53
Chin Pei Tang May 3, 2004 Slide 1 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo Chin Pei Tang ([email protected]ffalo.edu) Advisor : Dr. Venkat Krovi Mechanical and Aerospace Engineering State University of New York at Buffalo Manipulability-Based Analysis of Cooperative Payload Transport by Robot Collectives

Chin Pei Tang May 3, 2004 Slide 1 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo Chin Pei Tang ([email protected]) Advisor : Dr

Embed Size (px)

Citation preview

Chin Pei Tang May 3, 2004Slide 1 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Chin Pei Tang ([email protected])

Advisor : Dr. Venkat Krovi

Mechanical and Aerospace Engineering

State University of New York at Buffalo

Manipulability-Based Analysis of Cooperative Payload Transport by

Robot Collectives

Chin Pei Tang May 3, 2004Slide 2 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Agenda

Motivation & Our System

Literature Survey & Research Issues

Kinematic Model

Twist-Distribution Analysis

Manipulability

Cooperative Systems

Conclusion & Future Work

Part I

Part II

Chin Pei Tang May 3, 2004Slide 3 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Motivation

Why Cooperation?

– Tasks are too complex

– Distinct benefits – “Two hands are better than one”

– Instead of building a single all-powerful system, build multiple simpler systems

– Motivated by the biological communities

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 4 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Our System

Flexible, scalable and modular framework for cooperative payload transport

Autonomous wheeled mobile manipulator

– Differentially-driven wheeled mobile robots (DD-WMR)

– Multi-link manipulator mounted on the top

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 5 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Features

Accommodate changes in the relative configuration

Detect relative configuration changes

Compensate for external disturbances

Using the compliant linkage

Using sensed articulation

Using redundant actuation of the bases

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 6 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Research Issues

Challenges

– Nonholonomic (wheel) / holonomic (closed-loop) constraints

– Mobility / workspace increased (but also increases redundancy)

– Mixture of active/passive components

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 7 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Literature Survey

Applications of Robot Collectives

– Collective foraging, map-building and reconnaissance

Coordination & Control

– Formation Paradigm• Leader-follower [Desai et. al., 2001]

• Virtual structures [Lewis and Tan, 1997]

• Mixture of approaches [Leonard and Fiorelli, 2001],

[Lawton, Beard and Young, 2003]

No physical interaction

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 8 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Literature Survey

Physical Interaction

– Teams of simple robots • box pushing [Stilwell and Bay, 1993], [Donald et. al., 1997]

• caging [Pereira et. al., 2002], [Wang & Kumar, 2002]

– Teams of mobile manipulators [Khatib et. al., 1996]

– Design modifications [Kosuge et. al., 1998],

[Humberstone & Smith, 2000]

Upenn MARS Univ. of Alberta CRIPNASA Cooperative Rovers

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 9 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Literature Survey

Performance Measures– Single agent

• Service angle [Vinogradov et. al, 1971], conditioning [Yang and Lai,

1985], manipulability [Yoshikawa, 1985], singularity [Gosselin and

Angeles, 1990], dexterity [Kumar and Waldron, 1981], etc.

– Multiple agents (Robot teams)• Social entropy – Measuring diversity of robots in a team

(Information-theoretic) [Balch, 2000]

• Kinetic energy – Left-invariant Riemannian metrics [Bhatt et. al., 2004]

Manipulability– Serial chain – Yoshikawa’s measure [Yoshikawa, 1985],

condition number [Craig and Salisbury, 1982], isotropy index [Zanganeh and Angeles, 1997]

– Closed chain [Bicchi and Prattichizza, 2000], [Wen and Wilfinger, 1999]

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 10 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Research Issues

Part I – Physical Cooperation

– System level constraints

– Motion planning strategy

Part II – Performance Evaluation & Optimization

– Performance measures

– Formulation that takes holonomic/nonholonomic constraints and active/passive joints into account

– Different actuation schemes

– Optimal configuration

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 11 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Mathematical Preliminaries

( )20 0 1

F FMF

M

R dA SE

é ùê ú= Îê úê úë û

r

1M F F FM M MT A A

-é ù é ù=ë û ë û&

1N FF N F NM F M FT A T A

-é ù é ù é ùé ù=ë û ë û ë ûë û

0

0

0 0 0

z x z

z y x

y

v

v v

v

w w

w

é ù é ù-ê ú ê úê ú ê úÛê ú ê úê ú ê úê ú ê úë ûë û

Twist Matrix Twist Vector

Similarity Transformation

Body-fixed Twist

Homogeneous Matrix Representation

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 12 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

