Chemical Reactor Design_P. Harriott

Embed Size (px)

Citation preview

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    1/115

    Scilab Textbook Companion for

    Chemical Reactor Design

    by P. Harriott1

    Created bySneha R Iyer

    B-Tech Chemical EngineeringChemical Engineering

    SASTRA University ,ThanjavurCollege Teacher

    NACross-Checked by

    Spandana

    July 14, 2015

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the ”Textbook Companion Project”section at the website http://scilab.in

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    2/115

    Book Description

    Title:   Chemical Reactor Design

    Author:  P. Harriott

    Publisher:   CRC Press

    Edition:   1

    Year:   2002

    ISBN:   978-0824708818

    1

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    3/115

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa  Example (Solved example)

    Eqn  Equation (Particular equation of the above book)

    AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    4/115

    Contents

    List of Scilab Codes   4

    1 Homogeneous Kinetics   6

    2 Kinetic Models for Heterogeneous Reactions   15

    3 Ideal Reactors   19

    4 Diffusion and Reaction in Porous Catalysts   39

    5 Heat and Mass Transfer in Reactors   52

    6 Nonideal Flow   61

    7 Gas Liquid Reactions   72

    8 Multiphase Reactors   96

    9 Fluidized Bed Reactors   104

    10 Novel Reactors   108

    3

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    5/115

    List of Scilab Codes

    Exa 1.4 Activation energy from packed bed data   . . . . . . . . 6Exa 1.5 Methods to determine km and vm   . . . . . . . . . . . 11Exa 2.1 Effectiveness factor for solid catalyzed reaction   . . . . 15Exa 3.1 Time to reach desired conversion for bimolecular batch

    reaction   . . . . . . . . . . . . . . . . . . . . . . . . . . 19Exa 3.2 Residence time and heat generation for four STR s in

    series   . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Exa 3.3 Effect of temperature on yield . . . . . . . . . . . . . . 23Exa 3.4 Volume of reactor for Gas Phase isothermal reaction   . 26Exa 3.5 Rate Equation to fit Initial Rate data   . . . . . . . . . 27Exa 3.6 Optimum reaction temperature   . . . . . . . . . . . . . 31Exa 3.7 Equilibrium temperature as a function of conversion and

    optimum feed temperature   . . . . . . . . . . . . . . . 33

    Exa 4.1 Diffusivity of Chlorine and tortuosity in catalyst pellet   39Exa 4.2 Effective diffusivity of O2 in air  . . . . . . . . . . . . . 42Exa 4.3 Influence of Pore diffusion over rate   . . . . . . . . . . 44Exa 4.4 Effectiveness factor for solid catalyzed reaction   . . . . 46Exa 4.5 The optimum pore size distribution for a spherical pellet   48Exa 5.1 Temperature Profiles for tubular reactor   . . . . . . . . 52Exa 5.2 Maximum internal temperature difference   . . . . . . . 55Exa 5.3 Overall heat transfer coefficients and radial average bed

    temperature for packed bed reactor . . . . . . . . . . . 56Exa 6.1 Power Consumption at 300 rpm speed of stirrer and

    blending time . . . . . . . . . . . . . . . . . . . . . . . 61

    Exa 6.2 Effect of diffusion on conversion for laminar flow   . . . 64Exa 6.3 Effect of Axial dispersion and length on conversion   . . 66Exa 6.4 Conversion in packed bed for same superficial velocity   68

    4

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    6/115

    Exa 7.1 Overall Reaction Rate Coefficient Percent Resistance

    Reaction Volume and Reactor Size   . . . . . . . . . . . 72Exa 7.2 The gradient for B in the liquid film   . . . . . . . . . . 75Exa 7.3 Overall mass transfer coefficient and percent resistance   76Exa 7.4 Local selectivity due to mass transfer limitations   . . . 78Exa 7.5 Maximum rate of CO absorption and Dimensions of 

    Bubble Column Reactor   . . . . . . . . . . . . . . . . . 80Exa 7.6 Fraction of O2 Power of agitator kLa and average dis-

    solved oxygen concentration  . . . . . . . . . . . . . . . 85Exa 7.7 Apparent value of kLa regime of operation and selectiv-

    ity dependency on gas mixing   . . . . . . . . . . . . . . 91Exa 8.1 Gas absorption coefficient and fraction of overall resis-

    tance   . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Exa 8.2 External Mass Transfer resistance   . . . . . . . . . . . 98Exa 8.3 Apparent rate constant and consistency   . . . . . . . . 100Exa 9.1 Model II Volumetric Mass Transfer Coefficient K   . . . 104Exa 9.2 Model II Fraction unconverted naphthalene   . . . . . . 106Exa 10.1 Fraction unconverted naphthalene based on model II   . 108Exa 10.2 Conversion as a function of No of Gauzes   . . . . . . . 110

    5

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    7/115

    Chapter 1

    Homogeneous Kinetics

    Scilab code Exa 1.4  Activation energy from packed bed data

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−1 Ex1 . 4 Pg No . 233   / / T i t l e : A c t i v a t i o n e n er g y f ro m p ac ke d b ed d at a4   //

    ============================================================

    5   clear

    6   clc

    7   clf

    8   // COMMON INPUT9   L = [0 1 2 3 4 5 6 9]; / /Bed l e n g t h i n f e e t ( f t )

    10   T = [3 30 338 348 361 380 4 15 447 458 ]   //T e mpe r at ur eC or re sp on di ng t he bed l e ng t h g i ve n ( C )11   R = 1 . 9 8 5 8 7 E - 3 ; / / Gas c o n s t a n t ( k c a l / m ol K)12

    13   //CALCLATION ( Ex1 . 4 . a )

    6

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    8/115

    14   // B a s i s i s 1 mol o f f e e d A( F u r f u r a l ) X m ol es r e a c t ed

    t o f or m F u r fu r a n and CO15   x = ( T - 3 3 0 ) . / 1 3 0 ; // C on ve rs i on b as ed on f r a c t i o n a lt em p er a tu r e r i s e

    16   n = length   ( T ) ; // 6 m ol es o f steam p er mole o f F u r f u r ali s u se d t o d e c r ea s e t em pe ra tu re r i s e i n t h e b ed

    17   P _ m o l = x + 7 ; // T ot al No . o f m ol es i n p ro du ct s tr ea m18   for   i = 1 : ( n - 1 )

    19   T _ av g ( i ) = ( T ( i ) + T ( i +1 ) ) / 2

    20   P _ m ol a v g ( i ) = ( P _ m ol ( i ) + P _ m ol ( i + 1 ) ) / 2

    21   d e l t a _ L ( i ) = L ( i + 1 ) - L ( i )

    22   k _ 1 ( i ) = ( ( P _ m o l a v g ( i ) ) / d e l t a _ L ( i ) ) * log ( ( 1 - x ( i ) )

    / ( 1 - x ( i + 1 ) ) )23   u 1 ( i ) = ( 1 / ( T _ a v g ( i ) + 2 7 3 . 1 5 ) ) ;

    24   end

    25   v 1 = ( log ( k _ 1 ) ) ;

    26   i = length ( u 1 ) ;

    27   X 1 = [ u 1   ones ( i ,1 ) ] ;

    28   r e s u l t1 = X 1 \ v 1 ;

    29   k _ 1 _ d a s h = exp ( r e s u l t 1 ( 2 , 1 ) ) ;

    30   E 1 = ( - R ) * ( r e s u l t 1 ( 1 , 1 ) ) ;

    31

    32  //OUTPUT ( Ex1 . 4 . a )33   / / C o n s o l e O ut pu t

    34   mprintf ( ’ \n OUTPUT Ex1 . 4 . a ’ ) ;35   mprintf ( ’ \n

    ============================================================n ’ )

    36   mprintf ( ’ L   \ t   \ t T   \ t \ t x   \ t \ t T a ve ra ge   \ t (7+x ) ave\ t k 1 ’ )

    37   mprintf ( ’ \n( f t )   \ t   \ t ( C )   \ t \ t   \ t \ t ( C )   \ t ’ )38   mprintf ( ’ \n

    ============================================================

    ’ )39   for   i = 1 : n - 1

    40   mprintf ( ’ \n%f   \ t %f    \ t %f ’ , L ( i + 1 ) , T ( i + 1 ) , x ( i + 1 ) )41   mprintf ( ’ \ t %f    \ t %f    \ t %f ’ , T _ a v g ( i ) , P _ m o l a v g ( i ) , k _ 1

    ( i ) )

    7

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    9/115

    42   end

    43   mprintf ( ’ \n\nThe a c t i v a t i o n e ne rg y from t he s l o p e =%f k c a l / m ol ’ , E1 ) ;44   //

    ============================================================

    45

    46

    47   / / T i t l e : I I O rd er R e a ct i o n48   //

    ============================================================

    49   //CALCULATION ( Ex 1 . 4 . b )50   for   i = 1 : ( n - 1 )

    51   T _ av g ( i ) = ( T ( i ) + T ( i +1 ) ) / 2

    52   P _ m ol a v g ( i ) = ( P _ m ol ( i ) + P _ m ol ( i + 1 ) ) / 2

    53   d e l t a _ L ( i ) = L ( i + 1 ) - L ( i )

    54   k _ 2 ( i ) = ( ( P _ m o l a v g ( i ) ) / d e l t a _ L ( i ) ) * ( ( x ( i + 1 ) - x ( i ) )

    / ( ( 1 - x ( i + 1 ) ) * ( 1 - x ( i ) ) ) )

    55   u 2 ( i ) = ( 1 / ( T _ a v g ( i ) + 2 7 3 . 1 5 ) ) ;

    56   end

    57   v 2 = ( log ( k _ 2 ) ) ;

    58   plot ( u 1 . * 1 0 0 0 , v 1 , ’ o ’

    , u 2 . * 1 0 0 0 , v 2 , ’ ∗ ’

    ) ;

    59   x l a b e l ( ” 1000/T ( Kˆ−1) ” ) ;60   y l a b e l ( ” l n k 1 o r l n k 2 ”) ;61   xtitle ( ” l n k v s 1 00 0/T ” ) ;62   l e g e n d ( ’ l n k 1 ’ , ’ l n k 2 ’ ) ;63   j = length ( u 2 ) ;

    64   X 2 = [ u 2   ones ( j ,1 ) ] ;

    65   r e s u l t2 = X 2 \ v 2 ;

    66   k _ 2 _ d a s h = exp ( r e s u l t 2 ( 2 , 1 ) ) ;

    67   E 2 = ( - R ) * ( r e s u l t 2 ( 1 , 1 ) ) ;

    68

    69   //OUTPUT ( Ex 1 . 4 . b )70   mprintf ( ’ \n OUTPUT Ex1 . 4 . b ’ ) ;71   mprintf ( ’ \n

    ============================================================n ’ )

    8

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    10/115

    72   mprintf ( ’ L   \ t   \ t T   \ t \ t x   \ t \ t T a ve ra ge   \ t (7+x ) ave

    \ t k 2 ’ )73   mprintf ( ’ \n( f t )   \ t   \ t ( C )   \ t \ t   \ t \ t ( C )   \ t ’ )74   mprintf ( ’ \n

    ============================================================’ )

    75   for   i = 1 : n - 1

    76   mprintf ( ’ \n%f   \ t %f    \ t %f ’ , L ( i + 1 ) , T ( i + 1 ) , x ( i + 1 ) )77   mprintf ( ’ \ t %f    \ t %f    \ t %f ’ , T _ a v g ( i ) , P _ m o l a v g ( i ) , k _ 2

    ( i ) )

    78   end

    79   mprintf ( ’ \n\nThe a c t i v a t i o n e ne rg y from t he s l o p e =

    %f k c a l / m ol ’ , E2 ) ;80

    81   // FILE OUTPUT82   f i d =   mopen ( ’ .\ Chapter1−Ex4−Output . tx t ’ , ’ w ’ ) ;83   mfprintf ( f i d , ’ \n OUTPUT Ex1 . 4 . a ’ ) ;84   mfprintf ( f i d , ’ \n

    ============================================================n ’ )

    85   mfprintf ( f i d , ’ L   \ t   \ t T   \ t \ t x   \ t \ t T a ve ra ge   \ t(7+x) ave   \ t k 1 ’ )

    86   mfprintf ( f i d , ’ \n( f t )   \ t   \ t ( C )   \ t \ t   \ t \ t ( C )   \t ’ )

    87   mfprintf ( f i d , ’ \n============================================================’ )

    88   for   i = 1 : n - 1

    89   mfprintf ( f i d , ’ \n%f   \ t %f    \ t %f ’ , L ( i + 1 ) , T ( i + 1 ) , x ( i+ 1 ) )

    90   mfprintf ( f i d , ’ \ t %f    \ t %f    \ t %f ’ , T _ a v g ( i ) , P _ m o l a v g ( i) , k _ 1 ( i ) )

    91   end

    92   mfprintf ( f i d , ’ \n\nThe a c t i v a t i o n e ne rg y fro m t hes l o p e =%f k c a l / m ol ’ , E1 ) ;

    93   mfprintf ( f i d , ’ \n\n============================================================n ’ )

    9

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    11/115

    94   mfprintf ( f i d , ’ \n OUTPUT Ex1 . 4 . b ’ ) ;

    95   mfprintf ( f i d , ’ \n============================================================n ’ )

    96   mfprintf ( f i d , ’ L   \ t   \ t T   \ t \ t x   \ t \ t T a ve ra ge   \ t(7+x) ave   \ t k 2 ’ )

    97   mfprintf ( f i d , ’ \n( f t )   \ t   \ t ( C )   \ t \ t   \ t \ t ( C )   \t ’ )

    98   mfprintf ( f i d , ’ \n============================================================’ )

    99   for   i = 1 : n - 1

    100   mfprintf ( f i d , ’ \n%f   \ t %f    \ t %f ’ , L ( i + 1 ) , T ( i + 1 ) , x ( i+ 1 ) )

    101   mfprintf ( f i d , ’ \ t %f    \ t %f    \ t %f ’ , T _ a v g ( i ) , P _ m o l a v g ( i) , k _ 2 ( i ) )

    102   end

    103   mfprintf ( f i d , ’ \n\nThe a c t i v a t i o n e ne rg y fro m t hes l o p e =%f k c a l / m ol ’ , E2 ) ;

    104   mclose ( all ) ;

    105

    106   //

    ============================================================END OF PROGRAM===========================================

    107   / / D i s c l a i m e r ( Ex1 . 4 . a ) : The l a s t v a l u e o f t a vg andk 1 c o r r e sp o n di n g t o L=9 i n T a bl e 1 . 6 ( Pg No .2 5) o f t he t ex tb oo k i s a m i sp r i n t .

