84
13 th Oxford School on Neutron Scattering St. Anne's College, University of Oxford 2 - 13 September 2013 Chemical Applications of Neutron Scattering Part 1 Elastic Scattering and Structural Studies Alberto Albinati University of Milan, Department of Chemistry

Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

13th Oxford School on Neutron Scattering

St. Anne's College, University of Oxford 2 - 13 September 2013

Chemical Applications of Neutron ScatteringPart 1

Elastic Scattering and Structural Studies

Alberto AlbinatiUniversity of Milan, Department of Chemistry

Page 2: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Neutron Properties

• Zero Electric Charge: Negligible absorption, scattering from the bulk.

• @ 293.6 K for a “neutron gas”:

E = 25 meV, v ≈ 2.2 km s-1, ν ≈ 200 cm –1 ≈ 6 x 1012 Hz, λ = h/mv ≈ 1.8 Å

• Neutron Scattering is a Nuclear Process:

• De Broglie Wavelength is Comparable with Interatomic Distances: Bragg Scattering.

• The Energy of Thermal Neutrons is Comparable with the Energy of Molecular and Lattice Vibrations (Phonons): Inelastic Coherent & Incoherent Scattering Can Probe Lattice and Molecular Vibrations

Page 3: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Atomic Scattering Factors for X-rays

( ) ( ) exp 2 ( )f i dρ π= ∫S r S r r

2

0

sin 2 ( )( ) 4 ( )2 ( )

Srf S r r drSrππ ρ

π

= ∫

Page 4: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

From R. Pynn . Neutron Scattering: a Primer. Los Alamos Science (1990)(www.mrl.ucsb.edu/~pynn)

Page 5: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

COHERENT and INCOHERENT NEUTRON SCATTERING

( ) [ ]

[ ]

2

'

2

'

'

e p

p

xp

e

ex

xR R'R,R

R R RR R

'

RQ.R Q.(R

Q.(R-R

R')

')RR

d b i b b id

b b ib

σ= = − =

Ω

= +

2 2R R

Rb N b=∑

[ ]

[ ] [ ]

''

'2 2'

' '

2

exp

exp exp

R R

R

RR

R RRR R R

b b i

i N b N b iN b

=

= = − +

∑ ∑∑

Q.(R-R')

Q.(R-R') Q.(R-R')

( ) ( )22

2 2 expRR

N bN bd id

bσ= +

Ω− ∑ Q.R

( ) ( )222 Incoherent Scattering Cross Section N b b N b b− = −

“bR” varies from isotope to isotope

assuming no correlation ‹bRbR’› = ‹bR›‹bR’› = ‹bR›2

Page 6: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Neutron Scattering Cross Sections

24coh bσ π=

COHERENT CROSS SECTIONS

Coherent Scattering depends on the correlation between the positions of the same nucleus at different times and the positions of different nuclei at different times.

STRUCTURAL INFORMATION.

INCOHERENT CROSS SECTIONS

( )224incoh b bσ π= −

Incoherent Scattering arises from the random distribution of different isotopes with different scattering lengths. Incoherent Scattering depends on the correlation between the positions of the same nucleus at different times.

SPECTROSCOPY

Page 7: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Neutron Incoherent Cross-Sections

Page 8: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Bragg Scattering in Crystals

R = n + rR ≡ atomic position n ≡ lattice vector ≡ n1a1 + n2a2 + n3a3r(xyz) ≡ atomic position in the unit cell

.

n

r

R

2 2 2 2

b e exp ( ) b exp ( ) exp ( ) b exp ( )iR r r

dI i i i idσ = = == = Ω

∑ ∑ ∑ ∑ ∑Q.

R n r n

R

rnQ. Q. Q. Q.r rn

4 sinπ ϑλ

=Q

2πλ

=k

Page 9: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Bragg Scattering in Crystals

2πsinϑλ

=S

2 2 2 21 2 3

2 2 2

sin N sin N sin Nexp ( )sin sin sin

h k lih k lπ π ππ π π

=∑n

nQ.

if Q = H

32

1 2 3(2 )N N N ( )Vcell

dI Fdσ π δ = = Ω

∑ HH

-Q H

b exp ( )cohrF i=∑H

rH r FH ≡ Structure Factor

In Crystallography:

b exp2πi( ) b exp2πi( )coh cohhkl j j j j j j

j jF hx ky lz= = + +∑ ∑rS * * *

1 2 3h k l= + +S a a a

1 2 3x y z= + +r a a a

Page 10: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Bragg Scattering in Crystals

and finally atoms do “move”….

b ex ( ) ( )pr rF i T=∑Hr

H r Q

where “Tr(Q)” is the temperature factor of atom “r”.

for an harmonic crystal

Tr(Q) = exp(-2π⟨Q•r)⟩2)

Page 11: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

The Temperature Factor and the P.D.F.(Probability Density Function)

T(Q) = exp-½[⟨(Q • u)2⟩]

p.d.f. of an atom ( pκ(u) ) is the probability of finding an atom in the volume element d3u when it is displaced by u from its rest position.