Mobile Platform

cos sin

si

0 0 1

n cosFMA

x

y

ff

ff

é ùê úê ú

= ê úê úê úê û

-

úë

( ) ( ), 2FF FM MA R Sd E= Î

%

1M F F FM M MT A A-é ù=ë û

&

Reaching any point

in the plane

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 13 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

cos sin

si

0

0

0 0 0

n cosM F

M

x y

x yT

ff

ff

f

f

+é ù-ê úê úé ù ê ú=ë û ê úê úê úë

- +

û

&

&

& &

& &

sin cos 0x yff- + =& &

cos sin Mx y vff+ =& &Nonholonomic

Constraints

Mobile Platform

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 14 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

0

0

0 0 0

0

M

M FM

v

T

f

f

é ù-ê úê úé ù ê ú=ë û ê úê úê úë û

&

&

sin cos 0x yff- + =& &

cos sin Mx y vff+ =& &Nonholonomic

Constraints

Mobile Platform

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 15 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

0 1 0 0 0 1

1 0 0 0 0 0

0 0 0 0 0 0M M

vM

M M

M FM M

TT

vT

f

f

é ù é ùê úê ú ë ûë û

é ù é ù-ê ú ê úê ú ê úé ù= +ê ú ê úë û ê ú ê úê ú ê úê ú ê úë û ë û

&

1444442444443 14444 44443

&

2

Mobile Platform

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 16 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

1 1 1 1

1 1 1 1

cos sin cos

sin cos sin

0 0 1

MA

L

A L

q q q

q q q

é ù-ê úê ú

= ê úê úê úê úë û

2 2 2 2

2 2 2 2

cos sin cos

sin cos sin

0 0 1

AB

L

A L

q q q

q q q

é ù-ê úê ú

= ê úê úê úê úë û

3 3 3 3

3 3 3 3

cos sin cos

sin cos sin

0 0 1

kB

E

L

A L

q q q

q q q

é ù-ê úê ú

= ê úê úê úê úë û

k kM M A B

A BE EA A A A=

Manipulator

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 17 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

1 2 3

kk kk

k k

EE EEM M A BA BE E

T T T Tq q qé ùé ù é ùé ù= + +ë ûë û ë ûë û& & &

1E M M ME E ET A A-é ù=ë û

&

Manipulator

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 18 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

kE tf&%

k

M

Evt% 1

kE tq&% 2

kE tq&% 3

kE tq&%

1 23 2 3

1 23 2 3 3

1

L S L S

LC L C L

é ùê úê ú

+ê úê úê ú+ +ê úë û

123

123

0

C

S

é ùê úê úê úê úê ú-ê úë û

1 23 2 3

1 23 2 3 3

1

L S L S

LC L C L

é ùê úê ú

+ê úê úê ú+ +ê úë û

2 3

2 3 3

1

L S

L C L

é ùê úê úê úê úê ú+ê úë û 3

1

0

L

é ùê úê úê úê úê úê úë û

Twist Vectors

Assembled

1 2 31

2

3

kk k k

k

kk

M

E

M

E E EE FE

Ev

v

t t t tt tq q qf

f

q

q

q

é ùê úê úê úê ú

é ùê úé ù= ê úê úë û ë ûê úê úê úê úê úë û

& & & &&

%%

&

% %&

&

% %

( )kE J h%

Jacobian

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 19 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Mobility Verification

- Verify that arbitrary end-effector motion is feasible.

- Partitioning of feasible motion distribution:

- Actively-realizable

(using wheeled bases)

- Passively-accommodating

(using articulations)

- Configuration dependent partitioning

- Steer the actively-realizable vector-fields

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 20 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Twist-Distribution Analysis

Partition the Jacobian

pa

E FE T T pa JJt h hé ùé ù= +ë

éë û úû

ùêë û

& &%%%

1 2 3

k k k

p

E E ETJ t t t

q q qé ù= ê úë û& & &% % %

1

2

3

p

q

h q

q

é ùê úê úê ú=ê úê úê úë û

&

&&%

&

Passive Distributions

k k

a M

E ET vJ t t

fé ù= ê úë û&% %a

Mv

fh

é ùê ú= ê úê úë û

&&%

Active Distributions

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 21 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Twist-Distribution Analysis

Can any arbitrary twist be realized using only the active distribution?

