50
1 Chemical Enhanced Oil Recovery What is New, What Works, and Where Use It Dr. Gary Pope Professor Texaco Centennial Chair in Petroleum Engineering, The University of Texas at Aus;n Dr. Mojdeh Delshad Research Professor Center for Petroleum and Geosystems Engineering, The University of Texas at Aus;n Dr. Ma;hew Balhoff Associate Professor Frank W. Jessen Centennial Fellowship in Petroleum Engineering, The University of Texas at Aus;n

Chemical Enhanced Oil Recovery What is New, What Works, and

Embed Size (px)

Citation preview

Page 1: Chemical Enhanced Oil Recovery What is New, What Works, and

1  

Chemical  Enhanced  Oil  Recovery    What  is  New,  What  Works,  and  Where  Use  It  

Dr.  Gary  Pope            Professor            Texaco  Centennial  Chair  in  Petroleum  Engineering,  The  University  of  Texas  at  Aus;n  

Dr.  Mojdeh  Delshad            Research  Professor            Center  for  Petroleum  and  Geosystems  Engineering,  The  University  of  Texas  at  Aus;n  

Dr.  Ma;hew  Balhoff            Associate  Professor            Frank  W.  Jessen  Centennial  Fellowship  in  Petroleum  Engineering,  The  University  of  Texas  at  Aus;n  

Page 2: Chemical Enhanced Oil Recovery What is New, What Works, and

2  

For  more  informa<on  about    Chemical  EOR  research  at  CPGE,  please  visit:  

hGp://cpge.utexas.edu/?q=IAP_ChemicalEOR  Research  sponsors  include:  

Page 3: Chemical Enhanced Oil Recovery What is New, What Works, and

3  

Gary  Pope  Center  for  Petroleum  and  Geosystems  

Engineering  University  of  Texas  at  Aus<n  

 

3  

Page 4: Chemical Enhanced Oil Recovery What is New, What Works, and

4  

Chemical  EOR    

•  Polymer  flooding  (PF)  •  Surfactant-­‐polymer  (SP)  flooding  •  Alkali-­‐surfactant-­‐polymer  (ASP)  flooding  •  Alkali-­‐co-­‐solvent-­‐polymer  (ACP)  flooding  •  Low  tension  gas  flooding  (LTG)  •  Chemicals  combined  with  hea<ng  •  Surfactant  enhanced  imbibi<on    •  Polymer  gels  for  blocking  or  diver<ng  flow  •  Polymers  combined  with  low  salinity  

Page 5: Chemical Enhanced Oil Recovery What is New, What Works, and

5  

Why  Chemical  EOR?    •  Chemical  EOR  is  evolving  and  ge[ng  beGer  with  <me  due  to  innova<ons  and  experience  

•  The  cost  of  chemicals  has  decreased  by  a  factor  of  two  rela<ve  to  the  price  of  crude  oil  while  at  the  same  <me  the  quality  of  the  chemicals  has  improved  

•  Hybrid  processes  have  been  developed  and  con<nue  to  improve:  – Low  tension  gas  flooding  – Surfactants  combined  with  heat  – Polymers  combined  with  smart  water    – Gravity  stable  surfactant  floods  

Page 6: Chemical Enhanced Oil Recovery What is New, What Works, and

6  

Where  to  Use  It    •  Favorable  geology  as  indicated  by  good  water  flood  performance,  interwell  tracers,  single  well  tracers,….    