If ρ0(u) ≡ scattering density

ρ κ(u) = ρ0(u) ∗ pκ(u)

F.T. (ρ κ (u)) = FT(ρ0,κ(u)) x FT(p κ(u))

T(Q) = ∫ pκ(u) expi(Q•u) d3u

pκ(u) = (2π3)-1∫ T(Q) exp-i(Q•u) d3Q

( )23

2 22( ) 2 exp

2up u uu

π

= ⟨ ⟩ − ⟨ ⟩

p.d.f. for a SHO is gaussian

Page 12: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Probability Density Function

Temperature factor for an isotropically vibrating atom.Both curves are Gaussians in the harmonic approximation

Page 13: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Temperature Factors and Atomic Vibrations

2 2

T 2 22

4 sin( ) exp 2 ( ) exp ( )isoT u uκπ ϑπ κ κλ

= − = − = H H H

2

2

sinexp B ϑλ

22 coth

8 2ih hu

kTν

π µν ⟨ ⟩ =

U = t + l ∧ r

T( ) exp 2anisTκ π = − H H UH

Page 14: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 15: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 16: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 17: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

There are not enough of them! The fluxes are too low and the experiments take too long!

The samples needed are too big!

For powder diffraction at least 100 mg; For single crystal elastic a few mg

For single crystal inelastic 100 -1000 mg.

Disadvantages of neutron scattering

G. Lander

Page 18: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

BNL Single XXl Diffractometer on H6

Page 19: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 20: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

ADVANCES IN COORDINATION CHEMISTRY ARE LINKED TO

ADVANCES IN INSTRUMENTATION

Page 21: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

D19 “Old Banana Detector”

Page 22: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

D19 New Detector 2007

Page 23: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

trans - W(C-Mesityl)(dmpe)2H

D19 @20K

V = 2667 Å3; C2/c

W – H1 1.84 (2) ÅW – C5 1.868 (9)C4 – C5 1.461 (8)

Page 24: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

VIVALDI @ ILL

[(C5Me4SiMe3)YH2]4]

Page 25: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

R e f le c tio n s a t o n e s c a t te r in g a n g le (9 0 ° ) re s o lv e d a t d i f fe re n t T O F ' s

P o r t i o n o f r e c i p r o c a l s p a c e sa m p le d fo r

2θ < 2θ < 2θ a n d t < T O F < t

m inm in m a x

m a x2θm a xm in2θ

2θm a xm in2θ

In c i d e n t B e a m

1 /λ m in

1 /λ m a x

S p h e r e o f r e f l e c t i o n a t t m a x

S p h e r e o f r e f l e c t i o n a t tm in

Ewald Spheres

Page 26: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

VIVALDI

Typical neutron Laue pattern from (C5Me4(SiMe3) -Y)4H11[C5Me4(SiMe3)*W], Stewart, Bau et al.

Page 27: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

SXD - ISIS

Page 28: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 29: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Absorption

( )1 p q

V

A e dVV

µ− += ∫0 220 ψ

Page 30: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Extinction I

•Reduction of Intensity by scattering not by absorption

•Primary Extinction: Weakening of Intensity by Multiple Reflections in the Crystal

Page 31: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Extinction I

00

1

02

I I ItI I It

σ σ

σ σ

∂= − +

∂∂

= − +∂

Zachariasen 19671) Spherical Crystal2) Ideal Perfect Crystal

s ≡ diffracting power

1Intensity reduction ( ) = 1 t

φ σσ+

Page 32: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Extinction II•Secondary Extinction: Weakening of the beam due to the shielding of the inner planes by the outer planes•Most important for strong reflections at low sinθ/λ

Mosaic Crystal

Type IDepends mainly on g(mosaic spread)

Zachariasen 1967

Type IIDepends mainly on t(radius of mosaic blocks)

I = Iobs(1 + 2gIcalc)

Fcrctd = Fok[1 + 0.001|Fc2|λ3/sin2θ]-1/4

Zachariasen 1967

(Shelxl)