Feasibility check

a

ETG J té ùé ù= ê úë ûë û

M%

( ) ( )aT

rank G rank J=

Not constructive

ReciprocalWrench

Alternate constructive approach

1 23 2 3 123

1 23 2 3 3 123

1 0

aTJ L S L S C

LC L C L S

é ùê úê ú

= +ê úê úê ú+ + -ê úë û

1 1 2 12 3 123

123

123

a

LC L C L C

w S

C

é ù- - -ê úê ú

= ê úê úê úê úë û

%

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 22 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Condition:

Transform an arbitrary twist from {Ek} to {M}:

0The Motion Planning Strategy

Given arbitrary twistT

EEz Ex Eyt v vwé ù= ê úë û%

To understand this condition better:

Achieved by aligning the forward travel direction with the direction of the velocity

Twist-Distribution Analysis

[ ] [ ] [ ]

[ ] [ ] [ ]1 1 2 12 3 123 123 123

1 1 2 12 3 123 123 123

Ez

M FE Ez Ex Ey

Ez Ex Ey

t L S L S L S C v S v

LC L C L C S v C v

w

w

w

é ùê úê úé ù ê ú= + + + -ë û ê úê ú- - - + +ê úë û

%

[ ] [ ] [ ]1 1 2 12 3 123 123 123 0Ez Ex EyLC L C L C S v C vw- - - + + =

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 23 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability

Jacobian Matrix

( )1 1E

m T nm nt J q h´ ´´

é ù= ë û &% % %

{ }: , 1E EV Tt t Je h h= = =& &

% % %%Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

1n

nh ´ Î& ¡%

1E m

mt ´ Î ¡%

( )T m n

m n

J q´

´

é ùë ûÎ

Joint manipulation rates space Task velocity space

Manipulability is defined as the measure of the flexibility of the manipulator to transmit the end-effector motion in response to a unit norm motion of the rates of the active joints in the system

Chin Pei Tang May 3, 2004Slide 24 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability – SVD

Singular Value Decomposition

TTJ VU= S

T Tm mU U UU I ´= =

T Tn nV V VV I ´= =

1 2

1 2

, , , ,0, ,0m n kn kk

k

diag s s s

s s s

´-

æ ö÷ç ÷S = ç ÷ç ÷÷çè ø³ ³ ³

L L144244314444244443

L

( )1 1E

m T nm nt J q h´ ´´

é ù= ë û &% % %

{ }: , 1E EV Tt t Je h h= = =& &

% % %%Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

TT TJ J

TT TJ J

Chin Pei Tang May 3, 2004Slide 25 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

Y

X

Y X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Manipulability ellipsoids of Two Link at F frame

x (m)

y (m

)

RR Manipulator Example

1 2L m= 2 1L m=

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

1

1 1 2 12 2 12

21 1 2 12 2 12

1 1E

E

E

X L S L S L S

LC L C L CY

q

q

é ù é ùQê ú ê úé ùê ú ê úê úê ú= - - -ê úê úê ú ê úê úê ú ë ûê ú+ê ú ê úë ûë û

&&

&&

&

Chin Pei Tang May 3, 2004Slide 26 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability Indices

Yoshikawa’s Measure (Volume of Ellipsoid)

Condition Number

Isotropy Index

( ) ( ) ( ) 1 2det detT TY T T T kJ J J s s sG = = SS = × ×L

( ) 1CN T

k

Jss

G =

( )1

kI TJ

ss

G =

Not able to distinguish the ratio of major/minor axes of ellipsoid

Value goes out of bound at singular

position

Better numerical behavior0 1I£ G £

1 CN£ G £ ¥

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 27 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Yoshikawa’s Measure

Condition Number

Isotropy Index

( ) ( )det TY T T TJ J JG =

( ) 1CN T

k

Jss

G =

( )1

kI TJ

ss

G =

Adopted measure

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

RR Manipulator Example

Chin Pei Tang May 3, 2004Slide 28 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability (Closed-Loop)

a p

T T Th h hé ù= ê úë û% % %

( ) ETJ th h=&

%%%

( ) 0CJ h h=&%%%

{ }: , 1, 0E EV T a Ct t J Je h h h= = = =& & &

% % %% %

Generalized Coordinates

Forward Kinematic

Closed-Loop Kinematic Constraints

Not easy to compute

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 29 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability (Closed-Loop)