•  High  porosity  and  permeability  •  Oil  viscosity  

– Up  to  10,000  cp  for  PF/ACP  – Up  to  200  cp  for  SP/ASP  – Even  higher  oil  viscosity  when  combined  with  hea<ng  (hot  water,  electrical  hea<ng)  

•  Reservoir  temperatures  up  to  250  °F  •  Reservoir  salini<es  up  to  250,000  ppm  TDS  

Page 7: Chemical Enhanced Oil Recovery What is New, What Works, and

7  

EOR  Screening  Criteria  Property

CO2/ NGL/WAG

N2 WAG

Steam Drive SAGD Polymer SP/ASP ACP

Low Tension Gas

Oil API >22 >40 >8 >6 >12 >12 12-25 >20

Oil Visc., cp <10 <10 100-10,000 1000-106 <10,000 <200 20-1000 <20

Reservoir Depth, ft

>2000 >6000 300-2000 400-2000 >500 >500 >500 >500

Perm. (k), md >1 >1 >250 >5000 >10 >10 >10 >1

Porosity >10 >10 >30 >30 >10 >15 >15 >10

φhSo, ft >1 >1 >10 >10 >1 >5 >1 >1

Pressure, psia >MMP >MMP <1000 <1000 -- -- -- --

kh, md-ft >100 >100 >50000 >105 >1000 >1000 >1000

ROS, % >20 >20 >40 >40 >30 >20 >20 >20

Net pay, ft >10 >10 >50 >100 >10 >10 >10 >10

Salinity, ppm -- -- -- -- <250000 <250000 <250000 <250000

Temp., °F -- -- -- -- < 250 <250 <250 --

Page 8: Chemical Enhanced Oil Recovery What is New, What Works, and

8  

Polymer  Flooding    The  primary  objec;ve  of  polymer  

flooding  is  to  provide  beHer  displacement  and  volumetric  sweep  efficiencies  during  a  waterflood    

 

Page 9: Chemical Enhanced Oil Recovery What is New, What Works, and

9  

Example  of  Lower  Remaining  Oil  SaturaKon  of  Polymerflood  Compared  to  Waterflood  

Polymer flood

vi = 1.0 ft/day µp = 17 cp Soi = 0.85 Sor = 0.26 ΔSor = -0.12

Waterflood

vi = 13 ft/day µw = 0.48 cp µo = 80 cp Soi = 0.87 Sor = 0.38

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Oil

Satu

ratio

n (%

)

Pore Volumes

So - Polymer

So - Water

Page 10: Chemical Enhanced Oil Recovery What is New, What Works, and

10  

Polymer  Flooding  Advances  •  Quality  of  commercial  hydrolyzed  polyacrylamide  (HPAM)  

polymers  is  much  beGer  resul<ng  in  high  injec<vity  in  both  ver<cal  and  horizontal  wells  

•  HPAM  polymers  are  available  with  molecular  weights  up  to  at  least  20  million  

•  Equipment  and  procedures  for  field  prepara<on  of  high  quality  polymer  solu<ons  are  now  rou<ne  

•  Water  sojening  is  now  inexpensive  (as  low  as  US$  0.15  per  Bbl  of  seawater    when  done  on  a  large  scale)  and  enables  the  use  of  HPAM  even  at  high  temperature  

•  New  polymers  can  be  used  in  hard  brine  at  high  temperature  

Page 11: Chemical Enhanced Oil Recovery What is New, What Works, and

11  

Polymer  Flooding  

•  Increasing  water  viscosity  by  adding  polymer  to  the  water  helps  minimize  the  adverse  effects  of  reservoir  heterogeneity  and  will  benefit  almost  all  water  floods  even  if  the  oil  viscosity  is  low  

•  The  benefits  are  greatest  when  polymer  is  injected    at  high  concentra<on  for  a  long  <me  e.g.  more  than  one  pore  volume  

• Under  favorable  condi<ons,  the  polymer  cost  is  in  the  range  of  $1  to  $5  per  Bbl  of  addi<onal  oil  

Page 12: Chemical Enhanced Oil Recovery What is New, What Works, and

12  

Surfactant  Methods  •  The  main  objec<ve  of   SP/ASP/ACP  flooding   is   to  recover  the  oil  remaining  ajer  water  flooding  by  mobilizing   oil   trapped   in   pores   due   to   capillary  forces  (residual  oil  satura<on)  