    108   / / The v a l ue s h ou l d be 4 5 2 . 5 and 4 . 9 55 4 7 6r e s p e c t i v e l y i n st e ad o f 455 a nd 1 8 . 2 a s p r i n te di n t h e t e xt b o ok .

    109   // Hence t h e r e i s a c ha nge i n t he a c t i v a t i o n e ne rg yo b ta i n ed fro m t he c od e

    110   // The a ns we r o b ta i n ed i s 2 1 . 39 3 5 k c a l / mol i n s t e a do f 27 k c al / mol a s r e po r t e d i n t he t ex tb oo k .

    111   / / F ig ur e 1 . 8 i s a p l o t be t we en l n k 1 v s 1 00 0/Ti n s t e ad o f k 1 v s 10 00 /T as s t at e d i n t hes o l u t i o n o f Ex1 . 4 . a

    10

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    12/115

    112   //

    ============================================================

    113   / / D i s c l a i m e r ( Ex1 . 4 . b ) : T he re i s a d i s c r e p a n c yb et wee n t he computed v a lu e o f a c t i v a t i o n e ne rg yand v a lu e r e p o r te d i n t ex tb o ok

    114   / / E rr or c ou ld have be en on s i m i l a r l i n e s a sr e p o r t e d f o r e x am p le Ex . 1 . 4 . a

    115   / / F ur th er , i n t e r m e i d a t e v a l u e s f o r Ex . 1 . 4 . b i s n ota v a i l a b l e / r e p o rt e d i n t ex t bo o k and h en ce c o ul dn o t b e c o mp a re d .

    116   / / F ig ur e 1 . 8 i s a p l o t be t we en l n k 2 v s 1 00 0/T

    i n s t e ad o f k 2 v s 10 00 /T as s t at e d i n t hes o l u t i o n o f Ex1 . 4 . b

    Scilab code Exa 1.5  Methods to determine km and vm

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−1 Ex1 . 5 Pg No . 293   / / T i t l e : Me th od s t o d e t e r m i ne km and vm4   //

    ============================================================

    5   clear

    6   clc

    7   clf

    8   //INPUT9   S = [ 2 ; 5 ; 1 0 ; 1 5 ] * 1 0 ^ ( - 3 ) ; // C o nc e nt r at i on o f s u b s t r a t e [

    HCO3]10   r _ r e c i p r o c a l = [ 9 5 ; 4 5 ; 2 9 ; 2 5 ] * 1 0 ^ ( 3 ) ; // R e c i p r o ca l r a t e s

    11

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    13/115

    ( L−se c /mol )

    1112   //CALCULATION13   // P lo t 1 r e f e r e q u at i on 1 . 24 Pg No . 2 914   x 1 = ( S ) . ^ ( - 1 ) ;

    15   y 1 = r _ r e c i p r o c a l ;

    16   s c f ( 0 )

    17   plot ( x 1 , y 1 * 1 0 ^ ( - 3 ) , ’RED ’ ) ;18   x l a b e l ( ” 1/ [ S ] ”) ;19   y l a b e l ( ” (1 / r ) ∗10 ˆ−3 ” ) ;20   xtitle ( ” 1/ r v e rs u s 1/ S” ) ;21   p = length ( x 1 ) ;

    22   X _ 1 = [ x 1   ones ( p , 1 ) ] ;23   R 1 = X _ 1 \ y 1 ;

    24   s l o p e ( 1 ) = R 1 ( 1 , 1 ) ;

    25   i n t e r c e p t ( 1 ) = R 1 ( 2 , 1 ) ;

    26   v _ m ( 1 ) = ( 1 / ( i n t e r c e p t ( 1 ) ) ) ; //Maximum Re ac ti on Rate (mol/L−se c )

    27   k _ m ( 1 ) = s l o p e ( 1 ) * v _ m ( 1 ) ; / / M i c h a e l i s −Mento n c o n s t a n t28

    29   // P lo t 2 r e f e r e q u at i on 1 . 25 Pg No . 2 930   x 2 = S ;

    31   y 2 = S . * r _ r e c i p r o c a l ;

    32   s c f ( 1 )

    33   plot ( x 2 * 1 0 ^ ( 3 ) , y 2 ) ;

    34   x l a b e l ( ” ( S ) ∗1 0 ˆ 3 ” ) ;35   y l a b e l ( ” ( S ) / r ” ) ;36   xtitle ( ” ( S ) / r v e r s u s ( S ) ”) ;37   q = length ( x 2 ) ;

    38   X _ 2 = [ x 2   ones ( q , 1 ) ] ;

    39   R 2 = X _ 2 \ y 2 ;

    40   s l o p e ( 2 ) = R 2 ( 1 , 1 ) ;

    41   i n t e r c e p t ( 2 ) = R 2 ( 2 , 1 ) ;

    42   v _ m ( 2 ) = 1 / ( s l o p e ( 2 ) ) ; //Maximum R e a c t i on R at e ( mol /L−se c )

    43   k _ m ( 2 ) = i n t e r c e p t ( 2 ) / ( s l o p e ( 2 ) ) ; / / M i c h a e l i s −Mentonc o n s t a n t

    44

    12

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    14/115

    45

    46   //OUTPUT47   mprintf ( ’ \n============================================================’ ) ;

    48   mprintf ( ’ \n   \ t \ t M e t h o d 1 \ t M e t hod 2 ’ ) ;49   mprintf ( ’ \n

    ============================================================’ ) ;

    50   i =1

    51   mprintf ( ’ \n S l o p e   \ t%f \ t%f ’ , s l o p e ( i ) , s l o p e ( i+ 1 ) ) ;

    52   mprintf ( ’ \n I n t e r c e p t   \ t%f \ t%f ’ , i n t e r c e p t ( i ) ,i n t e r c e p t ( i + 1 ) ) ;

    53   mprintf ( ’ \n Km (M)   \ t%f \ t%f ’ , k _ m ( i ) , k _ m ( i+ 1 ) ) ;

    54   mprintf ( ’ \n Vm( m ol / L−s e c ) %f  \ t%f ’ , v _ m ( i ) , v _ m ( i+ 1 ) ) ;

    55

    56   // FILE OUTPUT57   f i d =   mopen ( ’ .\ Chapter1−Ex5−Output . tx t ’ , ’ w ’ ) ;58   mfprintf ( f i d , ’ \n

    ============================================================’ ) ;59   mfprintf ( f i d , ’ \n   \ t \ t M e t h o d 1 \ t M e t hod 2 ’ ) ;60   mfprintf ( f i d , ’ \n

    ============================================================’ ) ;

    61   i =1

    62   mfprintf ( f i d , ’ \n S l o p e   \ t%f \ t%f ’ , s l o p e ( i ) ,s l o p e ( i + 1 ) ) ;

    63   mfprintf ( f i d , ’ \n I n t e r c e p t   \ t%f \ t%f ’ , i n t e r c e p t( i ) , i n t e r c e p t ( i + 1 ) ) ;

    64   mfprintf ( f i d , ’ \n Km (M)   \ t%f \ t%f ’ , k _ m ( i ) ,k _ m ( i + 1 ) ) ;

    65   mfprintf ( f i d , ’ \n Vm( m ol / L−s e c ) %f  \ t%f ’ , v _ m ( i ) ,v _ m ( i + 1 ) ) ;

    66   mclose ( f i d ) ;

    13

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    15/115

    67

    68   // ============================================================END OF PROGRAM=================================

    69   // D i s c l a im e r : L ea s t S qu ar e method i s u se d t o f i n dt he s l o p e and i n t e r c e p t i n t h i s ex ampl e .

    70   // Hence t he v a l u e s d i f f e r from t he g r a p h i c a l l yo bt ai ne d v a lu e s o f s l o p e and i n t e r c e p t i n t h et e x t b o o k .

    14

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    16/115

    Chapter 2

    Kinetic Models for

    Heterogeneous Reactions

    Scilab code Exa 2.1  Effectiveness factor for solid catalyzed reaction

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . USA , pp 4 3 6 .

    2   //C hapt e r−2 E x2 . 1 Pg No . 5 23   / / T i t l e : E f f e c t i v e n e s s f a c t o r f o r s o l i d c a ta l y z e d

    r e a c t i o n4   //

    ============================================================

    5   clear

    6   clc

    7   clf8   //INPUT9   // Case : I c o n st a n t h yd ro ge n p r e s s u r e : P H2= 2 11 0

    t o r r10   P _ B = [7 0 1 85 2 86 ]; // B en ze ne P r e s s u r e ( t o r r )

    15

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    17/115

    11   r _1 = 1 E -3 * [4 .2 7 5 .4 6 .1 2 ]; / / ( m ol / h r g ) o b s e rv e d

    r a t e s12   P _ H 2 _ c o n s t = 2 1 1 0 ; / / C o n st a nt H yd ro ge n P r e s s u r e ( t o r r )13

    14

    15   / / Case : I I C on st an t b en ze ne p r e s s u r e P B c on st =70t o r r

    16   P _ H 2 = [ 1 05 0 2 1 05 2 9 88 ] ; / / H yd ro ge n P r e s s u r e ( t o r r )17   r _ 2 =1 E - 3 * [ 3. 81 4 .2 7 4 .5 ]; // ( m ol / h r g ) o b s e rv e d

    r a t e s18   P _ B _ c o n s t = 7 0 ; / / C o n st a nt B en ze ne P r e s s u r e ( t o r r )19

    20   //CALCULATION21   // Case : I c o n st a n t h yd ro ge n p r e s s u r e : P H2= 2 11 0

    t o r r22

    23   n = length ( P _ B )

    24   for   i = 1 : n

    25   Y _ 1 ( i ) = ( P _ B ( i ) * P _ H 2 _ c o n s t / r _ 1 ( i ) ) ^ ( 1 / 3 ) ;

    26   X _ 1 ( i ) = P _ B ( i ) ;

    27   end

    28   c o e f s _ I = regress ( X _ 1 ’ , Y _ 1 ’ ) ;

    29   i n t e r c e p t _ 1 = c o e f s _ I ( 1 )

    30   s l o p e _ 1 = c o e f s _ I ( 2 )

    31

    32   / / Case : I I C on st an t b en ze ne p r e s s u r e P B c on st =70t o r r

    33   m = length ( P _ H 2 )

    34   for   i = 1 : n

    35   Y _ 2 ( i ) = ( P _ B _ c o n s t * P _ H 2 ( i ) / r _ 2 ( i ) ) ^ ( 1 / 3 ) ;

    36   X _ 2 ( i ) = ( P _ H 2 ( i ) ) ^ 0 . 5 ;

    37   end

    38   c o e f s _ I I = regress ( X _ 2 ’ , Y _ 2 ’ ) ;

    39   i n t e r c e p t _ 2 = c o e f s _ I I ( 1 ) ;40   s l o p e _ 2 = c o e f s _ I I ( 2 ) ;

    41   c o e f _ 1 = ( i n t e r c e p t _ 1 ) ^ 0 . 5 ;

    42   c o e f _ 2 = ( s l o p e _ 1 * s l o p e _ 2 ) ^ ( 1 / 2 ) * ( s l o p e _ 1 / s l o p e _ 2 ) *

    i n t e r c e p t _ 1 ;

    16

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    18/115

    43

    44   function   y = f u n c t 1 ( K _ H 2 )45   y = c o e f _ 2 * K _ H 2 ^ 0 . 5 - c o e f _ 1 * K _ H 2 ^ ( 4 / 3 ) - 1

    46   e n d f u n c t i o n

    47

    48   [ K _ H 2 _ r e s ] = fsolve ( 0 , f u n c t 1 ) ;

    49

    50   K _ B = K _ H 2 _ r e s ^ ( 4 / 3 ) * ( s l o p e _ 1 / s l o p e _ 2 ) ;

    51

    52   k = ( 0 . 6 3 5 ) ^ ( - 1 / 3 ) * K _ B ^ 2 / K _ H 2 _ r e s ;

    53   s c f ( 0 )

    54   plot ( X _ 1 , Y _ 1 ,  ’−∗− ’ )

    55   xtitle ( ’ B e nz e ne H y d r o g e n a t i o n ( a ) V a r i a b l e b e n z e n ep r e s s u r e ’ )