a pT T TJ J Jé ù= ê úë û

a pC C CJ J Jé ù= ê úë û

a p

ET a T pJ J th h+ =& &

%% %0

a pC a C pJ Jh h+ =& &%% %

1

p ap C C aJ Jh h-=-& &% % p a pp C C a CJ J Jh h x+=- + %& &

%% %

p p

ET a T Ct J J Jh x= + %&

% %%

a p C apT T T CJ J J J J+= -

{ }: , 1E EV T a at t Je h h= = =& &

% % % %

Partition according to active/passive manipulation variable rates

Exact Actuation Redundant Actuation

Manipulability Jacobian

Solved explicitly

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

0p pC CJ J =%

%

{ }: , 1, 0E EV T a Ct t J Je h h h= = = =& & &

% % %% %

Chin Pei Tang May 3, 2004Slide 30 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Cooperative Model

Team up

End-effectors need to be re-aligned

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 31 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model (with end-effector offset angle)

cos sin 0

sin cos 0

0 0 1

k

k k

Ek kE

A

d d

d d

é ù-ê úê ú

= ê úê úê úê úë û

( ) ( )

( ) ( )1 2 3 2 3 3

1 2 3 2 3 3

1

sin sin sin

cos cos cos

k k k

k k k

L L L

L L L

d q q d q d

d q q d q d

é ùê úê úê ú= - - - - - -ê úê ú- - + - +ê úë û

( )

( )1 2 3

1 2 3

0

cos

sin

k

k

d q q q

d q q q

é ùê úê úê ú= - - -ê úê ú- - -ê úë û

( ) ( )

( ) ( )1 2 3 2 3 3

1 2 3 2 3 3

1

sin sin sin

cos cos cos

k k k

k k k

L L L

L L L

d q q d q d

d q q d q d

é ùê úê úê ú= - - - - - -ê úê ú- - + - +ê úë û

( )

( )2 3 3

2 3 3

1

sin sin

cos cos

k k

k k

L L

L L

d q d

d q d

é ùê úê úê ú= - - -ê úê ú- +ê úë û

3

3

1

sin

cosk

k

L

L

d

d

é ùê úê ú

= -ê úê úê úê úë û

Similarity Transformation

1

Etq&%

2

Etq&% 3

Etq&%

Etf&% M

Evt%

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 32 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Simulation

Step 1: Identify

Step 2: Construct manipulability Jacobian

Step 3: Compute isotropy index

Case I – MB static, R1 actuated

Case II – MB static, R2 actuated

Case III – MB moves, R1 & R2 passive

Case IV – MB moves, R1 locked

Case V – MB moves, R2 locked

TE E E

x yt v vé ù= ê úë û%

ah&%

ph&% aT

JpT

JaC

JpC

Ja p

ET a T pJ J th h+ =& &

%% %0

a pC a C pJ Jh h+ =& &%% %

a p C apT T T CJ J J J J+= -

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 33 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Simulation Parameters (3-RRR Nomenclature)

-1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

X

Location of MB and geometry of platform

x (m)

y (m

)

( ) ( )1 1, 0,0I Ix y = ( ) ( )1 1, 3.4641,2I I I Ix y = ( ) ( )1 1, 0,4I I I I I Ix y =

330Id = ° 210I Id = ° 90I I Id = °

1Iel = 1I Iel = 1I I Iel =

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 34 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case I: MB static R1 actuated

1 1 1

TI II I I I

ah q q qé ù= ê úë û& & &&

%

2 3 2 3 2 3

TI I II I I I I I I I I

ph q q q q q qé ù= ê úë û& & & & & &&

%

10 0

a

E ITJ t

qé ù= ê úë û&% % %

2 30 0 0 0

p

E I E ITJ t t

q qé ù= ê úë û& &% % % % % %

1 1

1 1

0

0a

E I E II

C E I E III

t tJ

t t

q q

q q

é ù-ê ú= ê ú-ê úë û

& &

& &

% % %

% % %

2 3 2 3

2 3 2 3

0 0

0 0p

E I E I E II E II

C E I E I E III E III

t t t tJ

t t t t

q q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %

% % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 35 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case Study I-A

1 2k kL L¹

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x (m)

y (m

)

Contour plot

0.1

0.10.1

0.1

0.1

0.1

0.10.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.10.1

0.1

0.10.2

0.2

0.2 0.20.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.30.30.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.40.4

0.5

0.5

0.50.5

0.5

0.5

0.5

0.50.

