

    -3.0

    -3.5

    LOW

    REF.INPUTOFFSETVOLTAGE(m

    V)

    25 50 75 100 125

    IBIAS = 100A

    -750

    TEMPERATURE (oC)

    -50 -25 0

    1

    2

    3

    HIGHREF.INPUTOFFSETVOLTAGE(m

    V)

    25 50 75 100 125

    VIO (HR) = VI - VHR

    VHR = 6V, VLR = 6V

    TA = 25oC, V+ = +12V,

    10

    PROGRAMMING BIAS CURRENT (A)

    10 100 1000

    1

    2

    3

    4

    MIN.HYSTERESISVOLTAGE(mV)

    -25

    TEMPERATURE (oC)

    0 100 1251

    2

    3

    4

    MIN.HYS

    TERESISVOLTAGE(mV)

    25 50 75-50-75-100

    CA3098

  • 8/22/2019 Chip Ca3098e

    7/12

    7

    FIGURE 11. OUTPUT SATURATION VOLTAGE vs OUTPUT

    SINK CURRENT

    FIGURE 12. OUTPUT SATURATION VOLTAGE vs AMBIENT

    TEMPERATURE

    FIGURE 13. TOTAL SUPPLY CURRENT vs PROGRAMMING

    BIAS CURRENT

    FIGURE 14. TOTAL SUPPLY CURRENT vs AMBIENT

    TEMPERATURE

    FIGURE 15. INPUT BIAS CURRENT vs PROGRAMMING BIAS

    CURRENT

    FIGURE 16. DELAY TIME vs SUPPLY VOLTAGE

    Typical Performance Curves (Continued)

    V+ = 12V

    TA = 25oC, IBIAS = 100A

    100

    OUTPUT SINK CURRENT (mA)

    100 1000

    0.8

    1.0

    1.2

    1.4

    OUTPUTSATURATIONVOLTAGE(V)

    0.6

    0.4

    0.2

    V+ = 10V

    IBIAS = 100A

    -1000.5

    TEMPERATURE (oC)

    -75 125

    0.9

    1.0

    OUTPUTSATURAT

    IONVOLTAGE(V)

    0.8

    0.7

    0.6

    -50 -25 0 25 50 75 100

    VREG = 6V (NOTE)TA = 25oC, V+ = 12V

    10.1

    PROGRAMMING BIAS CURRENT (A)

    100 1000

    10

    100

    1,000

    10,000

    TOTALSUPPLYCURRENT(A)

    1

    10

    NOTE: See Figure 3 for definition of VREG

    IBIAS = 100A

    500

    600

    700

    800

    TOTALSUPPLYCURRENT(A)

    400

    300

    200

    -75 125-50 -25 0 25 50 75 100TEMPERATURE (oC)

    VREG = 6V (NOTE)TA = 25

    oC, V+ = 12V

    PROGRAMMING BIAS CURRENT (A)

    100 10001010.1

    10

    100

    INPUTBIASCURRENT(nA)

    1

    IIB (p-n-p)

    IIB (n-p-n)

    NOTE: See Figure 3 for definition of VREG

    1000

    950

    900

    850

    1050

    5 10 15

    POSITIVE SUPPLY VOLTAGE (V)

    DELAYTIME(ns)

    TA = 25oC

    IBIAS = 100A

    VLR = VHR = VREG = V+/2

    800

    CA3098

  • 8/22/2019 Chip Ca3098e

    8/12

    8

    FIGURE 17. STORAGE TIME vs SUPPLY VOLTAGE FIGURE 18. OUTPUT FALL TIME vs SUPPLY VOLTAGE

    FIGURE 19. OUTPUT RISE TIME vs SUPPLY VOLTAGE FIGURE 20. OUTPUT RISE TIME vs AMBIENT TEMPERATURE

    FIGURE 21. OUTPUT FALL TIME vs AMBIENT TEMPERATURE FIGURE 22. STORAGE TIME vs AMBIENT TEMPERATURE

    Typical Performance Curves (Continued)