•  The  interfacial  tension  between  the  oil  and  water  must  be  reduced  by  about  10,000  fold  to  mobilize  all  of  the  trapped  oil  in  the  swept  zone  

•  Adding   a   high  molecular   weight   polymer   to   the  surfactant  solu<on  to   increase   its  viscosity  vastly  improves  the  oil  recovery  

Page 13: Chemical Enhanced Oil Recovery What is New, What Works, and

13  

0%

20%

40%

60%

80%

100%

0.0 0.5 1.0 1.5 2.0Pore Volumes

Oil

Cut

or C

umul

ativ

e O

il R

ecov

ered

Example  Oil  Recovery  of  100  cp  Oil  from  Core  30%  PV  ASP  Slug  (0.3%  surfactant);  Surfactant  reten<on=0.02  mg/g  

Oil Cut

Cumulative Oil Recovered Curves: UTCHEM Points: Experiment

ASP slug diluted with polymer drive

Page 14: Chemical Enhanced Oil Recovery What is New, What Works, and

14  

New  Surfactants  and  Co-­‐solvents  •  Several   new   classes   of   high-­‐performance  surfactants  and  co-­‐solvents  have  been  developed  in  recent  years  

•   Wide  range  of  molecular  weights  up  to  4000  •  Include   inexpensive   ethylene   oxide   and  propylene  oxide  to  improve  salinity  and  hardness  tolerance  

•  Carboxylates  and  sulfonates  stable  up  to  250  °F  •  Made  from  commercial  feedstocks  •  Use  synergis<c  mixtures  •  Cost  about  $2.50/lb  of  ac<ve  surfactant  

Page 15: Chemical Enhanced Oil Recovery What is New, What Works, and

15  

Low  Surfactant  RetenKon  •  The  amount  of  surfactant  needed  to  recover  oil  is  directly   propor<onal   to   surfactant   reten<on   so  lowering   the   surfactant   reten<on   is   the   key   to  low  chemical  cost  per  Bbl  of  addi<onal  oil  

•  Surfactant   reten<on   is   caused   by   adsorp<on   on  the  rock  and  phase  trapping  of  viscous  emulsions    

•  Phase  trapping  is  ojen  the  largest  contribu<on  to  surfactant  reten<on  

•  Lower   emulsion   viscosity   results   in   lower  surfactant  reten<on    

Page 16: Chemical Enhanced Oil Recovery What is New, What Works, and

16  

Low  Surfactant  RetenKon  •  Surfactant  reten<on  has  been  reduced  by  a  factor  of  about  3  in  recent  years  

•  Alkali   reduces   surfactant   reten<on   a   factor   of  about  2  

•  Surfactant  reten<on  in  sandstones  with  high  clay  content  has  been  reduced  to  values  in  the  range  of  0.02  to  0.11  mg/g  rock  and  similar  values  have  been  measured  in  carbonate  cores  

•  Good  mobility  control  is  essen<al  to  get  such  low  reten<on    

Page 17: Chemical Enhanced Oil Recovery What is New, What Works, and

17  

ConvenKonal  Co-­‐solvent    •  30%  oil;  µo=~5.5  cP  @  25°C  •  0.5%  TDA-­‐13PO-­‐SO4-­‐,  0.5%  C20-­‐24  IOS  •  0%  &  2%  IBA  

Page 18: Chemical Enhanced Oil Recovery What is New, What Works, and

18  

New  Co-­‐solvent  •  50%  oil;  µo=2.9  cP  @  55°C  •  0.6%OA-­‐45PO-­‐10EO-­‐SO4-­‐,  0.4%  C15-­‐17  ABS  •  1%  phenol-­‐4EO  

Page 19: Chemical Enhanced Oil Recovery What is New, What Works, and

19  

Surfactant  Reten<on  =  0.075  mg/g  rock  Sandstone  with  11.9  wt%  clay,    µME/µo  =  1.9  

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0%

20%

40%

60%

80%

100%

0.00 0.50 1.00 1.50 2.00

Surf

acta

nt/C

o-so

lven

t Con

. (pp

m)

Cum

ulat

ive

Oil

Rec

over

ed /O

il C

ut/S

orc

(%)

Pore Volumes

Cumulative Oil Oil Cut So Surfactant Conc. Co-solvent conc.