5

0.5

0.5

0.5

0.60.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.80.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.90.9

0.9

0.9

0.9

0.9

0.90.9

1 2kL m= 2 1.5kL m= 3 1kL m=

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 36 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case Study I-B

1 2k kL L=

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.20.

2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.30.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.9

1 1.5kL m= 2 1.5kL m= 3 1kL m=

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 37 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case II: MB static, R2 actuated

20 0

a

E ITJ t

qé ù= ê úë û&% % %

1 30 0 0 0

p

E I E ITJ t t

q qé ù= ê úë û& &% % % % % %

2 2

2 2

0

0a

E I E II

C E I E III

t tJ

t t

q q

q q

é ù-ê ú= ê ú-ê úë û

& &

& &

% % %

% % %

1 3 1 3

1 3 1 3

0 0

0 0p

E I E I E II E II

C E I E I E III E III

t t t tJ

t t t t

q q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %

% % % % % %

2 2 2

TI II I I I

ah q q qé ù= ê úë û& & &&

%

1 3 1 3 1 3

TI I II I I I I I I I I

ph q q q q q qé ù= ê úë û& & & & & &&

%

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 38 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case II: MB static, R2 actuated

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.10.1

0.10.

1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.8

0.9

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 39 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case III: MB moves, R1 and R2 passive

TI I II I I I I I I I I

a M M Mv v vh ff fé ù= ê úë û& & &&

%

1 2 3 1 2 3 1 2 3

TI I I I I I I I I I I I I I I I I I

ph q q q q q q q q qé ù= ê úë û& & & & & & & & &&

%

0 0 0 0a M

E I E IT vJ t t

fé ù= ê úë û&% % % % % %

1 2 30 0 0 0 0 0

p

E I E I E ITJ t t t

q q qé ù= ê úë û& & &% % % % % % % % %

0 0

0 0

M M

a

M M

E I E I E II E IIv v

C E I E I E III E IIIv v

t t t tJ

t t t t

ff

ff

é ù- -ê ú= ê ú- -ê úë û

& &

& &

% % % % % %

% % % % % %

1 2 3 1 2 3

1 2 3 1 2 3

0 0 0

0 0 0p

E I E I E I E II E II E II

C E I E I E I E III E III E III

t t t t t tJ

t t t t t t

q q q q q q

q q q q q q

é ù- - -ê ú= ê ú- - -ê úë û

& & & & & &

& & & & & &

% % % % % % % % %

% % % % % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 40 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Self-Motion

0a pC a C pJ Jh h+ =& &

%% %p a pp C C a CJ J Jh h x+=- + %& &

%% %

Feasible motions of passive joints due to the actuations butnot violating constraints

Feasible self-motion when all the active

joints locked

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

0p pC CJ J =%

%

m n´

m n<

( )n n m´ -

n m-Underconstrained

Dimension of self-motion manifold

Lock this number of joints

Chin Pei Tang May 3, 2004Slide 41 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Self-Motion

1 2 3 1 2 3

1 2 3 1 2 3

0 0 0

0 0 0p

E I E I E I E II E II E II

C E I E I E I E III E III E III

t t t t t tJ

t t t t t t

q q q q q q

q q q q q q

é ù- - -ê ú= ê ú- - -ê úë û

& & & & & &

& & & & & &

% % % % % % % % %

% % % % % % % % %

6 9´ 6m= 9n =

9 6 3n m- = - =Lock this number

of joints

2 Cases:- Locking R1- Locking R2

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 42 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case IV: MB moves, R1 locked

TI I II I I I I I I I I

a M M Mv v vh ff fé ù= ê úë û& & &&

%

2 3 2 3 2 3

TI I II I I I I I I I I

ph q q q q q qé ù= ê úë û& & & & & &&

%

0 0 0 0a M

E I E IT vJ t t

fé ù= ê úë û&% % % % % %

2 30 0 0 0

p

E I E ITJ t t

q qé ù= ê úë û& &% % % % % %

0 0

0 0

M M

a

M M

E I E I E II E IIv v

C E I E I E III E IIIv v

t t t tJ

t t t t

ff

ff

é ù- -ê ú= ê ú- -ê úë û

& &

& &

% % % % % %

% % % % % %

2 3 2 3

2 3 2 3

0 0

0 0p

E I E I E II E II

C E I E I E III E III

t t t tJ

t t t t

q q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %

% % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 43 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case IV: MB moves, R1 locked

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.30.