    56   x l a b e l ( ” P B ( t o r r ) ” ) ;57   y l a b e l ( ” ( P H2 P B /1 0 ˆ3 r ) ̂ ( 1 / 3 ) ” ) ;58   l e g e n d ( ’T=67.6 C ’ ) ;59

    60   s c f ( 1 )

    61   plot ( X _ 2 , Y _ 2 ,  ’−∗− ’ )62   xtitle (  ’ B e nz e ne H y d r o g e n a t i o n ( b ) V a r i a b l e h y d ro g e n

    p r e s s u r e ’ )63   x l a b e l (

    ” P H2 ( t o r r ) ”) ;

    64   y l a b e l ( ” ( P H2 P B /1 0 ˆ3 r ) ̂ ( 1 / 3 ) ” ) ;65   l e g e n d ( ’T=67.6 C ’ ) ;66

    67   //OUTPUT68   mprintf ( ’ \n S o lv i n g f o r t h e t h r e e p ar am et er s g i v e s ’ )

    ;

    69   mprintf ( ’ \n K H2 = %f t o r r ˆ−1 ’ , K _ H 2 _ r e s ) ;70   mprintf ( ’ \n K B = %f t o r r ˆ−1 ’ , K _ B ) ;71   mprintf ( ’ \n k = %E ’ , k ) ;72

    73   // FILE OUTPUT74   f i d =   mopen ( ’ .\ Chapter2−Ex1−Output . tx t ’ , ’ w ’ ) ;75   mfprintf ( f i d , ’ \n S o l v i ng f o r t he t h r e e p ar am et er s

    g i v e s ’ ) ;76   mfprintf ( f i d , ’ \n K H2 = %f t o r r ˆ−1 ’ , K _ H 2 _ r e s ) ;

    17

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    19/115

    77   mfprintf ( f i d , ’ \n K B = %f t o r r ˆ−1 ’ , K _ B ) ;

    78   mfprintf ( f i d , ’ \n k = %E ’ , k ) ;79   mclose ( f i d ) ;80

    81   //=============================================================

    82   // D i s c l a im e r : Page 53 There i s a t yp o i n t hee qu a ti o n f o r Y o b t ai ne d f o r Model c a se I :C on st an t h yd ro ge n p r e s s u r e and v a r i a b l e b en ze nep r e s s ur e f o r m u l at i o n

    83   // From F i g 2 . 7 ( a ) , I t i s e v id e nt t ha t f o r P H2 =

    21 10 t or r , t h r e e e x p e ri m en t al p o i n ts a r ec o n si d e r e d f o r l i n e a r r e g r e s s i o n . However , fromt a b l e 2 . 1 , o nl y two p o i n ts c o rr e sp o n ds t o P H2 =2 11 0 t o r r . I n c om pa ri so n w it h F ig . 2 . 7 ( a ) , t het a b l e v al ue c o r r e s p o nd i n g t o P H2 = 2105 i s a l s or ea d a s P H2 = 2 1 1 0 .

    84   / / T h er e f o re t he v a l ue s o f t he c o ns t a nt s a red i f f e r e n t from t ha t o b ta i n ed i n t he t ex tb oo k .A l s o r e g r e s s i o n i s u s e d t o o bt ai n t h e v al u e s o f  s l o p e s and i n t e r c e p t w he re as t he t ex tb oo k

    c o n s i d e r s g r a p h i c a l method f o r t he c om pu ta ti on o f  t he c o de s

    18

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    20/115

    Chapter 3

    Ideal Reactors

    Scilab code Exa 3.1   Time to reach desired conversion for bimolecular batchreaction

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−1 E x3 . 1 Pg No . 8 4

    3   // T i t l e : Time t o r ea c h d e s i r e d c o n v e r si o n f o rb i m ol e c u l a r b at c h r e a c t i o n

    4   //============================================================

    5   clear

    6   clc

    7   //INPUT8   C _ A 0 = 1 ; // Assuming 1 mol b a s i s f o r t he l i m i t i n g

    r e a c t a n t

    9   C _ B 0 _ o l d = 1 . 0 2 ; // 2% Ex ce ss o f r e a ct a n t B i s s u p p l i e d10   R _ o l d = C _ B 0 _ o l d / C _ A 0 ; / / R e f er e q u a t i o n 3 . 7 Pg No .11   X _ A = 0 . 9 9 5 ; // C on ve rs io n i n te r m s o f l i m i t i n g r e a ct a n t12   t _ o l d = 6 . 5 ; // Time r e q u i r e d f o r t he g i ve n c o n ve r si o n (

    hr )

    19

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    21/115

    13   C _ B 0 _ n e w = 1 . 0 5 ; // 5% E xc es s o f r e a c t a n t B

    14   R _ n e w = C _ B 0 _ n e w / C _ A 0 ; / / R e f er e q u a t i o n 3 . 7 Pg No . 8 31516   //CALCULATION17   k =( log ( ( R _ o ld - X _ A ) / ( R _ o l d * ( 1 - X _ A ) ) ) / ( ( R _ ol d -1 ) * t _ o l d

    * C _ A 0 ) ) ;

    18   t _ n e w = log ( ( R _ n ew - X _ A ) / ( R _ n e w * ( 1 - X _ A ) ) ) / ( ( R _ ne w - 1 ) * k *

    C _ A 0 ) ;

    19

    20   //OUTPUT21   mprintf ( ’ \nTime r e q u i r e d t o a c h i ev e r e q u i r e d

    c o n v e r s i o n f o r 5%% e x c e s s o f B= %f h r ’ , t _ n e w ) ;

    2223   // FILE OUTPUT24   f i d = mopen ( ’ . \ Chapter3−Ex1−Output . tx t ’ , ’w ’ ) ;25   mfprintf ( f i d , ’ \nTime r e q u i r e d t o a c h i ev e r e q u i r e d

    c o n v e r s i o n f o r 5%% e x c e s s o f B= %f h r ’ , t _ n e w ) ;26   mclose ( f i d ) ;

    27   //=================================================END OF PROGRAM==================================

    Scilab code Exa 3.2   Residence time and heat generation for four STR sin series

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−3 Ex3 . 2 Pg No . 963   // T i t l e : R es i de n ce t im e and h ea t g e n e r a t i o n f o r f o u r

    STR ’ s i n s e r i e s4   //============================================================

    5   clear

    20

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    22/115

    6   clc

    7   // COMMON INPUT8   X _ A = 0 . 9 5 ; // G ive n c o n v e r s i o n9   t _ b a t c h = 6 ; // B atch t im e t o r ea c h t he d e s i r e d

    c o n v e r s i o n10   N =4 //No . o f r e a c t o r s i n s e r i e s11   X _ f i n a l = X _ A ;

    12

    13   //CALCULATION ( Ex3 . 2 . a )14   k = log ( ( 1 / ( 1 - X _ A ) ) ) / t _ b a t c h ; // R e f er e q u a t i on 3 . 2 9 Pg

    No . 9 015   t _ 1 = ( ( 1 / ( 1 - X _ A ) ) ^ ( 1 / N ) - 1 ) / k ; / / R e f er e q u a t i o n 3 . 4 0 Pg

    No . 9416   t _ T o t = N * t _ 1 ;

    17

    18   //OUTPUT ( Ex3 . 2 . a )19   mprintf ( ’ \n OUTPUT Ex3 . 2 . a ’ ) ;20   mprintf ( ’ \n

    ============================================================’ ) ;

    21   mprintf ( ’ \nThe t o t a l r e s i d e n c e t i m e o f t h e f o u rr e a c t o r s i n s e r i e s = %f hr ’ , t _ T o t ) ;

    22

    23   //============================================================

    24

    25   / / T i t l e : H ea t g e n e r a t i o n i n CSTR i n S e r i e s26   //

    ============================================================

    27   //CALCULATION ( Ex3 . 2 . b )28   t _ 1 = ( ( 1 / ( 1 - X _ f i n a l ) ) ^ ( 1 / N ) - 1 ) / k ; / / R e f e r e q u a t i o n

    3 . 4 0 Pg No . 9429   for   i = 1 : N

    30   X ( i ) = 1 - ( 1 / ( 1 + k * t _ 1 ) ^ ( i ) ) ;

    31   end

    32

    21

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    23/115

    33   d e l Q _ b y _ Q ( 1 ) = ( X ( 1 ) ) / X _ f i n a l ;   // R a t i o o f h ea t

    g e n e ra t ed i n 1 s t r e a c t o r34   for   i = 1 : N - 135   d e l Q _ b y _ Q ( i + 1 ) = ( X ( i + 1 ) - X ( i ) ) / X _ f i n a l ;   / / R at i o

    o f h ea t g e n e r a te d i n 2nd , 3 r d and 4 t hr e a c t o r s

    36   end

    37

    38   //OUTPUT ( Ex3 . 2 . b )39   mprintf ( ’ \n

    ============================================================n ’ )

    40   mprintf ( ’ \n OUTPUT Ex3 . 2 . b ’ ) ;41   mprintf ( ’ \n

    ============================================================’ ) ;

    42   mprintf ( ’ \ n Re ac to r v e s s e l   \ t C o n ve r si o n   \ t F r a c ti o no f t o t a l h e a t r e l e a s e d   \n ’ )

    43   mprintf ( ’ \n============================================================’ )

    44   for   i = 1 : N

    45   mprintf ( ’ \n %d   \ t   \ t %0 . 3 f    \ t   \ t   \ t %0 . 3 f    \n ’

    ,i ,

    X ( i ) , d e l Q _ b y _ Q ( i ) )

    46   end

    47

    48   // FILE OUTPUT49   f i d = mopen ( ’ . \ Chapter3−Ex2−Output . tx t ’ , ’w ’ ) ;50   mfprintf ( f i d , ’ \n OUTPUT Ex3 . 2 . a ’ ) ;51   mfprintf ( f i d , ’ \n

    ============================================================’ ) ;

    52   mfprintf ( f i d , ’ \nThe t o t a l r e s i d e n c e t i m e o f t h e f o u r

    r e a c t o r s i n s e r i e s = %f hr ’ , t _ T o t ) ;53   mfprintf ( f i d , ’ \n

    ========================================================’ )

    54   mfprintf ( f i d , ’ \ n Re ac to r v e s s e l   \ t C o nv e rs i o n   \ t

    22

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    24/115

    F ra c t i o n o f t o t a l h ea t r e l e a s e d   \n ’ )

    55   mfprintf ( f i d , ’ \n========================================================’ )

    56   for   i = 1 : N

    57   mfprintf ( f i d , ’ \n %d   \ t   \ t %0 . 3 f    \ t   \ t   \ t %0 . 3 f    \n ’ , i , X ( i ) , d e l Q _ b y _ Q ( i ) )

    58   end

    59   mclose ( f i d ) ;

    60

    61

    62   //

    ============================================================END OF PROGRAM================================

    Scilab code Exa 3.3  Effect of temperature on yield

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n

    ) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .2   //C hapt e r−3 Ex3 . 3 Pg No . 973   // T i t l e : E f f e c t o f t em p er a tu re on y i e l d4   //

    ============================================================

    5   clear

    6   clc

    7   //INPUT8   C _ A 0 = 1 ; / / I n i t i a l c o n c e n t r a t i o n o f A

    9   C _ B 0 = 5 ; / / I n i t i a l c o n c e n t r a t i o n o f B10   E 1 = 1 5 ; / / A c t i v a t i o n e n er g y f o r f i r s t r e a c t i o n ( k c a l )11   E 2 = 2 0 ; // A c t i va t i o n e ne rg y f o r s ec on d r e a c t i o n ( k c a l )12   X _ A = 0 . 8 8 ; // T ot a l c o nv e r s i o n o f r e a c t a n t A13   Y = 0 . 8 1 ; // Y i e l d f o r t he r e a c t i o n t o p ro du ce C

    23

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    25/115

    14   R = 1 . 9 8 7 ; //Gas Cons tan t ( c a l /Kˆ−1 m o l ˆ−1)

    15   T _ 0 = 3 5 0 ; / / T e m p e r a t ur e (K )1617   //CALCULATION18   / / As sum in g f i r s t o r d e r by t a k i n g c o n c e n t r a t i o n o f B

    c on st an t s i n c e B i s i n E x ce ss19   C _ A = C _ A0 * ( 1 - X _ A ) ; / / U n r ea c te d amount o f A20   C _ B = C _ B 0 - Y ; / / U n r ea c te d amount o f B21   k 1 _ p l u s _ k 2 _ t = ( X _ A / ( 1 - X _ A ) ) ;

    22   S = Y / X _ A ; //A t 350K23   k 1 _ b y _ k 2 = 1 1 . 5 7 ;

    24   k 1 _ p l u s _ k 2 _ b y _ k 2 = k 1 _ b y _ k 2 + 1 ; // R ef e r Ex3 . 3 f o r t he

    c od ed e q u a t i o n s25   k 2 _ t = k 1 _ p l u s _ k 2 _ t / k 1 _ p l u s _ k 2 _ b y _ k 2 ;

    26   k1_t= k1_plus_k2_t -k2_t ;

    27   T = 3 4 5 ;

    28   for   i = 1 : 7

    29   T = T + 5 ;

    30   T e m p ( i ) = T ;

    31   k 1 _ d a s h _ t ( i ) = k 1 _ t * exp ( ( ( E 1 * 1 0 0 0 / R ) * ( ( 1 / T _ 0 ) - ( 1 / T ) ) ) )