0.3 PV ASP Polymer Drive

Page 20: Chemical Enhanced Oil Recovery What is New, What Works, and

20  

Surfactant  Reten<on=0.11  mg/g  rock    Sandstone  with  11.9  wt%  clay,  µME/µo=2.2  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

20%

40%

60%

80%

100%

0.00 0.50 1.00 1.50 2.00

Surf

acta

nt C

once

ntra

tion

(Nor

mal

ized

to In

ject

ion

Con

cent

ratio

n)

Cum

ulat

ive

Oil

Rec

over

ed /O

il C

ut/S

orc

(%)

Pore Volumes

Cumulative Oil Oil Cut So Total Surfactants 2EHS-7PO-SO4

0.4 PV

ASP Slug

Polymer Drive

Page 21: Chemical Enhanced Oil Recovery What is New, What Works, and

21  

Economic  Significance    of  Reduced  RetenKon  

References  •  Wang  (1993),  Flaaten  (2008)    Assump<ons  •  Porosity:  20%  •  Recovery  Factor:  25%  OOIP  •  Size  of  Chemical  Slug:  0.3  PV  •  Surfactant  to  Co-­‐solvent  Ra<o:  1  •  Surfactant:  $2.00  /  lb  

Surfactant Retention (mg/g rock)

Surfactant Concentration (wt%)

Surfactant Cost ($/BBL Produced Oil)

0.40 (1993) 1.78% 18.21 0.20 (2008) 0.88% 9.11 0.08 (2015) 0.36% 3.64

Page 22: Chemical Enhanced Oil Recovery What is New, What Works, and

22  

Live  Oil  Coreflood  using  new  TSP  Surfactant  (Oil  Cut  in  ASP  Field  Pilot  Nearly  the  Same  as  Coreflood)    

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0%

20%

40%

60%

80%

100%

0.00 0.50 1.00 1.50 2.00

Oil

Satu

ratio

n (%

)

Cum

Oil

Rec

over

ed (%

), O

il cu

t (%

)

Pore Volumes

Cum Oil Recovery Oil Cut

So

PD I ASP Slug Emulsion

Breakthrough

PD II

97.4%

1.01%

Page 23: Chemical Enhanced Oil Recovery What is New, What Works, and

23  

 Take  Home  •  The  combined  impact  of  all  of  the  new  Chemical  EOR  and  oilfield  technology  is  a  game  changer  – New  and  beGer  chemicals  at  lower  real  cost  –  Increased  performance  at  lower  cost  per  Bbl  oil  – New  hybrid  methods  for  both  light  and  heavy  oil  – BeGer  models  are  available  to  design  and  predict  field  performance  

– BeGer  enabling  technologies  e.g.  horizontal  wells  •  But  it’s  s<ll  complex  technology  and  geology  s<ll  maGers,  and  so  do  people  

Page 24: Chemical Enhanced Oil Recovery What is New, What Works, and

24  

Mojdeh  Delshad  Research  Professor,  Center  for  Petroleum  

and  Geosystems  Engineering,  The  University  of  Texas  at  Aus<n  

 

Page 25: Chemical Enhanced Oil Recovery What is New, What Works, and

25  

Modeling  Chemical  EOR  Methods  Our  Mission  Since  1977  

•  Mechanis<c  modeling  of  CEOR  processes  from  bench  to  pilot  to  field  scales  

•  Modeling  geochemical  reac<ons  for  more  challenging  fluid  and  reservoir  condi<ons  –  Hard  brine  with  EDTA,  soj  brine  with  sodium  carbonate  –  Carbonate  reservoirs  –  Low  salinity  waterflood  