3

0.3

0.3

0.3

0.3

0.3

0.40.4

0.4

0.4

0.4

0.4

0.4

0.40.4

0.4

0.4

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.60.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.80.8

0.8

0.90.9

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 44 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case V: MB moves, R2 locked

TI I II I I I I I I I I

a M M Mv v vh ff fé ù= ê úë û& & &&

%

1 3 1 3 1 3

TI I II I I I I I I I I

ph q q q q q qé ù= ê úë û& & & & & &&

%

0 0 0 0a M

E I E IT vJ t t

fé ù= ê úë û&% % % % % %

1 30 0 0 0

p

E I E ITJ t t

q qé ù= ê úë û& &% % % % % %

0 0

0 0

M M

a

M M

E I E I E II E IIv v

C E I E I E III E IIIv v

t t t tJ

t t t t

ff

ff

é ù- -ê ú= ê ú- -ê úë û

& &

& &

% % % % % %

% % % % % %

1 3 1 3

1 3 1 3

0 0

0 0p

E I E I E II E II

C E I E I E III E III

t t t tJ

t t t t

q q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %

% % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 45 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case V: MB moves, R2 locked

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.20.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3 0.3

0.3

0.3

0.3

0.30.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.50.5

0.5

0.6

0.6

0.6

0.6

0.6 0.7

0.7

0.7

0.8

0.8

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 46 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case Study – Configuration Optimization

( )max IqqG

% %T

E Eq x yé ù= ê úë û%

( )max IhhG

% %T

I II I I Ih q q qé ù= ê úë û% % %%1 2 3

Tk k k kq q q qé ù= ê úë û% % % %

Subject to: Closed-Kinematic Loop Constraints

ConstrainedOptimization

Problem

UnconstrainedOptimization

Problem

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 47 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Configuration Optimization – Case IV

-1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

X

Optimal Configuration (Case IV)

x (m)

y (m

)

( ) ( ), 1.4205,2.1885E Ex y =

* 1.0000IG =-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.40.4

0.4

0.4

0.4

0.4

0.4

0.40.4

0.4

0.4

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.60.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.80.8

0.8

0.90.9

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 48 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

-1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

X

Optimal Configuration (Case IV)

x (m)

y (m

)

Configuration Optimization – Case V

( ) ( ), 0.8660,1.5000E Ex y =

* 0.8660IG =-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.20.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3 0.3

0.3

0.3

0.3

0.30.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6 0.7

0.7

0.7

0.8

0.8

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 49 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Conclusion

Modular Formulation

Motion-Distribution Analysis

Evaluation of Performance Measures

Manipulability Jacobian Matrix Formulation

Effect of Different Actuation Schemes

Optimal Configuration Determination

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 50 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Future Work

Global Manipulability

Force Manipulability

Singularity Analysis

Decentralized Control

Redundant Actuation

IW

W

dW

dWm

G=òò

2

,min2

,max

I

I

sæ öG ÷ç ÷=ç ÷ç ÷÷çGè ø

1 1T

n mm nJ Ft ´ ´´é ù= ë û% %

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Chin Pei Tang May 3, 2004Slide 51 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Thank You!

Acknowledgments:Dr. V. KroviDr. T. Singh

Dr. J. L. Crassidis& all the audience…

Chin Pei Tang May 3, 2004Slide 52 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Twist Matrix as Velocity Operator

1

0 0 0

E EF FE E EF F F

E E E

vdT A A

dt

-é ùé ù é ùWé ù ê úë û ë ûé ù é ù é ù= =ê ú ê úë û ë û ë ûê úë û ê úë û

%

0

0zE F

Ez

w

w

-é ùê úé ùW =ë û ê úê úë û

xE FE

y

vv v

é ùé ù ê ú=ë û ê úë û%

zE FEt v

wé ùé ù ê ú=ë û ê úë û% %

1 2

1 11 21 21 1 2 2

N

E EF E E E E NE E E E

T T T

T A T A A T A T- -é ù é ù é ù é ù é ù é ùé ù é ù= + + +ë û ë ûë û ë û ë û ë û ë û ë ûL

14444444244444443 14444444244444443 1442443

Chin Pei Tang May 3, 2004Slide 53 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Single Module Payload Transport

T

a Mvh fé ù= ê úë û&

%

a M

E ET vJ t t

fé ù= ê úë û&% %

a

ET at J h= &

% %