Page 33: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 34: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 35: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 36: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 37: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

RuH

HP

PRu

P

P

RuHH

P

P

Ru

P

P

H

HHHH

C2H4

H2

HHHH

C2H4

H2

1

2

3

4

Reactivity of "Ru(PCyp)3" vs. "Ru(PCy)3"

Page 38: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Selective Deuteration of "RuH6"

RuH

H

P

P

HHH

H

1

2

2'

3

3'

D2 / solvent

Page 39: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

RuD

D

P DDHH

DDHH

DD

H H

PDD

HH

DDH

HDD

HH

DDDD

12 3

3'2'

pentane

3bar D2

C6D6 C6D6sol.

Pentane/stirring3 d

3bar D23h

M-D≈91%

M-D≈91%C-D≈32%

D≈92%

C6D6

Page 40: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

" RuH2(H2)2((Cyp)3)2 " vs. " RuD2(D2)2((Cyp)3)2 "

MD MH MD MH 0.840(2) Å 0.825(7) Å P-Ru-P 168.87(3)° 168.9(1)°0.840(2) Å 0.835(7) Å

Page 41: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

C-H Activation Pathway in "RuH6 – trans-P"

Page 42: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

The Structure of Na2Mg2NiH6

bcoh (Mg) = 5.375(4)bcoh(D) = 6.674(6)

Na – Mg 2.66 ÅNa – H ~ 3.3 ÅMg – H > 2.72 Å

a) exp. XRD pattern b) correct model c) Mg/D

K. Yvon & al. Inorg Chem. 48, 5052 (2009)

Page 43: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 44: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 45: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

X-rays see the Centroid of Charges displaced in the direction of the bond

Positional and thermal parameters from X-ray diffraction may be biased

Positional and thermal parameters from neutron diffraction (nuclear scattering)

are not biased

In real molecules:

• Atoms participate in charge transfers

• Atoms deviate from spherical symmetries (lone pairs, incomplete shells)

• Atoms form covalent bonds sharing electron densities

Electron Density in Crystals: X-Ray Scattering

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐇𝐇) = 𝑗𝑗𝑓𝑓𝑗𝑗exp(2𝜋𝜋𝜋𝜋𝐇𝐇 · 𝐫𝐫𝑗𝑗)𝑇𝑇𝑗𝑗(𝐇𝐇)

where fj’s are calculated for spherical atoms

Page 46: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Electron Density in Crystals: X – N Maps

, , , ,( ) exp(2 )calc j j jatoms

F f i Tπ= ∑ XN N NrH H

r𝑗𝑗,N ≡ r (x𝑗𝑗,y𝑗𝑗, z𝑗𝑗) neutron values - unbiased

Fcalc, N ideal molecule built from spherical atoms and neutron unbiasedparameters → correct geometry and no electron redistribution

Fobs, X obtained from X-ray diffraction are the F.T. of the actual electrondistribution

, ,1( ) ( ) exp( 2 )deformation obs calcF F iV

ρ π= − −∑NN

X-X

Hr H r

Page 47: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

P. Coppens Science 158, 1577 (1967)

Page 48: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

A Few Types of Hydrogen-Bonds

M

H-OH

Page 49: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Potential Energy Landscapes for Hydrogen Bonds

O

O

O

OH

Malic acid

D

O

H

OH

PhD

O

H

O

Ph

H

Page 50: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Proton Transfer in Terephtalic Acid

B.H. Meier & al., Chem. Phys. Lett. 108, 522 (1984)

Page 51: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

KH2PO4 (KDP) – Ferroelectric Phase Transition

Bacon & Pease

Page 52: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Non- Classical “Weak” Interactions

ALn M Hδ− δ+HCl

M

H

H

Mδ+

δ−

M

H-OH

M

AH

LN

CHO

HA L =

N

CH

O

Pt PEt3

Cl

Cld(M….H) ≈ 2.5 – 2.9 Å

Page 53: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 54: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Pt(NH3)(gly)Cl2•(H2O)

D19 @ 20KPt – N1 2.040(2) Å

Pt – H1 2.89(1) Å

N – C 1.480(3) Å

1.30 x 0.50 x 0.50 mm

Angew. Chem. Int. Ed. 2010, 49, 7440

Page 55: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Proton Transfer to CpRuH(CO)(PCy3)

Shubina, Limbach & al. Eur. J. Inorg. Chem. (2001) 1753

Page 56: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Reactions Involving Hydrido-Complexes

Homogeneous HydrogenationR2

R1

H

R2R1+ H2

[RhCl(PR3)3]

Olefin PolymerizationR

R R RH H HAlCl3

["Al-(CH2)n-H"]

Olefin HydroformilationR2

R1

CHO

H

R2R1+ H2 + CO +

CHO

R2R1[CoH(CO)4]

Materials for Hydrogen Storage(new entry)

3

2

iX

4 3 6

T 1 2NaAlH Na AlH + Al + H

3 3

Page 57: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Types of Metal - Hydrogen Interactions.