•  Modeling  hybrid  methods  –  WeGability  modifica<on  (surf.  in  fractured  carbonates)  –  Low  salinity  or  smart  water    (low  salinity/  polymer)  –  Hot  water  (hot  SP)  –  Foam  (surf/foam)  –  Gas  (low  tension  gas)  

25  

Page 26: Chemical Enhanced Oil Recovery What is New, What Works, and

26  

UTCHEM  ApplicaKons  §  Tracer  tests  (single  well,  interwell)    §  Polymer  flooding  

§  Viscoelas<c  polymer  §   Polymer  degrada<on  mechanisms  §  Injec<vity  correc<on  

§  Surfactant/polymer  flooding  

§  Alkaline/surfactant/polymer  flooding  §  Geochemical  reac<ve  simula<ons  

§  Polymer/crosslinker  (gel)  for  profile  modifica<on  

§  WeGability  altera<on  with  surfactants  

26  

§  Low  salinity  waterflood  

§  Microbial  EOR  §  Biological  reac<ve  simula<ons  

 •  Hot  surfactant/polymer  flood  for  

heavy  oil    •  Steam  •  Electrical  hea<ng  •  Hot  water  

•  Low  tension  gas  flooding  (SAG,  ASG)  •  Foam  op<ons    •  Black  oil  op<on  

   

Page 27: Chemical Enhanced Oil Recovery What is New, What Works, and

27  

 Chemical  EOR  Methods  for  Heavy  Oils  

27  

Page 28: Chemical Enhanced Oil Recovery What is New, What Works, and

28  

Polymer  Flooding  of  Offshore  Viscous  Oil    with  Strong  Aquifer  Support  

Model  size   3805  ^  x    3608  ^  x  256.66  ^  

No.  of  gridblocks   58  x  55  x  52  

Reservoir  temperature,  C   40  

Oil  viscosity,  cp   1500  

Average  porosity   0.31612  

Average  reservoir  perm.  (md)  

Kx  =  18242,  ky  =  18242,    kz  =  10945  

Reservoir  brine  TDS,  ppm   52000  

28  

Page 29: Chemical Enhanced Oil Recovery What is New, What Works, and

29  

InjecKon  Well  LocaKon  OpKmizaKon  

Water viscosity at 635 d

WOC

Inj. well Producer

29  

Page 30: Chemical Enhanced Oil Recovery What is New, What Works, and

30  

Oil  Viscosity  and  Injector  LocaKon  

300 cp oil

1520 cp oil

30  

Page 31: Chemical Enhanced Oil Recovery What is New, What Works, and

31  

Alkaline  -­‐  CoSolvent  -­‐  Polymer  (ACP)  New  Technology  

q Addition of co-solvent to AP leads to ACP q Low IFT & mobility control without synthetic surfactant q Breaks viscous and unstable emulsions q Effective only with oils that form soaps (active oil)

q Robust and less expensive than ASP q Co-solvents insensitive to geochemistry and temperature q Low adsorption q Lower microemulsion viscosity compared to ASP  

 

 31  

Page 32: Chemical Enhanced Oil Recovery What is New, What Works, and

32  

ACP  Lab  Coreflood  Recoveries  •  Oil  viscosity  from  70  to  4800  cp  •  TerKary  oil  recoveries  from  80  to  95%  OOIP  