    ; / / A r r h e n i u s l a w32   k 2 _ d a s h _ t ( i ) = k 2 _ t * exp ( ( ( E 2 * 1 0 0 0 / R ) * ( ( 1 / T _ 0 ) - ( 1 / T ) ) ) )

    ;/ / A r r h e n i u s l a w33   k 1 _ p l u s _ k 2 _ t _ n e w ( i ) = k 1 _ d a s h _ t ( i ) + k 2 _ d a s h _ t ( i ) ;

    34   X _ A _ n e w ( i ) = k 1 _ p l u s _ k 2 _ t _ n e w ( i ) / ( 1 + k 1 _ p l u s _ k 2 _ t _ n e w ( i

    ) ) ;

    35   S _ n e w ( i ) = ( ( k 1 _ d a s h _ t ( i ) / k 2 _ d a s h _ t ( i ) ) / ( 1 + ( k 1 _ d a s h _ t (

    i ) / k 2 _ d a s h _ t ( i ) ) ) ) ;

    36   Y _ n e w ( i ) = S _ n e w ( i ) * X _ A _ n e w ( i ) ;

    37   end

    38

    39   //OUTPUT40   mprintf ( ’=======================================’ ) ;

    41   mprintf ( ’ \n\ t T   \ t X A   \ t S   \ t Y ’ ) ;42   mprintf ( ’ \n\ t K   \ t (−)   \ t (−)   \ t (−) ’ ) ;43   mprintf ( ’ \n======================================’ ) ;44   for   i = 1 : 7

    45   mprintf ( ’ \n\ t %d   \ t %0 . 3 f    \ t %0 . 3 f    \ t %0 . 3 f ’ ,

    24

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    26/115

    T e m p ( i ) , X _ A _ n e w ( i ) , S _ n e w ( i ) , Y _ n e w ( i ) ) ;

    46   end47   m a x i m u m = max ( Y _ n e w ) ;

    48   mprintf ( ’ \n\ t \nThe maximum v a l u e o f y i e l d i s %f ’ , ma ximu m ) ;

    49   mprintf ( ’ \n\ t \nHigh y i e l d i s o b ta i n ed b etw een 3 65Kt o 3 75K ’ ) ;

    50

    51   // FILE OUTPUT52   f i d = mopen ( ’ . \ Chapter3−Ex3−Output . tx t ’ , ’w ’ ) ;53   mfprintf ( f i d , ’

    =======================================’ ) ;

    54   mfprintf ( f i d , ’ \n\ t T   \ t X A   \ t S   \ t Y ’ ) ;55   mfprintf ( f i d , ’ \n\ t K   \ t (−)   \ t (−)   \ t (−) ’ ) ;56   mfprintf ( f i d , ’ \n

    ======================================’ ) ;57   for   i = 1 : 7

    58   mfprintf ( f i d , ’ \n\ t %d   \ t %0 . 3 f    \ t %0 . 3 f    \ t %0 . 3 f  ’ , T e m p ( i ) , X _ A _ n e w ( i ) , S _ n e w ( i ) , Y _ n e w ( i ) ) ;

    59   end

    60   m a x i m u m = max ( Y _ n e w ) ;

    61   mfprintf ( f i d , ’ \n\ t \nThe maximum v a l u e o f y i e l d i s

    %f ’, m a x i m u m ) ;

    62   mfprintf ( f i d , ’ \n\ t \nHigh y i e l d i s o b ta i n ed b etw een3 6 5K t o 3 7 5K ’ ) ;

    63   mclose ( f i d ) ;

    64   //======================================================END OF PROGRAM===================================================

    65   / / D i s c l a i m e r : R e f er Ex3 . 3 i n t h e t e xt b o ok TheA r rh e ni u s la w e q ua t i on h as a t yp o e r r o r .

    E x po n en t ia l term m i s s in g i n t he t ex tb o ok

    25

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    27/115

    Scilab code Exa 3.4  Volume of reactor for Gas Phase isothermal reaction

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−3 Ex3 . 4 Pg No . 1 013   / / T i t l e : Volume o f r e a c t o r f o r Gas P ha se i s o t h e r m a l

    r e a c t i o n4   //

    ============================================================

    5   clear

    6   clc

    7   //INPUT8   / / F i r s t O rd er R e a c t io n9   / / B a s i s : 1 mol o f f e e d

    10   k = 0 . 4 5 ; // R ate c o n st a n t o f f i r s t o r d er r e a c t i o n ( s −1)11   v 0 = 1 2 0 ; / / V o l u m e t r i c f l o w r a t e ( cm3 / s )

    12   C _ A 0 = 0 . 8 ; / / I n i t i a l am ou nt o f r e a c t a n t A ( m o l )13   X _ A = 0 . 9 5 ; // C on ve rs io n i n t er ms o f r e a c t a n t A14   C _ i n e r t = 0 . 2 ; // C o n c en t r a t io n o f i n e r t ( N i t ro g e n ) i n

    f e e d15

    16   //CALCULATION17   E _ A = ( ( 2 * C _ A 0 + C _ i n e r t ) - ( C _ A 0 + C _ i n e r t ) ) / ( C _ A 0 + C _ i n e r t )

    ; / / Volume f r a c t i o n18   T o t _ m o l = ( C _ A 0 + C _ i n e r t ) + ( E _ A ) ; // T o ta l No . o f m o le s19   V = v 0 * ( ( - ( E _ A ) * X _ A ) + T o t _ m o l * ( log ( 1 / ( 1 - X _ A ) ) ) ) / ( k ) ; //

    R e f er P er fo rm a nc e E qu a ti o n e q u a t io n 3 . 4 4 and 3 . 4 2

    i n Pg No . 1 0020   V _ l = V * 1 0 ^ - 3 ; / / Volume o f r e a c t o r i n l i t e r s21

    22   //OUTPUT

    26

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    28/115

    23   mprintf ( ’ \n\ tThe Volume o f t he r e a c t o r r e q ui r e d f o r

    t h e g i v e n c o n v e r s i o n i s %. 0 f cm3 o r %0 . 2 f l i t e r s ’, V , V _ l ) ;24

    25   // FILE OUTPUT26   f i d =   mopen ( ’ .\ Chapter3−Ex4−Output . tx t ’ , ’ w ’ ) ;27   mfprintf ( f i d , ’ \n\ tThe Volume o f t he r e a c t o r r e q u i r e d

    f o r t he g i ve n c o n ve r si o n i s %. 0 f cm3 o r %0 . 2 f  l i t e r s ’ , V , V _ l ) ;

    28   mclose ( f i d ) ;

    29   //============================================================

    END OF PROGRAM==========================================

    Scilab code Exa 3.5  Rate Equation to fit Initial Rate data

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−3 Ex3 . 5 Pg No . 1 043   / / T i t l e : R at e E q ua t io n t o f i t I n i t i a l R at e d a ta4   //

    ============================================================

    5   clear

    6   clc

    7   c l f ( )

    8   //INPUT ( Ex3 . 5 . 1 )9   // I n i t i a l Rate Data

    10   B _b y_ A= [5 7 10 20 3 7]; //B/A M ol R at i o11   r _ 0 =[ 75 65 50 3 3 1 8] ; / / Ra te ( m ol / h r g )

    27

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    29/115

    12

    13   //CALCULATION ( Ex3 . 5 . 1 )14   / / A ss um in g E l ey R i d e a l Mech an is m f o r t h e b e n ze n ea l k y l a t i o n w i th p r o p yl en e

    15   for   i = 1 : 5

    16   C _B ( i ) = ( B _ b y _A ( i ) / ( 1 + B _ b y_ A ( i ) ) ) ; // I n t e rm s o f  Mol F r a a c t i o n

    17   C _A ( i ) = ( 1 /( 1 + B _ b y _A ( i ) ) ) ;

    18   C A _ C B ( i ) = C _ B ( i ) * C _ A ( i ) ;

    19   C _ b y _ r ( i ) = C A _ C B ( i ) / r _ 0 ( i ) ;

    20   end

    21   c o e f s = regress ( C _ A , C _ b y _ r ) ; / /The e q u a t i on ( ( C B∗C A ) /

    r 0 )= 1 / ( k∗K A ) + ( C A /k )22   s c f ( 0 )

    23   plot ( C _ A , C _ b y _ r ,  ’ ∗ ’ ) ;24   xtitle ( ’ T es t o f E le y−R i d e a l mo del f o r b en z en e

    a l k y l a t i o n ’ ) ;25   x l a b e l ( ’ CA , Mol F r a c t i o n ’ ) ;26   y l a b e l (  ’CA CB/ r 0 ’ ) ;27   i n t e r c e p t = c o e f s ( 1 ) ;

    28   s l o p e = c o e f s ( 2 ) ;

    29   K _ A = s l o p e / i n t e r c e p t ;

    30   k = 1 / ( s l o p e ) ;

    31   K _ A _ k = k * K _ A ;

    32

    33   //OUTPUT ( Ex3 . 5 . 1 )34   mprintf ( ’ \n OUTPUT Ex3 . 5 . 1 ’ ) ;35   mprintf ( ’ \n

    =================================================’ )

    36   mprintf ( ’ \nThe r a t e e q ua t i on f o r El ey−R i d e l yM ec hanism i s :\ n r= %0 . 0 fC A C B /(1+%0 . 2 fC A ) ’ ,K _ A _ k , K _ A ) ;

    37   //============================================================

    38

    39   // T i t l e : C on ve rs i on a s a f u n c t i o n o f S pa ce v e l o c i t y

    28

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    30/115

    40   //

    ============================================================

    41   //INPUT ( Ex3 . 5 . 2 )42   x = [ 0. 16 0 .3 1 0 .4 0 0 .7 5] ;

    43   E x p _ I n v er s e _ WH S V = ( 1 0^ - 3 ) * [ 4 8 . 2 1 7 3 9 ]; //WeightH ou rl y S pa ce V e l o c i t y

    44   F e e d _ r a t i o = 1 0 ;

    45

    46   //CALCULATION ( Ex3 . 5 . 2 )47   // The i n t e g r a t e d r a t e e qu a ti o n i n t er ms o f  

    c o n v e r s i o n l n ( 1/ (1 −X) ) +0.2 36X= 6 0 .4 /WHSV ( Page no

    . 1 06 )48   function   [ y ] = i n t e g r a t e d _ r a t e _ e q n ( x 0 )

    49   y = log ( 1 . /( 1 - x 0 )) + 0 .2 3 6. * x 0 - 6 0 .4 .*

    E x p _ I n v e r s e _ W H S V

    50   e n d f u n c t i o n

    51

    52   n = length ( x )

    53   x 0 = 0 . 9 * ones ( 1 , n ) ;   // P r ov id e g u es s v al ue f o rc o n v e r s i o n

    54   [ x _ p r e d i c t e d ] = fsolve ( x 0 , i n t e g r a t e d _ r a t e _ e q n , 1 d - 1 5 ) ;

    // U si ng f s o l v e t o d et er mi ne c o n ve r s io n fromi n t e g r a t e d r a te e x p r e s s i o n f o r e a c h o p er a ti n gWHSV

    55

    56   s c f ( 1 )

    57   plot (Exp_Inverse_WHSV ,x, ’ ∗ ’ ,Exp_I nverse_WHSV ,x_predicted , ’−− ’ )

    58   xtitle ( ’ I n t e g r a l a n a l y s i s ’ , ’ In v e r s e of WHSV ’ , ’C o n v e r s i o n ’ )

    59   l e g e n d ( ’ E x p e r i m e n t a l ’ , ’ P r e d i c t e d ’ )60

    61   //OUTPUT ( Ex3 . 5 . 2 )62   / / C o n s o l e O ut pu t63   mprintf ( ’ \n

    =================================================\n ’ ) ;

    29

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    31/115

    64   mprintf ( ’ \n OUTPUT Ex3 . 5 . 2 ’ ) ;

    65   mprintf ( ’ \n P r e d i c t e d and E x pe r im e nt a l C o n ve r si o nV a l u e s ’ )66   mprintf ( ’ \n

    =================================================’ )

    67   mprintf ( ’ \n1 0 ˆ3/WHSV\ t X e x p e r i me n t a l \ t X p r e d i c t e d ’ )68   mprintf ( ’ \n

    =================================================’ )

    69   for   i = 1 : n

    70   mprintf ( ’ \n %0 . 2 f   \ t \t%0 . 2 f   \ t \t%0 . 2 f ’ ,

    E x p _ I n v e r s e _ W H S V ( i ) * 1 0 ^ 3 , x ( i ) , x _ p r e d i c t e d ( i ) )71   end

    72

    73   // FILE OUTPUT74   f i d =   mopen ( ’ .\ Chapter3−Ex5−Output . tx t ’ , ’ w ’ ) ;75   mfprintf ( f i d , ’ \n OUTPUT Ex3 . 5 . 1 ’ ) ;76   mprintf ( ’ \n

    =================================================’ )

    77   mfprintf ( f i d , ’ \nThe r a t e e q ua t i on f o r El ey−R i d e l y

    M ec hanism i s :\ n r= %0 . 0 fC A C B /(1+%0 . 2 fC A ) ’,

    K _ A _ k , K _ A ) ;

    78   mfprintf ( f i d , ’ \n=================================================\n ’ )

    79   mfprintf ( f i d , ’ \n OUTPUT Ex3 . 5 . 2 ’ ) ;80   mfprintf ( f i d , ’ \n P r e d i c t e d and E x pe r im e nt a l

    C o n v er s i o n V a l u es ’ )81   mfprintf ( f i d , ’ \n

    =================================================’ )

    82   mfprintf ( f i d , ’ \n1 0 ˆ3/WHSV\ t X e x p e r i me n t a l \t X p r e d i c t e d ’ )

    83   mfprintf ( f i d , ’ \n=================================================’ )

    30

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    32/115

    84   for   i = 1 : n

    85   mfprintf ( f i d , ’ \n %0. 2 f   \ t \t%0. 2 f   \ t \t%0 . 2 f ’ ,E x p _ I n v e r s e _ W H S V ( i ) * 1 0 ^ 3 , x ( i ) , x _ p r e d i c t e d ( i ) )86   end

    87   mclose ( f i d )

    88

    89   //===========================================END OFPROGRAM=================================

    90   // D i s c l a im e r : R e g r es s i o n method i s u se d t o f i n d t hes l o pe and i n t e r c e p t i n Ex3 . 5 . 2 .