Classical Metal Hydrides:

Ln MH

H

Ln M H(n) MLn

(H)n

MM

M

M

L

L

L

L

(n+)

"Non- Classical" Metal Hydrides: MH

HM

H

H

Non- Classical “Weak” Interactions:

Ln M Hδ− Xδ+H

P

P

ClCl Cl

Cl

IrH

H

H

H

HH

Irδ+P

P

Page 58: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

X-ray Structure of [(Cl5C6)(PMet3)2Pt-H-Pt(PMet3)2(C6Cl5)]+

Page 59: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 60: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

X-ray Structure of [(Cl5C6)L2Pt - H - Ag - H - Pt(C6Cl5)]+ (R.T. data)

Page 61: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 62: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 63: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 64: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Schematic Catalytic Cycle for Homogeneous Hydrogenation

Metals break H-H bonds but HOW?

Page 65: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 66: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

H-H Distances (Å) from Single XXl Neutron Diffraction

[Ru(dppe)2(H)(H2)]+ 0.82(3) [Os(en)2I(H2)]+ 1.224(7)

[Ru(cp*)(dppm)2(H2)]+ 1.08(3) [Os(en)2(OAc)(H2)]+ 1.34(2)

Ir(PiPr3)3Cl2(H)(H2) 1.11(3) [Os(PMe2Ph)3(H)5]+ ≥1.49(4)

Ir(PiPr3)2I(H)2(H2) 0.856(9) Ir(PiPr3)2Br(H)2(H2) 0.819(8)

Page 67: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Backdonation is critical for the stability of M-H2 Complexes

η2 0.8 – 0.9Å stretched 1.0 – 1.2Å weak interactions ≥ 1.3Å ≥1.7Å

Page 68: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

The Structure of RuH2(H2)2((Cyp)3)2D19 @20K

H – H 0.825(7) 0.835(7) Å

Ru - (H1) 1.730(5) 1.753(5) Å

Ru - (H2) 1.745(5) 1.764(5) Å

Ru - H 1.628(4) 1.625(4) Å

P - Ru - P 168.9(1)°

Page 69: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Ru(H)2(H2)(P(cyp)3)2: a Parametric Study on D19

20K

100K

60K

180K

Page 70: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

RuH2(H2)2(P(Cyp)3)2

20K 60K 100K 180K

H11 – H12 0.825(8) 0.796(8) 0.794(8) 0.73(5)

Ru – H1 1.628(4) 1.618(4) 1.626(4) 1.69(2)

Ru – P1 2.307(3) 2.309(3) 2.310(2) 2.325(8)

P1 – Ru – P2 168.9(1) 168.8(1) 168.72(9) 178.0(5)

Page 71: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 72: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 73: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

H - H Distances (Å) and TLS Correction

Fe(PEtPh2)3(H)2(H2) 0.82 (1) 1.05

[Fe(dppe)2(H)(H2)][BF4] 0.82 (2) 0.85 0.90

[Os(dppe)2(H)(H2)][PF6] 0.79 (2) 0.96 0.99

[Os(dppe)2(Cl)(H2)][PF6] 1.15 (3) 1.24 1.19

[Os(en)2(I)(H2)] 1.224 (7) 1.272

[Ru(cp*)(dppm)2(H2)][BF4] 1.08 (3) 1.09 1.02

Zilm, K.W.; Millar, J.M. Adv. Magn. Opt. Reson. 1990, 15, 163

Uncorrected TLS Solid State NMR

Page 74: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

T [K]0 50 100 150 200

δ [A2]

0

1

2

3

) sT

ε

ε

δ0

Θ'E

Σx(T) = AgVδ(1/ω,T)V’g’A’ + ε

Molecular Motion from the Temperature Dependence of ADP’s

ADPs, determined experimentally at several temperatures

Low frequency, large-amplitude vibrations(ω), e.g. librations, translations and deformations (V)

Intramolecular, high frequency vibrations and disorder (ε) (~temperature independent)

H.B. Bürgi, S. Capelli Acta Cryst. A56, 403 (2000)