32  

Page 33: Chemical Enhanced Oil Recovery What is New, What Works, and

33  

ACP  Pilot  Project  

IniKal  Oil  SaturaKon   Final  Oil  SaturaKon  

ü  0.5  PV  polymer  preflush  ü  0.11  PV  ACP  slug  ü  1    PV  polymer  

33  

Page 34: Chemical Enhanced Oil Recovery What is New, What Works, and

34  

Improve  Displacement  Efficiency  using  ViscoelasKc  Polymers

34  

Page 35: Chemical Enhanced Oil Recovery What is New, What Works, and

35  

Residual  Oil  SaturaKon  vs.  Deborah  Number  

( )1

−= +

+ ×

l hh or or

or orDe

S SS STPP N

•                 :      residual  oil  satura<on  at  high  NDe  

•                 :      residual  oil  satura<on  at  low  NDe  

•  TPP    :    fi[ng  parameter    

0

0.1

0.2

0.3

0.4

0.0001 0.001 0.01 0.1 1 10 100 1000

S or

NDe

horSlorS

35  

Page 36: Chemical Enhanced Oil Recovery What is New, What Works, and

36  

Sandpack  Experiment  with  250  cp  Oil  

Water Flood

Polymer Flood

24% reduction in Sor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

100%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Cum

Oil

Rec

over

ed (%

)

Pore Volumes

Oil saturation

Cum. Oil Oil Cut

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

100%

0.00 0.50 1.00 1.50 2.00

Oil

Satu

ratio

n (%

)

Cum

Oil

Rec

over

ed (%

)

Pore Volumes

36  

Page 37: Chemical Enhanced Oil Recovery What is New, What Works, and

37  

Accurate  Polymer  InjecKvity  Models  •  Radial  model  with  fine-­‐grid  (1  j  in  r-­‐direc<on)  as  true  solu<on  

•  Coarse  grid  Cartesian  model  (77  j  x  77  j)    

37  

Page 38: Chemical Enhanced Oil Recovery What is New, What Works, and

38  

InjecKvity  CorrecKon  Models  •  Results  are  very  close  to  radial  simula<ons.  

Analytical

No correction

Radial

Skin = -2.86

38  

Page 39: Chemical Enhanced Oil Recovery What is New, What Works, and

39  

Modeling  Unstable  Polymer  Floods  

µo  =  100  cp   µo  =  1000  cp  (base  case)  

µo  =  10000  cp  

So  t  =  0.30  PV  

39  

Page 40: Chemical Enhanced Oil Recovery What is New, What Works, and

40  

Low-­‐Tension Surfactant-­‐Gas  •  Similar to SP/ASP but Gas is used instead of Polymer

Ø  Reservoirs with high-salinity/high-temperature Ø  No injectivity limitation with tight formation/NFR/viscous oil

Ø  Foam is an alternative mobility control Ø  Foam can divert surfactants to matrix or low permeability zones Ø  Mobilization of trapped oil

•  Favorable for both secondary & tertiary floods

•  IFT reduction •  Wettability alteration Surfactant-1

Foaming to control mobility, increase sweep efficiency, divert surfactants Surfactant-2

19  

Page 41: Chemical Enhanced Oil Recovery What is New, What Works, and

41    41  

Parameters Maximum resistance factor, 75 Critical oil saturation, 0.3 (vol/vol) Critical surfactant concentration, 0.00085 (vol/vol) Gas shear thinning exponent, 1.0 Water saturation tolerance, 0.01 Reference gas velocity, 1.65 (ft/Day)

Water saturation at critical capillary pressure, 0.25 (vol/vol)

maxRF*oS

sC

σε

g ,Refu*wS

SimulaKon  of  SAG  Coreflood  

Low trapping rel. perm properties are

dominated  

High trapping rel. perm properties are

dominated  

Foam properties are dominated  

Page 42: Chemical Enhanced Oil Recovery What is New, What Works, and

42  

Gravity-­‐Stable  Surfactant    (SGS)  Floods  •  No need for mobility control with either polymers or

high pressure gas to reduce cost, complexity and uncertainty

•  Using horizontal wells gives higher volumetric sweep efficiency and maximum critical velocity compared to vertical wells.

•  Practical if there are no barriers to vertical flow and the vertical permeability is high.

•  Some of the world’s largest oil reservoirs are high-temperature, moderate-permeability, light-oil reservoirs and thus good candidates.