    91   / / Hence t h e r a t e e q u a t i o n d i f f e r f ro m t h eg r a p h i c a l l y o bt ai ne d v a l u es o f s l o p e and

    i n t e r c e p t i n t he t ex tb oo k .

    Scilab code Exa 3.6  Optimum reaction temperature

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−3 Ex3 . 6 Pg No . 1 143   / / T i t l e : Optimum r e a c t i o n t e m p e r a tu r e4   //

    ============================================================

    5   clear

    6   clc

    7   //INPUT8   d e l _ H = - 2 0 * 1 0 ^ 3 ; / / Hea t o f r e a c t i o n ( c a l )9   T _ e q = [ 5 00 7 0 0] ; / / E q u i v a l e n t t e m p e r a t u r e s (K)

    10   R = 1 . 9 8 7 ; / / Gas C o n s ta n t ( c a l / m ol K)11   E 2 _ b y _ E 1 = 2 ; // R at io o f a c t i v a t i o n e ne rg y12

    13   //CALCULATION14   T _ o p t ( 1 ) = T _ e q ( 1 ) / ( 1 + ( log ( E 2 _ b y _ E 1 ) * ( R / ( - d e l _ H ) ) ) *

    31

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    33/115

    T _ e q ( 1 ) ) ; / / R e f er e q u a t i o n 3 . 6 3 Pg No . 1 13

    15   T _ o p t ( 2 ) = T _ e q ( 2 ) / ( 1 + ( log ( E 2 _ b y _ E 1 ) * ( R / ( - d e l _ H ) ) ) *T _ e q ( 2 ) ) ;

    16   d e l t a _ T ( 1 ) = T _ e q ( 1 ) - T _ o p t ( 1 ) ;

    17   d e l t a _ T ( 2 ) = T _ e q ( 2 ) - T _ o p t ( 2 ) ;

    18

    19

    20   //OUTPUT21   mprintf ( ’ \n   \ t   \ t T e mp e ra t u re 1 \ t T e mp e ra t ur e 2

    ’ ) ;22   mprintf ( ’ \n   \ t   \ t

    ==================================’ ) ;

    23   mprintf ( ’ \n( T e q   −   T op t ) (K) :   \t%0. 0 f     \ t \t%0 . 0 f  ’ , d e l t a _ T ( 1 ) , d e l t a _ T ( 2 ) ) ;

    24   mprintf ( ’ \n T o pt (K) :\ t   \t%0. 0 f   \ t \t%0 . 0 f ’ , T _o pt( 1 ) , T _ o p t ( 2 ) ) ;

    25

    26   f i d =   mopen ( ’ .\ Chapter3−Ex6−Output . tx t ’ , ’ w ’ ) ;27   mfprintf ( f i d , ’ \n   \ t   \ t T e mp e ra t u re 1 \ t

    T e mp er at ur e 2 ’ ) ;28   mfprintf ( f i d , ’ \n   \ t   \ t

    ==================================’ ) ;29   mfprintf ( f i d ,

     ’ \n( T e q   −   T op t ) (K) :   \t%0. 0 f     \ t \t%0. 0 f ’ , d e l t a _ T ( 1 ) , d e l t a _ T ( 2 ) ) ;30   mfprintf ( f i d , ’ \n T o pt (K) :\ t   \t%0. 0 f   \ t \t%0 . 0 f ’ ,

    T _ o p t ( 1 ) , T _ o p t ( 2 ) ) ;

    31   mclose ( f i d ) ;

    32

    33   //=========================================================END OF PROGRAM=====================================

    34   // D i s cl a i me r : There i s an a r i t h me t i c e r r o r i n t he

    optimum t e m p er a t u re s o b t a i ne d i n t h e t e xt b o ok .35   // Based on t he v a l u e s ( T eq   −   T o p t ) 1 =17 a nd ( T e q

    −   T o p t ) 2 =32 t h e optimum t e m p e r a t u r e s o b t a i n e da r e

    36   / / T o pt 1 =483 K and T o pt 2 =668 K r e s p e c t i v e l y .

    32

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    34/115

    Scilab code Exa 3.7  Equilibrium temperature as a function of conversionand optimum feed temperature

    1   / / H a r r i o t P , 2 0 0 3 , C he mi ca l R e a ct o r D e si g n ( I−E d i t i o n )

    M ar c e l De kk e r , Inc . USA , pp 4362   //C hapt e r−3 Ex3 . 7 Pg No . 1 153   // T i t l e : E q u il i b ri u m t em p er at u re a s a f u n c t i o n o f  

    c o n v e r s i o n a nd Optimum F ee d T e m p er a t u r e4   //

    ============================================================

    5   clear

    6   clc

    7   // COMMON INPUT8   P _ o p t = 1 . 5 ;   / / ( atm ) O p er a ti n g p r e s s u r e o f f i r s t

    c o n v e r t e r9   x = [ 0. 5 0 .6 0 .7 0 .8 0 .9 0 .9 5] ; // C o nv e rs i o n o f SO2

    10   k = [2 E - 06 5 .1 E - 06 1 0. 3 E -0 6 1 8E - 06 2 7E - 06 3 7. 5 E - 06 4 8E

    - 06 59 E -0 6 69 E -0 6 77 E - 06 ] ;   / / R at e C o ns t an t ( g m ol/ g c at s e c atm )

    11   T = 4 2 0 : 2 0 : 6 0 0 ; / / T em pe ra tu re ( C )12   X = 0 . 6 8 ;

    13   T _ F = 7 0 0 ; //F e e d T e mpe r at ur e ( K)14   C _ p i _8 0 0 = [ 1 2 . 53 1 8 .6 1 8 . 06 7 . 51 ] ;

    15   F = 1 0 0 ; // ( mol ) amount o f f e e d

    16   d e l t a _ H _ 7 0 0 = - 2 3 2 7 0 ; / / ( c a l / m ol )17   p e r c e n t _ S O 2 _ f = 1 1 ; / / (%) P e r c e n t a g e o f SO2 i n f e e d18

    19

    20   //CALCULATION ( Ex3 . 7 . a )

    33

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    35/115

    21   n = length ( x ) ;

    22   m = length ( k ) ;23   for   i = 1 : n

    24   K _ e q ( i ) = ( ( x ( i ) / ( 1 - x ( i ) ) ) ) * ( ( 1 0 0 - 5 . 5 * x ( i ) )

    / ( 1 0 - 5 . 5 * x ( i ) ) ) ^ 0 . 5 * ( 1 / P _ o p t ) ^ 0 . 5 ;

    25   T _ e q ( i ) = ( 1 1 4 1 2 / ( log ( K _ e q ( i ) ) + 1 0 . 7 7 1 ) ) ;

    26   P _ O 2 ( i ) = ( 1 0 * ( 1 0 - 5 . 5 * x ( i ) ) * P _ o p t ) / ( 1 0 0 - 5 . 5 * x ( i ) ) ;

    27   P _ S O 3 ( i ) = ( 1 1 * x ( i ) * P _ o p t ) / ( 1 0 0 - 5 . 5 * x ( i ) ) ;

    28   P _ S O 2 ( i ) = ( 1 1 * ( 1 - x ( i ) ) * P _ o p t ) / ( 1 0 0 - 5 . 5 * x ( i ) ) ;

    29   end

    30

    31   for   i = 1 : n

    32   for   j = 1 : m33   r ( j , i ) = k ( j ) * ( P _ S O 2 ( i ) / P _ S O 3 ( i ) ) ^ 0 . 5 * ( P _ O 2 ( i )

    - ( P _ S O 3 ( i ) / ( P _ S O 2 ( i ) * K _ e q ( i ) ) ) ^ 2 )

    34   end

    35   r _ m a x ( i ) = max ( r ( j , i ) ) ;

    36   end

    37   c l f ( )

    38   s c f ( 0 )

    39   plot (x,T_eq -273, ’ ∗ ’ ) ;40   xtitle ( ’ T em pe ra tu re i n S t ag e 1 o f an SO2 c o n v e r t e r ’ )

    ;

    41   x l a b e l (  ’ x , SO2 C o n v e r s i o n ’ ) ;42   y l a b e l ( ’ T e mp e ra t u re , C ’   ) ;43

    44   //CALCULATION ( Ex3 . 7 . b )45   n _ S O 2 = F * p e r c e n t _ S O 2 _ f * 1 0 ^ - 2 * ( 1 - X ) ;

    46   n _ S O 3 = F * p e r c e n t _ S O 2 _ f * 1 0 ^ - 2 * X ;

    47   n _ O 2 = ( 1 0 - 5 . 5 * X ) ;

    48   n _ N 2 = 7 9 ;

    49   s i g m a _ n _ C _ p i = n _ S O 2 * C _ p i _ 8 0 0 ( 1 ) + n _ S O 3 * C _ p i _ 8 0 0 ( 2 ) +

    n _ O 2 * C _ p i _ 8 0 0 ( 3 ) + n _ N 2 * C _ p i _ 8 0 0 ( 4 ) ;

    50   T e m p _ c h a n g e = ( F * p e r c e n t _ S O 2 _ f * 1 0 ^ ( - 2 ) * X * ( - 1 ) *d e l t a _ H _ 7 0 0 ) / s i g m a _ n _ C _ p i ; / / R e f er e q u a t i o n 3 . 6 0P g N o . 1 1 0

    51   mprintf ( ’ \nHeat C ap ac it y e v a lu a t ed a t 8 00 K : %0 . 0 f (c a l / C ) ’ , s i g m a _ n _ C _ p i ) ;

    34

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    36/115

    52   mprintf ( ’ \n Te mp er at ur e Ch ang e t o c a r r y o u t t h e

    r e a c t i o n a t T F ,\ n us in g t he e ne rg y t o h ea t t hep r o d u ct g a s : %0 . 0 f C ” , T e mp ch an ge ) ;53   / / From g r a p h i c a l p r o c ed u r e ( F i g ur e 3 . 1 9 , Pg No . 1 1 8 )

    t h e f i n a l t e m p er at u re i s o bt ai ne d a s 4 10 C54   T F = 4 10 ; // ( C ) F i n a l t e mp e r at u r e55   / /From F i g u re 3 . 1 9 , Pg No . 1 1 8 t e mp e r at u r e f o r

    c o r r e sp o n di n g c o n ve r s io n i s o bt ai ne d56   X s t a g e = [ 0 . 1 ; 0 . 2 ; 0 . 3 ; 0 . 4 ; 0 . 5 ; 0 . 6 ]57   T s t ag e = [ 4 4 1 ; 4 7 0 ; 5 0 0 ; 5 4 0 ; 5 6 5 ; 5 8 0 ]58   m=le ng th ( X st ag e ) ;59   f o r i = 1:m

    60   K eq ( i )=exp (( 11 41 2/ T st ag e ( i ) ) −10.7 71) ;61   end62   k = 1 0 ˆ −6∗ [ 5. 25 1 4 . 15 27 48 6 1 . 5 6 9 ] ; / / From T a bl e 3 . 5

    C or re sp o nd in g t o t he s t a g e t em pe ra t ur e d at ao b ta i n ed fo rm F i gu r e 3 . 1 9

    63   f o r i = 1:m64   P SO2 ( i ) =11∗(1− X st ag e ( i ) ) ∗P opt /( 100 −5 . 5∗

    X st ag e ( i ) )65   P SO3 ( i ) =11∗X st a ge ( i ) ∗P opt /( 100 −5. 5∗ X st a ge ( i )

    )66

      P O2( i ) =10∗(10 −5.5∗ X st ag e ( i ) ) ∗P opt /( 100 −5 . 5∗X st ag e ( i ) )67   r ( i )=k ( i ) ∗ ( P SO2 ( i )/P SO3 ( i ) ) ̂ 0 .5 ∗ ( P O2( i )−(

    P SO3 ( i ) /( P SO2 ( i ) ∗K eq ( i ) ) ) ̂ 2 ) ∗ 1 0 ˆ 6 ;68   i n v e r s e r ( i ) = (1 / r ( i ) ) ;69   end70   s c f ( 1 )71   p l o t ( X s t ag e , i n v e r s e r , ’ * ’ ) ;72   x t i t l e ( ’ 1/ r vs x ’,  ’X ( c o n v e r s i o n ) ’ , ’ 10ˆ−6/r ’ ) ;73

    74

    75   //OUTPUT ( Ex3 . 7 . a )76   mprintf ( ’ \n\n OUTPUT Ex3 . 7 . a ’ ) ;77   mprintf ( ’ \n