    TA = 25oC

    IBIAS = 100A

    VLR = VHR = VREG = V+/2

    5 10 15

    POSITIVE SUPPLY VOLTAGE (V)

    7000

    6500

    STORAGETIM

    E(ns)

    TA = 25oC

    IBIAS = 100A

    VLR = VHR = VREG = V+/2

    5 10 15

    POSITIVE SUPPLY VOLTAGE (V)

    40

    35

    30OUTPUTFALL

    TIME(ns)

    TA = 25oC

    IBIAS = 100A

    VLR = VHR = VREG = V+/24000

    3000

    2000OUTPUTRISETIME(ns)

    5 10 15POSITIVE SUPPLY VOLTAGE (V)

    2500

    2400

    2300

    2200

    2600

    SUPPLY VOLTAGE = 5V

    IBIAS = 100A

    VLR = VHR = VREG = 2.5V

    2100

    2000

    1900

    1800

    1700

    OUTPUTRISETIME(ns)

    -40 -20 0 20 40 60 80

    TEMPERATURE (oC)

    -40 -20 0 20 40 60 80

    TEMPERATURE (oC)

    SUPPLY VOLTAGE = 5V

    IBIAS = 100A

    VLR = VHR = VREG = 2.5V40

    35

    30

    45

    OUTPUTFA

    LLTIME(ns)

    25

    SUPPLY VOLTAGE = 5V

    IBIAS = 100A

    VLR = VHR = VREG = 2.5V

    -40 -20 0 20 40 60 80

    TEMPERATURE (oC)

    100

    9000

    8000

    7000

    6000

    5000

    4000

    STORAGE

    TIME(ns)

    CA3098

  • 8/22/2019 Chip Ca3098e

    9/12

    9

    FIGURE 23. DELAY TIME vs AMBIENT TEMPERATURE FIGURE 24. DELAY TIME vs PROGRAMMING BIAS CURRENT

    FIGURE 25. STORAGE TIME vs PROGRAMMING BIAS

    CURRENT

    FIGURE 26. OUTPUT FALL TIME vs PROGRAMMING BIAS

    CURRENT

    FIGURE 27. OUTPUT RISE TIME vs PROGRAMMING BIAS CURRENT

    Typical Performance Curves (Continued)

    1000

    800

    700

    600

    900

    -40 -20 0 20 40 60 80

    TEMPERATURE (oC)

    DELAYTIME(ns)

    SUPPLY VOLTAGE = 5V

    IBIAS = 100A

    VLR = VHR = VREG = 2.5V

    100

    1100

    1000

    900

    800

    700

    600

    500

    0 500 1000

    DELAYTIM

    E(ns)

    PROGRAMMING BIAS CURRENT (A)

    400

    TA = 25oC, VLR = VHR = VREG = 2.5V

    SUPPLY VOLTAGE = 5V1100

    10000

    9000

    8000

    7000

    6000

    5000

    4000

    0 500 1000

    STORAGETIME(ns)

    PROGRAMMING BIAS CURRENT (A)

    SUPPLY VOLTAGE = 5V

    TA = 25oC

    VLR = VHR = VREG = 2.5V

    11000

    12000

    3000

    40

    30

    20

    10

    50

    0 500 10000

    OUTPUTFALLTIME(ns)

    PROGRAMMING BIAS CURRENT (A)

    SUPPLY VOLTAGE = 5VTA = 25

    oC

    VLR = VHR = VREG = 2.5V

    60

    2500

    2000

    1500

    1000

    3000

    0 500 1000

    OUTPTUT

    RISETIME(ns)

    PROGRAMMING BIAS CURRENT (A)

    SUPPLY VOLTAGE = 5V

    TA = 25oC, VLR = VHR = VREG = 2.5V

    CA3098

  • 8/22/2019 Chip Ca3098e

    10/12

  • 8/22/2019 Chip Ca3098e

    11/12

    11

    FIGURE 32. OFF/ON CONTROL OF TRIAC WITH

    PROGRAMMABLE HYSTERESIS

    FIGURE 33. ONE SHOT MULTIVIBRATOR

    Typical Applications (Continued)