Page 75: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Molecular Motion from the Temperature Dependence of the ADPs

1(( ,) ) TX T TT Tω−= +∑ Ag gδ AV V ε

c(2

) oth2

j

j b

hhk T

ω

= δ

X TT

= +

T SA A ε

S L

Σ(T) observed atomic mean square displ. at multiple TA transformation matrix from atomic to normal modes coordsV eigenvectors matrixε 3x3 upper triangular tensor

contribution to ADPs from high ν small amplitude vibrationsδ(T) diagonal matrix of mean square normal modes displacements

For each normal mode j

Considering only T and L

Burgi & Capelli Acta Cryst A, 403 (2000)

Page 76: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Naphthalene : ADP’s and rms difference surfaces

10 K 5 K

X-ray (SR) Neutron

30 K

150 K

Page 77: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

The Structure of RuH2(H2)2((Cyp)3)2D19 @20K

Page 78: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

1) Rigid-body description: the motion of the molecule as a whole is defined by 6 degrees of freedom :

Lx, Ly, Lz, Tx, Ty, Tz

Serious problems in describing the out-of-plane displacements of the H atoms involved in the di-hydrogen groups

ε(H) 0.017(2) 0.001(1) 0.005(1)0.019(2) -0.006(1)

0.058(2)

2) Rigid-body + internal rotations of the di-hydrogen groups:8 degrees of freedom:Lx, Ly, Lz, Tx, Ty, Tz, U1, U2

Significant improvement in the description of the out-of-plane displacements in the di-hydrogen groups

ε(H) 0.018(2) 0.000(1) 0.000(1)0.018(2) 0.005(1)

0.028(2)

normal mode frequencies for di-hydrogen rotations: 104 and 170 cm-1

MODELS OF MOTION USED TO ANALYSE THE 20, 60 AND 100K NEUTRON DATA

(with both THMA and ADP-analysis)

[Albinati A., Capelli S.C., Mason S.A., (2013) in preparation. ]

Page 79: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Model T (K) R (%) Goof Obs Par Obs/Parratio

Degrees of freedom

A 2060

100

413633

5.165.015.82

54 20 2.70 6 librations, 6 translations, 8 coupling terms

B 2060

100

231917

3.833.393.83

54 32 1.69 6 librations, 6 translations, 8 coupling terms + 6 components of the librations of the di-hydrogen groups

C all 12 1.62 162 28 5.79 1 librational frequency, 3 translational frequencies, 24components of the 4 temperature-independent ε-tensors

D all 9 1.16 162 32 5.06 3 librational frequencies, 3 translational frequencies, 2eigenvector components, 24 components of the 4temperature-independent ε-tensors

Models used for the ADP’s analysis

Page 80: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

T RU-H11 RU-H12 RU-H21 RU-H22(K) TLS ADP TLS ADP TLS ADP TLS ADP

________________________________________________________20 1.7397 1.7475 1.7618 1.7709 1.7732 1.7819 1.7537 1.7610 60 1.7322 1.7412 1.7606 1.7710 1.7699 1.7786 1.7488 1.7562

100 1.7435 1.7540 1.7543 1.7682 1.7673 1.7755 1.7491 1.7580

T H11-H12 H21-H22(K) TLS ADP Exp TLS ADP Exp_____________________________________________20 0.831 0.899 0.825(8) 0.840 0.911 0.835(8)60 0.804 0.887 0.796(8) 0.826 0.902 0.820(8)

100 0.806 0.916 0.794(8) 0.820 0.910 0.812(8)

Bond Distances (Å) Corrected for Libration

Page 81: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength
Page 82: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

Dihydrogen Ligands:Low Frequency Normal Modes

170.3 cm-1104.5 cm-1

P

P

RuH12

H11

H21

H22

H1H2

Page 83: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

H-H Distances (Å) vs. JHD (Hz)

W(CO)3(PiPr3)2(H2) 0.82 (1) 34.0

[Fe(dppe)2(H)(H2)]+ 0.82 (2) 30.5

[Ru(dppe)2(H)(H2)]+ 0.82 (3) 32.0

[Os(dppe)2(H)(H2)]+ 0.79 (2) 25.5

d (H-H) JHD

Page 84: Chemical Applications of Neutron Scattering · v ≈2.2 km s-1, ν≈200 cm –1 ≈6 x 1012 Hz, λ= h/mv ≈1.8 Å • Neutron Scattering is a Nuclear Process: • De Broglie Wavelength

We need more information…….

Another technique

End of Part 1