    ============================================================’ ) ;

    35

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    37/115

    78   mprintf ( ’ \n X\ t P h i \ t \ t T e q \ t T e q \ t \ t r m a x ’ ) ;

    79   mprintf ( ’ \n   −\t (atmˆ −0. 5) \ t (K) \ t ( C ) \ t \ t ( g m ol / g c a tse c ) ’ ) ;80   mprintf ( ’ \n

    ============================================================’ ) ;

    81   for   i = 1 : n - 1

    82   mprintf ( ’ \n %0 . 2 f   \t%0. 2 f   \ t %0 . 0 f   \t%0. 0 f   \ t \t % 0 . 6 E’ , x ( i ) , K _ e q ( i ) , T _ e q ( i ) , T _ e q ( i ) - 2 7 3 , r _ m a x ( i ) ) ;

    83   end

    84   mprintf ( ’ \n %0 . 2 f   \t %0 . 2 f   \ t \t%0. 0 f   \t%0. 0 f   \ t \t % 0 . 6 E ’ ,x( n ) , K _ e q ( n ) , T _ e q ( n ) , T _ e q ( n ) - 2 7 3 , r _ m a x ( n ) ) ;

    8586   //OUTPUT ( Ex3 . 7 . b )87   mprintf ( ’ \n\n\n OUTPUT Ex3 . 7 . b ’ ) ;88   mprintf ( ’ \n

    ============================================================’ ) ;

    89   mprintf ( ’ \n===========================================’ ) ;

    90   mprintf ( ’ \n 10 ˆ−6/ r \tX ( c o n v e r s i o n ) ’ ) ;91   mprintf ( ’ \n ( g mo l / g c a t , s )   \ t (−) ’ ) ;92   mprintf (

     ’ \n===========================================’ ) ;93   for   i = 1 : m

    94   mprintf ( ’ \n %0 . 2 f   \ t \ t \t%0. 2 f ’ , i n v e r s e _ r ( i ) ,X _ s t a g e ( i ) ) ;

    95   end

    96   mprintf ( ’ \nFrom g r a p h i c a l p r oc e du r e ( 1/ r v s x ) t heoptimum t e m pe r a tu r e o b t a i ne d i s T o pt : 4 12 C ’ ) ;

    97

    98   // FILE OUTPUT99   f i d =   mopen ( ’ .\ Chapter3−Ex7−Output . tx t ’ , ’ w ’ ) ;

    100   mfprintf ( f i d , ’ \nHea t C a pa c it y e v a l u a t e d a t 8 00 K : %0. 0 f ( c a l / C ) ’ , s i g m a _ n _ C _ p i ) ;

    101   mfprintf ( f i d , ’ \n Te mp er at ur e Ch ang e t o c a r r y o u t t h er e a c t i o n a t T F ,\ n us in g t he e ne rg y t o h ea t t hep r o d u ct g a s : %0 . 0 f C ” , T e mp ch an ge ) ;

    36

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    38/115

    102   m f p r i n t f ( f i d , ’ \ n O UT PU T E x3 . 7 . a ’) ;

    103   mfprintf ( f i d , ’ \n============================================================’ ) ;

    104   mfprintf ( f i d , ’ \n X\ t P h i \ t \ t T e q \ t T e q \ t \ t r m a x ’ ) ;105   mfprintf ( f i d , ’ \n   −\t (atmˆ −0. 5) \ t (K) \ t ( C ) \ t \ t ( gmol /

    g c a t s e c ) ’ ) ;106   mfprintf ( f i d , ’ \n

    ============================================================’ ) ;

    107   for   i = 1 : n - 1

    108   mfprintf ( f i d , ’ \n %0 . 2 f   \t%0. 2 f   \ t %0 . 0 f   \t%0. 0 f   \ t \

    t % 0 . 6 E ’ , x ( i ) , K _ e q ( i ) , T _ e q ( i ) , T _ e q ( i ) - 2 7 3 ,r _ m a x ( i ) ) ;

    109   end

    110   mfprintf ( f i d , ’ \n %0 . 2 f   \t %0 . 2 f   \ t \t%0. 0 f   \t%0. 0 f   \ t \t%0. 6 E ’ , x ( n ) , K _ e q ( n ) , T _ e q ( n ) , T _ e q ( n ) - 2 7 3 , r _ m a x ( n ) ) ;

    111   mfprintf ( f i d , ’ \n\n\n OUTPUT Ex3 . 7 . b ’ ) ;112   mfprintf ( f i d , ’ \n

    ============================================================’ ) ;

    113   mfprintf ( f i d , ’ \n

    ===========================================’) ;

    114   mfprintf ( f i d , ’ \n 10 ˆ−6/ r \tX ( c o n v e r s i o n ) ’ ) ;115   mfprintf ( f i d , ’ \n ( g mo l / g c a t , s )   \ t (−) ’ ) ;116   mfprintf ( f i d , ’ \n

    ===========================================’ ) ;117   for   i = 1 : m

    118   mfprintf ( f i d , ’ \n %0 . 2 f   \ t \ t \t%0. 2 f ’ , i n v e r s e _ r ( i ), X _ s t a g e ( i ) ) ;

    119   end

    120   mfprintf ( f i d , ’ \nFrom g r a p h i c a l p r oc e du r e ( 1/ r v s x )t h e optimum t e m pe r a tu r e o b t a i ne d i s T o pt : 4 12

    C ’ ) ;121   mclose ( f i d ) ;

    122

    123   //==========================================================

    37

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    39/115

    END OF PROGRAM

    ======================================124   / / D i s c l a i m e r : The optimum t e m p e r a tu r e f o r e a chc o n v e r s i o n i s f o un d by t r i a l a t maximum r a t e a ndt h e k i n e t i c d a t a i n t he t ex tb oo k i s n o ts u f f i c i e n t t o c a l c u l a t e t h e optimum t e m p e r a t u r ei n t he c od e .

    38

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    40/115

    Chapter 4

    Diffusion and Reaction in

    Porous Catalysts

    Scilab code Exa 4.1  Diffusivity of Chlorine and tortuosity in catalyst pel-let

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n

    ) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .2   //C hapt e r−4 Ex4 . 1 Pg No . 1 353   // T i t l e : D i f f u s i v i t y o f C h lo r in e and t o r t u o s i t y i n

    c a t a l y s t p e l l e t4   //

    ============================================================

    5   clear

    6   clc

    7

    8   // COMMON INPUT9   S _ g = 2 3 5 ; / / T o ta l s u r f a c e p e r gram ( m2/ g )10   V _ g = 0 . 2 9 E - 6 ; / / P o r e v ol um e p e r gram ( cm3 / g )11   r h o _ p = 1 . 4 1 ; // D en s it y o f p a r t i c l e ( g /cm3 )12   D _ H e = 0 . 0 0 6 5 ; // E f f e c t i v e d i f f u s i v i t y of He ( c m2/ se c )

    39

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    41/115

    13   D _ A B = 0 . 7 3 ; / / a t 1 atm and 2 98K

    14   M _ H e = 4 ; // M o l ec u l ar w e ig h t o f He15   M _ C l 2 = 7 0 . 0 9 ; // M o l ec u l ar w e ig h t o f Cl 216   T _ r e f = 2 9 3 ; / / R e f e r e n c e t e m p e r at u r e17   T _ d e g C = 3 0 0 ;

    18   T _ 0 1 = T _ d e g C + 2 7 3 ; / / R e a c t i o n t e m p e r a t u r e (K) ( E x4 . 1 . a )19   T _ 0 2 = 2 9 8 ; / / O p e ra t i n g t e m p e r a tu r e ( Ex4 . 1 . b )20   T _ 0 3 = 5 7 3 ; / / o p e r a t i n g t e m p e r a tu r e ( Ex4 . 1 . c )21   P _ r e f = 1 ; / / R e f e r en c e p r e s s u r e22   D _ C l 2 _ C H 4 = 0 . 1 5 ; / / a t 1 atm 2 7 3K23   P = 1 5 ; // o p e r a t i ng p r e s s u r e24   / / t au = 1 . 25 ; / / From v a l u e c a l c u l a t e d i n Ex4 . 1 . b Pg . No

    . 13625

    26

    27   //CALCULATION ( Ex4 . 1 . a )28   r _ b a r = 2 * V _ g / S _ g ; / / Mean P o re r a d i u s29   D _ C l 2 _ E x _ a = D _ H e * ( ( M _ H e / M _ C l 2 ) * ( T _ 0 1 / T _ r e f ) ) ^ ( 0 . 5 ) ; //

    A ss um in g K nu ds en f l o w a t 5 7 3K30

    31   //CALCULATION ( Ex4 . 1 . b )32   r _ ba r = 2 * V _ g * ( 1 0^ 6 ) / ( S _ g * ( 1 0^ 4 ) ) ;

    33   D _ K = 9 7 0 0 * ( r _ b a r ) * ( T _ r e f / M _ H e ) ^ ( 0 . 5 ) ;/ / K nu ds en f l o w34   D _ A B 1 = D _ A B * ( 2 9 3 / 2 9 8 ) ^ ( 1 . 7 ) // a t 1 . 5 atm and 29 3K

    35   D _ p o r e = 1 / ( ( 1 / D _ K ) + ( 1 / D _ A B 1 ) ) ; // p or e d i f f u s i o n36   E p s i l o n = V _ g * r h o _ p * ( 1 0 ^ 6 ) ;

    37   t a u = ( D _ p o r e * E p s i l o n ) / D _ H e ; / / T o r t u s i t y38

    39   //CALCULATION ( Ex4 . 1 . c )40   D _ C l 2 _ C H 4 _ n e w = D _ C l 2 _ C H 4 * ( P _ r e f / P ) * ( T _ 0 3 / T _ r e f ) ^ ( 1 . 7 )

    ;

    41   D _ K _ C l 2 = 9 7 0 0 * r _ b a r * sqrt ( T _ 0 3 / M _ C l 2 ) ;

    42   D _ p o r e = 1 / ( ( 1 / D _ C l 2 _ C H 4 _ n e w ) + ( 1 / D _ K _ C l 2 ) ) ;

    43   E p s i l o n = V _ g * r h o _ p ;44   D _ C l 2 _ E x _ c = D _ p o r e * E p s i l o n / t a u ;

    45

    46

    47   //OUTPUT

    40

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    42/115

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    43/115

    T _0 3 , P , D _ Cl 2 _E x _c ) ;

    69   mclose ( f i d )70   //============================================END OFPROGRAM

    =================================================

    Scilab code Exa 4.2  Effective diffusivity of O2 in air

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−4 Ex4 . 2 Pg No . 1 403   / / T i t l e : E f f e c t i v e d i f f u s i v i t y o f O2 i n a i r4   //

    ============================================================

    5   clear

    6   clc

    7   // COMMON INPUT

    8   S _ g = 1 5 0 ; / / T o ta l s u r f a c e p e r gram ( m2/ g )9   V _ g = 0 . 4 5 ; / / P o re v ol um e p e r g ram ( cm3 / g )

    10   V _ i = 0 . 3 0 ; / / M i c r o p o r e v ol um e p e r g ram ( cm3 / g )11   V _ a = 0 . 1 5 ; / / M a cr o po r e v ol um e p e r gram ( cm3 / g )12   r h o _ P = 1 . 2 ; // D en s it y o f p a r t i c l e ( g /cm3 )13   t a u = 2 . 5 ; // T o r t u si t y14   r _ b a r _ i = 4 0 * ( 1 0 ^ ( - 8 ) ) ; / / M i c ro p o r e r a d i u s15   r _ b a r _ a = 2 0 0 0 * ( 1 0 ^ ( - 8 ) ) ; / / M ac ro po re r a d i u s16   D _ A B = 0 . 4 9 ; / / For N 2 O 2 a t 1 atm ( cm2 / s )17   M _ O 2 = 3 2 ; / / M o l ec u l a r w e ig h t o f O2

    18   T = 4 9 3 ; / / O p e r e a t i n g T e m p er a t u re (K)1920

    21

    22   //CALCULATION ( Ex4 . 2 . a )

    42

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    44/115

    23   E p s i l o n = V _ g * r h o _ P ;

    24   D _ K _ i = 9 7 0 0 * ( r _ b a r _ i ) * sqrt ( T / M _ O 2 ) ; / / Kn udsen f l o w f o rm i c r o p o r e25   D _ P o r e _ i = 1 / ( ( 1 / D _ K _ i ) + ( 1 / D _ A B ) )

    26   D _ K _ a = 9 7 0 0 * ( r _ b a r _ a ) * sqrt ( T / M _ O 2 ) ;

    27   D _ P o r e _ a = 1 / ( ( 1 / D _ K _ a ) + ( 1 / D _ A B ) ) ; / / // K nudsen f l o w f o rm a c r o p o r e

    28   D _ P o r e _ A v g = ( V _ i * D _ P o r e _ i + V _ a * D _ P o r e _ a ) / ( V _ i + V _ a ) ;

    29   D _ e = E p s i l o n * D _ P o r e _ A v g / t a u ;

    30

    31   //CALCULATION ( Ex4 . 2 . b )32   E p s i l o n = V _ g * r h o _ P ;

    33   r _ b a r = 2 * V _ g / ( S _ g * 1 0 ^ 4 ) ;34   D _ K = 9 7 0 0 * ( r _ b a r ) * sqrt ( T / M _ O 2 ) ;// Knudsen Flow35   D _ P o r e = 1 / ( ( 1 / D _ K ) + ( 1 / D _ A B ) ) ;