    2

    6

    5

    CA3098 3

    8

    7

    1

    4

    1k

    V-

    R4

    MT2

    MT1

    G

    LOAD

    100k

    TRIACR1100k

    R2100k

    R3100k

    SENSOR

    120VAC60Hz

    (e.g., 100k)

    2

    6

    5

    CA3098

    8

    1

    7

    4

    1k

    +6V

    3

    60k

    C1

    1k

    -6V

    1M

    LAMP

    1.1M

    TRIGGERINPUT

    2.5V

    0V

    DESIRED tON

    (ms)

    VALUE OF C1

    (F)

    15 0.01

    150 0.1

    300 0.2

    CA3098

  • 8/22/2019 Chip Ca3098e

    12/12

    12

    All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.

    Intersil Corporations quality certifications can be viewed at www.intersil.com/design/quality

    Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without

    notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and

    reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result

    from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

    For information regarding Intersil Corporation and its products, see www.intersil.com

    Sales Office HeadquartersNORTH AMERICAIntersil Corporation7585 Irvine Center DriveSuite 100Irvine, CA 92618TEL: (949) 341-7000FAX: (949) 341-7123

    Intersil Corporation2401 Palm Bay Rd.Palm Bay, FL 32905TEL: (321) 724-7000FAX: (321) 724-7946

    EUROPEIntersil Europe SarlAve. William Graisse, 31006 LausanneSwitzerlandTEL: +41 21 6140560FAX: +41 21 6140579

    ASIAIntersil CorporationUnit 1804 18/F Guangdong Water Building83 Austin RoadTST, Kowloon Hong KongTEL: +852 2723 6339FAX: +852 2730 1433

    CA3098

    Dual-In-Line Plastic Packages (PDIP)

    CL

    E

    eA

    C

    eB

    eC

    -B-

    E1INDEX

    1 2 3 N/2

    N

    AREA

    SEATING

    BASEPLANE

    PLANE

    -C-

    D1

    B1

    B

    e

    D

    D1

    AA2

    L

    A1

    -A-

    0.010 (0.25) C AM B S

    NOTES:

    1. Controlling Dimensions: INCH. In case of conflict between

    English and Metric dimensions, the inch dimensions control.

    2. Dimensioning and tolerancing per ANSI Y14.5M-1982.

    3. Symbols are defined in the MO Series Symbol List in Section

    2.2 of Publication No. 95.

    4. Dimensions A, A1 and L are measured with the package seated

    in JEDEC seating plane gauge GS-3.

    5. D, D1, and E1 dimensions do not include mold flash or

    protrusions. Mold flash or protrusions shall not exceed 0.010

    inch (0.25mm).

    6. E and are measured with the leads constrained to be

    perpendicular to datum .

    7. eB and eC are measured at the lead tips with the leads

    unconstrained. eC must be zero or greater.

    8. B1 maximum dimensions do not include dambar protrusions.

    Dambar protrusions shall not exceed 0.010 inch (0.25mm).

    9. N is the maximum number of terminal positions.

    10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,

    E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch

    (0.76 - 1.14mm).

    eA-C-

    E8.3 (JEDEC MS-001-BA ISSUE D)8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

    SYMBOL

    INCHES MILLIMETERS

    NOTESMIN MAX MIN MAX

    A - 0.210 - 5.33 4

    A1 0.015 - 0.39 - 4

    A2 0.115 0.195 2.93 4.95 -

    B 0.014 0.022 0.356 0.558 -

    B1 0.045 0.070 1.15 1.77 8, 10

    C 0.008 0.014 0.204 0.355 -

    D 0.355 0.400 9.01 10.16 5

    D1 0.005 - 0.13 - 5

    E 0.300 0.325 7.62 8.25 6

    E1 0.240 0.280 6.10 7.11 5

    e 0.100 BSC 2.54 BSC -

    eA 0.300 BSC 7.62 BSC 6

    eB - 0.430 - 10.92 7

    L 0.115 0.150 2.93 3.81 4

    N 8 8 9

    Rev. 0 12/93