42  

Page 43: Chemical Enhanced Oil Recovery What is New, What Works, and

43  

SGS  Coreflood  in  Fractured  Carbonates  

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Recovery    (%OOIP)

PV

Water  floodSurfactant  floodWater  floodSurfactant  flood

Model

LAB

SGS Experiment

43  

Page 44: Chemical Enhanced Oil Recovery What is New, What Works, and

44  

SimulaKon  of  SGS  Experiment   Oil Saturation at 1.75 PV Surfactant Conc. at 1.75 PV Permeability Distribution

Injection

Production

Nx  =  5,  Ny  =  5,  Nz  =  10  CorrelaKon  length  =  0.01  ^  Mean  value  for  permeability  =  1000  md  Dykstra-­‐Parsons  coefficient  =  0.975  44  

Page 45: Chemical Enhanced Oil Recovery What is New, What Works, and

45  

SimulaKon  of  SGS  Experiment  Effect  of  Grid  Size  

45  

Page 46: Chemical Enhanced Oil Recovery What is New, What Works, and

46  

Recent  Chemical  EOR  Field  Projects

46  

Page 47: Chemical Enhanced Oil Recovery What is New, What Works, and

47  

ASP  Pilot  in  Mangala  Field  in  India  

•  27  API  oil  (19  cp)  •  Excellent  perm-­‐por  sand  •  62  C  temperature    ASP    formula<on  developed  at  UT  

•  0.3%  surfactant  (TSP,  IOS)  •  3%  Na2CO3  •  3000  ppm  FP3630  polymer  

 •  80%  oil  cut  with  performance  similar  to  the  corefloods  •  No  produced  fluid  issues  (no  emulsion  etc.)  •  Commercial  polymer  flood  in  progress  •  Plan  for  larger  ASP  pilot  in  progress  

Page 48: Chemical Enhanced Oil Recovery What is New, What Works, and

48  

ASP  Single  Well  Tests  in  Challenging  Carbonate  Reservoir  in  Kuwait  

48  

•  Thick,  heterogeneous  Sabriyah  Mauddud    with  1-­‐100  mD  and  80°C  

•  ASP  Formula<on  •  Sodium  carbonate,  1.5  %  surfactants  (Carboxylate,  2xIOS)  

•  SWTT  #2  being  diverted  around  ASP  (top  image)  

•  Perform  SWTT  #2  in  polymer  to  stably  displace  ASP  •  Sorw  =  0.39,  Sorc  =  0.05  •  34  satura<on  units  recovered  •  89%  recovery  of  waterflood  residual  oil  saturaKon  

Page 49: Chemical Enhanced Oil Recovery What is New, What Works, and

49  

Chemical  Enhanced  Oil  Recovery    What  is  New,  What  Works,  and  Where  Use  It  

Q&A  Please  enter  your  ques<ons  in  the  chat  box  on  the  lej.  

Dr.  Gary  Pope            Professor            Texaco  Centennial  Chair  in  Petroleum  Engineering,  The  University  of  Texas  at  Aus;n  

Dr.  Mojdeh  Delshad            Research  Professor            Center  for  Petroleum  and  Geosystems  Engineering,  The  University  of  Texas  at  Aus;n  

Dr.  Ma;hew  Balhoff            Associate  Professor            Frank  W.  Jessen  Centennial  Fellowship  in  Petroleum  Engineering,  The  University  of  Texas  at  Aus;n  

Page 50: Chemical Enhanced Oil Recovery What is New, What Works, and

50  

Thank  you!  

Ques<on?  Comments?  Please  contact  us!  

Dr.  Gary  Pope:  [email protected]  

Dr.  Mojdeh  Delshad:  [email protected]  

Dr.  MaGhew  Balhoff:  [email protected]  

Comments?  [email protected]  

 

*CEU  verifica;on  is  no  longer  available  for  this  webinar.