    36   t a u = D _ P o r e * E p s i l o n / D _ e ;

    37

    38   //OUTPUT39   mprintf ( ’ \n OUTPUT Ex4 . 2 . a ’ ) ;40   mprintf ( ’ \n

    =================================================’ ) ;

    41   mprintf ( ’ \n The e f f e c t i v e d i f f u s i v i t y o f O2 i n a i r =%0. 2 e cm2/s ’ , D _ e ) ;

    42   mprintf ( ’ \n\n OUTPUT Ex4 . 2 . b ’ ) ;43   mprintf ( ’ \n

    =================================================’ ) ;

    44   mprintf ( ’ \n The c a l c u l a t e d s u r f a c e mean p or e r a d i us= %. 0 e cm ’ , r _ b a r ) ;

    45   mprintf ( ’ \n The p r e d i c t e d p o r e d i f f u s i v i t y = %0 . 2 ecm2/ s e c ’ , D _ P o r e ) ;

    46   mprintf ( ’ \n The c o r r es p o n d i ng t o r t u s i t y = %0 . 2 f ’ ,tau

    ) ;47

    48   // FILE OUTPUT49   f i d =   mopen ( ’ .\ Chapter4−Ex2−Output . tx t ’ , ’ w ’ ) ;50   mfprintf ( f i d , ’ \n OUTPUT Ex4 . 2 . a ’ ) ;

    43

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    45/115

    51   mfprintf ( f i d , ’ \n

    =================================================’ ) ;52   mfprintf ( f i d , ’ \n The e f f e c t i v e d i f f u s i v i t y o f O2 i n

    a i r = %0 . 2 e cm2 / s ’ , D _ e ) ;53   mfprintf ( f i d , ’ \n\n OUTPUT Ex4 . 2 . b ’ ) ;54   mfprintf ( f i d , ’ \n

    =================================================’ ) ;

    55   mfprintf ( f i d , ’ \n The c a l c u l a t e d s u r f a c e mean p or er a d i u s = %. 0 e cm ’ , r _ b a r ) ;

    56   mfprintf ( f i d , ’ \n The p r e d i c t e d p o r e d i f f u s i v i t y = %0

    . 2 e cm2/ se c ’ , D _ P o r e ) ;57   mfprintf ( f i d , ’ \n The c o r r es p o n d i ng t o r t u s i t y = %0 . 2 f  

    ’ , t a u ) ;58   mclose ( f i d ) ;

    59

    60

    61   //======================================================END OF PROGRAM========================================

    Scilab code Exa 4.3  Influence of Pore diffusion over rate

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−4 Ex4 . 3 Pg No . 1 54

    3   // T i t l e : I n f l u e n c e o f Pore d i f f u s i o n o ve r r a t e4   //============================================================

    5   clear

    44

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    46/115

    6   clc

    7   //INPUT8   d _ p = 1 / 4 ; // S p h e r i c a l C a t a ly s t p e l l e t s i z e ( i n ch )9   k = [ 7. 6 *1 0 ^ - 3 1 4 *1 0 ^ - 3 ] ; / / R e a c t i on r a t e s ( m ol / h r )

    10   f _ A = [ 0 .1 0 . 2] ; // Feed f r a c t i o n o f r e ac t a n t A11   D _ e = 0 . 0 0 8 5 ; // D i f f u s i v i t y o f A ( cm2/ s )12   r ho _p = 1 .4 ; // D en si ty o f c a t a l y s t p a r t i c l e ( g /cm3 )13   V _ r e f = 2 2 4 0 0 ; / / r e f e r e n c e v ol um e ( cm3 )14   T _ r e f = 2 7 3 ; / / R e f e r e n c e T e mp e ra t ur e (K)15   P _ r e f = 1 ; / / R e f e r en c e P r e s s u r e ( atm )16   P = 1 . 2 ; / / O p e ra t i n g P r e s s u r e ( atm )17   T _ C = 1 5 0 ;

    18   T = T _ C + 2 7 3 ; / / O p e r a t i n g T e m p er a t u re (K)19

    20   //CALCULATION21   / / Fo r 1 0% o f A22   C _ A ( 1 ) = f _ A ( 1 ) * T _ r e f * P _ r e f / ( V _ r e f * T * P ) ;

    23   R = d _ p * 2 . 5 4 / 2 ;

    24   k _ a p p ( 1 ) = k ( 1 ) * r h o _ p / ( 3 6 0 0 * C _ A ( 1 ) ) ; / / R e f e r e q u a t i o n4 . 5 3 Pg . No . 15 3

    25   p h i _ a p p ( 1 ) = R * sqrt ( k _ a p p ( 1 ) / D _ e ) ; / / R e f e r e q u a t i o n4 . 5 5 Pg . No . 15 5

    26   C _ A ( 2 ) = f _ A ( 2 ) * T _ r e f * P _ r e f / ( V _ r e f * T * P ) ;

    27   // I f C A i s d o u b l e d t h e o rd er i s q u i t e c l o s e t o 1 ,from t h e F ig ur e 4 . 8 Pg . No . 1 48 , r e f e r v al ue o f  e f f e c t i v e n e s s

    28   e t a _ g r a p h = 0 . 4 2 ;

    29   k _ a p p ( 2 ) = k _ a p p ( 1 ) / e t a _ g r a p h ;

    30   p h i _ a p p ( 2 ) = R * sqrt ( k _ a p p ( 2 ) / D _ e ) ;

    31   e t a _ c a l c = ( 3 / p h i _ a p p ( 2 ) ) * ( ( 1 / tanh ( p h i _ a p p ( 2 ) ) ) - ( 1 /

    p h i _ a p p ( 2 ) ) ) ;

    32   e f f _ r a t e = ( 1 - e t a _ g r a p h ) * 1 0 0 ;

    33

    34   //OUTPUT35   mprintf ( ’ \n The e f f e c t i v e n e s s fro m g ra ph = %0 . 2 f    \n

    The c a l c u l a t e d e f f e c t i v e n e s s = %0 . 2 f ’ ,eta_graph ,e t a _ c a l c ) ;

    36   mprintf ( ’ \n The p or e d i f f u s i o n d e c r e as e d t h e r a t e by

    45

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    47/115

    %. 0 f%% ’ , e f f _ r a t e ) ;

    3738   // FILE OUTPUT39   f i d =   mopen ( ’ .\ Chapter4−Ex3−Output . tx t ’ , ’ w ’ ) ;40   mfprintf ( f i d , ’ \n The e f f e c t i v e n e s s from gr a ph = %0 . 2

    f    \n The c a l c u l a t e d e f f e c t i v e n e s s = %0 . 2 f ’ ,eta_graph ,e ta_calc );

    41   mfprintf ( f i d , ’ \n The p or e d i f f u s i o n d e c r e as e d t h er a t e b y % . 0 f%% ’ , e f f _ r a t e ) ;

    42   mclose ( f i d ) ;

    43   //============================================================

    END OF PROGRAM===============================

    Scilab code Exa 4.4  Effectiveness factor for solid catalyzed reaction

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . USA , pp 4 3 6 .

    2   //C hapt e r−4 E x4 . 4 Pg No . 1 5 73   / / T i t l e : E f f e c t i v e n e s s f a c t o r f o r s o l i d c a ta l y z e d

    r e a c t i o n4   //

    ============================================================

    5   clear

    6   clc

    7   //INPUT8   D _ e _ A = 0 . 0 2 ; // ( c m2/ s )

    9   D _ e _ B = 0 . 0 3 ; // ( c m2/ s )10   D _ e _ C = 0 . 0 1 5 ; // ( c m2/ s )11   X _ f _ A = 0 . 3 ;

    12   X _ f _ B = ( 1 - X _ f _ A ) ;

    13   e t a _ a s s u m e d = 0 . 6 8 ; // E f f e c t i v e n e s s f a c t o r from F ig . 4 . 8

    46

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    48/115

    f o r f i r s t o r d er r e a c t i o n

    14   T = 1 5 0 ; / / ( d e g C )15   T _ K = T + 2 7 3 ; //(K)16   r = 0 . 3 ; // ( cm ) R ad iu s o f c a t a l y s t s p h er e17   P _ o p t = 4 ; / / ( a tm ) O p e ra t i n g P r e s s u r e18   R = 8 2 . 0 5 6 ; / / ( c m3 atm /K m ol ) G as c o n s t a n t19

    20

    21   //CALCULATION22   / / K i n e t i c e q u a t i on r= ( 2 .5∗1 0 ˆ −5∗P A∗P B ) / ( 1 + 0 . 1∗P A

    +2∗P C ) ˆ 223   P _ A = X _ f _ A * P _ o p t ;

    24   P _ B = X _ f _ B * P _ o p t ;25   r _ s t a r = ( 2 . 5 * 1 0 ^ - 5 * P _ A * P _ B ) / ( 1 + 0 . 1 * P _ A ) ^ 2 ;

    26   C _ A = P _ A / ( R * T _ K ) ;

    27   k = r _ s t a r / C _ A ;

    28   P h i = r * ( k / D _ e_ A ) ^ ( 0 . 5) ;

    29   P _ A _ b a r = e t a _ a s s u m e d * P _ A ;

    30   d e l t a _ P _ A = P _ A * ( 1 - e t a _ a s s u m e d ) ;

    31   d e l t a _ P _ B = d e l t a _ P _ A * ( D _ e _ A / D _ e _ B ) ;

    32   P _ B _ b a r = P _ B - d e l t a _ P _ B ;

    33   d e l t a _ P _ C = d e l t a _ P _ A * ( D _ e _ A / D _ e _ C ) ;

    34   P _ C _ b a r = d e l t a _ P _ C ;

    35   r _ c a l c = ( 2 . 5 * 1 0 ^ - 5 * P _ A _ b a r * P _ B _ b a r ) / ( 1 + 0 . 1 * P _ A _ b a r + 2 *

    P _ C _ b a r ) ^ 2

    36   e t a _ c a l c = r _ c a l c / r _ s t a r ;

    37   e t a _ a p p r o x = ( e t a _ c a l c + e t a _ a s s u m e d ) / 2 ;

    38

    39   //OUTPUT40   / / C o n s o l e O ut pu t41   mprintf ( ’ \ t Ba se d on a v e ra ge p r e s s u r e s c a l c u l a t e d

    Rate and E f f e c t i v e n e s s f a c t o r ’ ) ;42   mprintf ( ’ \n\ t r : %0 . 2 E ( mol / s cm3 ) ’ , r _ c a l c ) ;

    43   mprintf ( ’ \n\ t e t a c a l c : %0 . 3 f ’ , e t a _ c a l c ) ;44   mprintf ( ’ \n The a c tu a l v al ue o f E f f e c t i v e n e s s f a c t o r

    e t a a c t u a l : %0 . 1 f ’ , e t a _ a p p r o x ) ;45

    46   / / F i l e O ut pu t

    47

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    49/115

    47   f i d =   mopen ( ’ .\ Chapter4−Ex4−Output . tx t ’ , ’ w ’ ) ;

    48   mfprintf ( f i d , ’ \ t Ba se d o n a v er a ge p r e s s u r e sc a l c u l a t e d Rate and E f f e c t i v e n e s s f a c t o r ’ ) ;49   mfprintf ( f i d , ’ \n\ t r : %0 . 2 E ( mol / s cm3 ) ’ , r _ c a l c ) ;50   mfprintf ( f i d , ’ \n\ t e t a c a l c : %0 . 3 f ’ , e t a _ c a l c ) ;51   mfprintf ( f i d , ’ \n The a c tu a l v al ue o f E f f e c t i v e n e s s

    f a c t o r e t a a c t u a l : %0 . 1 f ’ , e t a _ a p p r o x ) ;52   mclose ( f i d ) ;

    53   //================================================END OF PROGRAM============================================================

    Scilab code Exa 4.5  The optimum pore size distribution for a sphericalpellet

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .

    2   //C hapt e r−4 Ex4 . 5 Pg No . 1 643   // T i t l e : The optimum p or e s i z e d i s t r i b u t i o n f o r a

    s p h e r i c a l p e l l e t4   //

    ============================================================

    5   clear

    6   clc

    7   //INPUT8   d _ p e l l e t = 5 * 1 0 ^ - 1 ; // C a ta l ys t p e l l e t s i z e ( cm )

    9   k _ c a t = 3 .6 ; / / T ru e R at e C o ns t an t ( s e c −1)10   V _ g _ c at = 0 .6 0 ; // P or e Volume o f t h e c a t a l y s t ( cm3 /g )11   S _ g _ c a t = 3 0 0 * 1 0 ^ 4 ; // S u r f a ce a r ea o f c a t a l y s t ( cm2/ g )12   d p = 0 . 0 2 ; // S i z e o f p owdered c a t a l y s t ( cm )13   r ho _p = 0 .8 ; // D en si ty o f c a t a l y s t p a r t i c l e ( g /cm3 )

    48

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    50/115

    14   r _ b a r_ n a r ro w = 4 0 *1 0 ^( - 1 0 ) // n ar row d i s t r i b u t i o n

    15   D _ KA = 0 .0 1 2 ; // (cm2/ se c )16   D _A B = 0 .4 0 ; // (cm2/ se c )17   r _ m a c r o = 2 0 0 0 * 1 0 ^ ( - 1 0 ) ; / / F or M a c ro p o r es18   V _ c a t = 1 / r h o _ p ; // T o ta l c a t a l y s t vo lu me ( cm3 /g )19   e t a = 1 ; / / Fo r p owd er ed c a t a l y s t20

    21   //CALCULATION22   e p s i l o n = V _ g _ c a t / V _ c a t ;

    23   r _ b a r = 2 * V _ g _ c a t / S _ g _ c a t ;

    24   R = d p / 2 ;

    25   R _ p e l l e t = d _ p e l l e t / 2 ;

    26   D _ p o r e _ a = 1 / ( ( 1 / D _ K A ) + ( 1 / D _ A B ) ) ;27   t a u = 3 ; / / A ss um ed v a l u e28   D _ e _ c a t = D _ p o r e _ a * e p s i l o n / t a u ;

    29   P h i _ a p p = R * sqrt ( k _ c a t / D _ e _ c a t ) ; / / R e f er e q u a t i o n 4 . 5 5Pg . No . 1 53

    30   D _ K B = D _ K A * ( r _ m a c r o / r _ b a r _ n a r r o w ) ;

    31   D _ p o r e _ b = 1 / ( ( 1 / D _ K B ) + ( 1 / D _ A B ) ) ;

    32   V _ a _ e n d = 0 . 3 5 ;

    33   d e l _ V _ a = - 0 . 0 5 ;

    34   V _ a = V _ g _ c a t : d e l _ V _ a : V _ a _ e n d ;

    35   for   i = 1 : 6

    36   V_b(i) =V_g_cat -V_a( i); // R e f er E qu a ti o n 4 . 8 1 Pg .No . 1 64

    37   S _ a ( i ) = 2 * ( V _ a ( i ) / r _ b a r _ n a r r o w ) * ( 1 0 ^ - 6 ) ;

    38   S _ b ( i ) = 2 * ( V _ b ( i ) / r _ m a c r o ) * ( 1 0 ^ - 6 ) ;

    39   S _ g ( i ) = S _ a ( i ) + S _ b ( i ) ;

    40   k ( i ) = k _ c a t * S _ g ( i ) / ( S _ g _ c a t * 1 0 ^ - 4 ) ;

    41   D _ e ( i ) = ( ( D _ p o r e _ a * V _ a ( i ) + D _ p o r e _ b * V _ b ( i ) ) /

    V _ g _ c a t ) * ( e p s i l o n / t a u ) ;

    42   p h i ( i ) = R _ p e l l e t * sqrt ( k ( i ) / D _ e ( i ) ) ;

    43   e t a ( i ) = ( 3 / p h i ( i ) ) * ( ( 1 / tanh ( p h i ( i ) ) ) - ( 1 / p h i ( i ) ) )

    ;44   e t a _ k ( i ) = e t a ( i ) * k ( i )

    45   end

    46   //OUTPUT47   mprintf ( ’ \n

    49

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    51/115

    ===========================================================

    ’ )48   mprintf ( ’ \nV a   \ t V b   \ t \ t S a   \ t S b   \ t S g   \t k   \ t D e   \ t p h i \ t e t a \ t e t a k ’ ) ;

    49   mprintf ( ’ \nVolume   \ t cm3/g   \ t \ t S u r f a ce Area   \ t m2/g   \ t \ t s−1   \ t cm2 / s   \ t (−)\ t (−)   \ t (−) ’ ) ;

    50   mprintf ( ’ \n==========================================================’ )

    51   for   i = 1 : 6

    52   mprintf ( ’ \n % . 2 f    \ t %0 . 2 f    \ t \ t %. 0 f    \ t %. 1 f  \ t %0 . 1 f    \ t \ t %0 . 2 f    \t%0 . 2 e\t%0. 2 f    \ t

    %0. 2 f    \ t %0 . 2 f ’ , V _ a ( i ) , V _ b ( i ) , S _ a ( i ) , S _ b( i ) , S _ g ( i ) , k ( i ) , D _ e ( i ) , p h i ( i ) , e t a ( i ) ,

    e t a _ k ( i ) ) ;

    53   end

    54

    55   // FILE OUTPUT56   f i d =   mopen ( ’ .\ Chapter4−Ex5−Output . tx t ’ , ’ w ’ ) ;57   mfprintf ( f i d , ’ \n

    ===========================================================’ )

    58   mfprintf ( f i d , ’ \nV a   \ t V b   \ t \ t S a   \ t S b   \ tS g   \ t k   \ t D e   \ t p h i \ t e t a \ t e t a k ’ ) ;

    59   mfprintf ( f i d , ’ \nVolume   \ t cm3 / g   \ t \ t S u r f a ce Area   \t m2/g   \ t \ t s−1   \ t cm2 / s   \ t (−)\ t (−)   \ t(−) ’ ) ;

    60   mfprintf ( f i d , ’ \n==========================================================’ )

    61   for   i = 1 : 6

    62   mfprintf ( f i d , ’ \n % . 2 f    \ t %0 . 2 f    \ t \ t %. 0 f    \ t%.1 f    \ t %0 . 1 f    \ t \ t %0 . 2 f    \t%0 . 2 e\t%0. 2 f  

    \ t %0 . 2 f    \ t %0 . 2 f ’ , V _ a ( i ) , V _ b ( i ) , S _ a ( i ), S _ b ( i ) , S _ g ( i ) , k ( i ) , D _ e ( i ) , p h i ( i ) , e t a ( i )

    , e t a _ k ( i ) ) ;

    63   end

    64   //

    50

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    52/115

    ============================================================

    END OF PROGRAM===================================================

    51

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    53/115

    Chapter 5

    Heat and Mass Transfer in

    Reactors

    Scilab code Exa 5.1  Temperature Profiles for tubular reactor

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n) M a r c e l D ek ke r , I n c . USA , pp 4 3 6

    2   //C hapt e r−5 Ex5 . 1 Pg No . 1 853   // T i t l e : T empe ra tur e P r o f i l e s f o r t u bu l ar r e a c t o r4   //

    ============================================================

    5   clear

    6   clc

    7   clf

    8   //INPUT9   d e l t a _ H = - 2 5 0 0 0 ; / / ( k c a l / m ol ) E n t ha l p y10   D = 2 ; / / ( cm ) D i a me t er o f T u bu l a r R e a c t o r11   C _ A 0 = 0 . 0 0 2 ; / / ( mol / cm3 ) I n i t i a l c o n c e n t r a t i o n o f f e e d12   k = 0 . 0 0 1 4 2 ; / / ( s −1) R at e C o n s ta n t

    52

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    54/115

    13   E _ b y _ R = 1 5 0 0 0 ; / / ( K−1)

    14   r h o = 0 . 8 ; / / ( g / c m 3 )15   c _ p = 0 . 5; / / ( c a l / g C )16   U = 0 . 0 2 5 ; // ( c a l / s e c c m 2 C )17   u = 6 0 ; // (cm/s )18

    19

    20   //CALCULATION21   function   d i f fe q n = S i m u l_ d i f f_ e q n ( l , y , T _j )

    22   d i f fe q n ( 1 ) = ( k * exp ( E _ b y _ R * ( ( 1 / T _ i n i t i a l ) - ( 1 / y ( 2 )

    ) ) ) ) * ( 1 - y ( 1 ) ) / u ; // D e r i v a t i v e f o r t he f i r s tv a r i a b l e

    23   d i f fe q n ( 2 ) = ( C _ A0 * ( k * exp ( E _ b y _ R * ( ( 1 / T _ i n i t i a l )- ( 1 / y ( 2 ) ) ) ) ) * ( 1 - y ( 1 ) ) * ( - 1 * d e l t a _ H ) - U * ( 4 / D ) * ( y

    ( 2) - T _ j ) ) / ( u * r ho * c _ p ) ;   // D e r i v a t i v e f o r t h es ec on d v a r i a b l e

    24   e n d f u n c t i o n

    25

    26   // =======================================27

    28   T _j _d at a = [ 3 48 349 350 3 51 ];

    29   m =   length ( T _ j _ d a t a ) ;

    30   n = 1 ;

    31   while   n

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    55/115

    ( 3 , : ) , ’ k− ’ , l , T _ d a t a ( 4 , : ) ,  ’ g− ’ )

    46   xtitle ( ’ Te mper at ur e P r o f i l e s f o r a j a c k e t e d t u bu l arr e a c t o r ’ )47   x l a b e l ( ” L e n gt h ( cm ) ” )48   y l a b e l ( ” T e m p e r a t ur e (K) ” )49   l e g e n d ( [ ’ 34 8 ’ ; ’ 349 ’ ; ’ 35 0 ’ ; ’ 351 ’ ]) ;50

    51   s c f ( 1 )

    52   plot ( l , x _ d a t a ( 1 , : ) , ’ r− ’ , l , x _ d a t a ( 2 , : ) ,  ’ b− ’ , l , x _ d a t a( 3 , : ) , ’ k− ’ , l , x _ d a t a ( 4 , : ) ,  ’ g− ’ )

    53   xtitle ( ’ C o nv er s io n f o r a j a ck e te d t u b ul a r r e a c t o r ’) ;

    54   x l a b e l ( ” L e n gt h ( cm ) ” )55   y l a b e l ( ” C o n v e r s i o n ” )56   l e g e n d ( [ ’ 34 8 ’ ; ’ 349 ’ ; ’ 35 0 ’ ; ’ 351 ’ ]) ;57

    58   //OUTPUT59   mprintf ( ’ \n The T em pe ra tu re p r o f i l e s f o r f o u r f e e d

    t e mp e ra t u re s a r e p l o t t e d ’ ) ;60   mprintf ( ’ \n F or T0 : 3 4 8 K a t t a i n s i t s maximum

    t e mp e r at u r e a t c o n v e r s i o n o f a bo ut 25%%−30%%’ ) ;61   mprintf ( ’ \n At T0 : 3 5 1 K t he t em p er a tu re i n c r e a s e s by

    6 . 5 C h i g h s e n s t i v i t y t h a t t h e r e a c t o r i sn e a r in g u n s t a bl e ’ ) ;62

    63   // FILE OUTPUT64   f i d =   mopen ( ’ .\ Chapter5−Ex1−Output . tx t ’ , ’ w ’ ) ;65   mfprintf ( f i d , ’ \n The T em pe ra tu re p r o f i l e s f o r f o u r

    f e e d t e mp e ra t u re s a r e p l o t t e d . ’ ) ;66   mfprintf ( f i d , ’ \n F or T0 : 3 4 8 K a t t a i n s i t s maximum

    t e mp e r at u r e a t c o n v e r s i o n o f a bo ut 25%%−30%%’ ) ;67   mfprintf ( f i d , ’ \n At T0 : 3 5 1 K t h e t e m pe r a tu r e

    i n c r e a s e s by 6 .5 C h i g h s e n s t i v i t y t h a t t h e

    r e a c t o r i s n e a r i ng u n s t a b l e ’ ) ;68   mclose ( f i d ) ;

    69

    70   //===================================================

    54

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    56/115

    END OF PROGRAM

    ======================================================

    Scilab code Exa 5.2  Maximum internal temperature difference

    1   / / H a r r i o t P . , 2 0 0 3 , C he m ic al R e a ct o r D e s ig n ( I−E d i t i o n

    ) M a r c e l D ek ke r , I n c . , USA , pp 4 3 6 .2   //C hapt e r−5 Ex5 . 2 Pg No . 1 943   / / T i t l e : Maximum i n t e r n a l t e m pe r a tu r e d i f f e r e n c e4   //

    ============================================================

    5   clear

    6   format (16)

    7   clc

    8   //INPUT9   T _ C = 2 0 0 ; / / T e m p e r a t ur e ( C )

    10   P = 1 . 2 ; / / P r e s s u r e ( atm )11   f _ e t h y l e n e = 0 . 0 5 ; // f r a c t i o n o f e t hy l e n e12   k _ s = 8 * 1 0 ^ ( - 4 ) ; // S o l i d c o n d u c t i v i t y ( c a l / s e c c m C )13   D _ e = 0 . 0 2 ; // D i f f u s i v i t y f o r e t hy l e n e ( cm2/ s )14   d e l _ H = - 3 2. 7 *1 0 ^ (3 ) ; // Heat o f r e a c t i o n ( c a l )15   V _ r e f = 2 2 4 0 0 ; / / r e f e r e n c e v ol um e ( cm3 )16   T _ r e f = 2 7 3 ; / / R e f e r e n c e T e mp e ra t ur e (K)17   P _ r e f = 1 ; / / R e f e r en c e P r e s s u r e ( atm )18   T _ K = T _ C + 2 7 3 ; / / R e a c t i o n T e m p er a t u r e (K)19

    20   //CALCULATION21   C _ s = f _ e t h y l e n e * P * T _ r e f / ( V _ r e f * T _ K * P _ r e f ) ;22   T c _ m i n u s _ T s = D _ e * C _ s * ( - d e l _ H ) / k _ s ; / / R e f e r e q u a t i o n

    5 . 5 1 Pg No . 19 423

    55

  • 8/18/2019 Chemical Reactor Design_P. Harriott

    57/115

    24   //OUTPUT

    25   mprintf ( ’ \n\ t Th e maximum i n t e r n a l t e m p e r a t u r ed i f f e r e n c e %0 . 3 f C ’ , T c _ m i n u s _ T s ) ;26

    27   // FILE OUTPUT28   f i d =   mopen ( ’ .\ Chapter5−Ex2−Output . tx t ’