35
ChemDiv Agrochemistry Issue Yury Putsykin Prof., D.Sc., The Director of Agrosintez; the core scientist in Agrochemistry in CDRI, [email protected] Yan Ivanenkov, Ph.D., The Head of Computational Medicinal Chemistry Dept. ChemDiv, [email protected] December 2013

ChemDiv Agrochemistry Issue€¦ · ChemDiv Agrochemistry Issue Yury Putsykin Prof., D.Sc., The Director of Agrosintez; the core scientist in Agrochemistry in CDRI, [email protected] Yan

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

ChemDiv

Agrochemistry Issue

Yury Putsykin Prof., D.Sc., The Director of Agrosintez; the core scientist in

Agrochemistry in CDRI, [email protected]

Yan Ivanenkov, Ph.D., The Head of

Computational Medicinal Chemistry Dept. ChemDiv, [email protected]

December 2013

The Spectrum of Computational Tools for VS routinely applied in ChemDiv

Also:

SPE,

MDS,

etc.

Our Experience in Computational Chemistry

Representative

examples of books

dedicated to

computational

chemistry with

chapters by ChemDiv

scientists

The Smart Mining

Software developed in

ChemDiv for virtual

screening and QSAR

analysis

More than 120 scientific

publications in the field of

modern computational

chemistry and QSAR

modeling, including

comprehensive reviews

and focused full-text

articles

ChemoSoftTM (CDRI)

Smart Mining (CDRI)

MolSoft ICM (MolSoft LLC)

Cerius2 (Accelrys)

Discovery Studio (Accelrys)

NeuroSolution (NeuroDimension)

ISIS Base (MDL)

AutoDock (Scripps)

Surflex (Biopharmics)

PyMOL (Biopharmics)

MOE (Molecular operating environment)

etc.

Software in ChemDiv

Substructure and Similarity Search Bioisosteric Morphing

Example: Morphing of

Quinazoline-like privileged

structures

Balakin K.V., Ivanenkov Y.A., et al.

Bioisosteric morphing in primary hit

optimization. Chem. Today, 2004,

22, 15-18.

Structure mining tools

Focused Agrochemistry

the reference database of more than 3K small-molecule compounds – known agrochemical agents;

► specific computational models successfully validated for the assessment of agrochemical activity and specificity (Kohonen- and Sammon-based mapping, Neural-nets (NN), recursive partitioning (RP), etc.);

► thematic library of more than 130 templates for synthesis with promising agrochemical activity (whole ChemDiv stock includes more than 1.5 mil.compounds with high diversity);

► ALS-, ACS and ACCase-specific models (3D-molecular docking approach & 3D-pharmacophore model) for the design of novel small-molecule ligands

We have:

► synthesis of novel organic compounds comprehensively covered by our computational background and expert opinion;

► the related biological evaluation of compounds for agrochemical activity;

► development of novel structures with high IP potential;

We can do:

The Main Focus is:

► considering agricultural ecology, select small-molecule compounds without a potentially

toxic points, e.g. Cl, Br, I, P, etc.;

► searching for new antidotes (ppp) against herbicides – a new route to expand the field of

known herbicide utilization – targeting new agricultures and weeds. As a good example -

mefenpyr-diethyl, an antidote against fenoxaprop-ethyl (Puma compositions) as well as

against Iodosulfuron (Sekator), / high selectivity and low phytotoxicity;

► with regard to fungicides, ppp could also be effectively used

for the reduction of a retardant effect;

► the privileged structures include: “amino acid” function mimetics, C-2 and C-3 amino

alcohols, diamines as well as glycols, compounds with F and CF3. etc.;

► the related biological screening for ppp activity can be properly performed in Agrosintez

mefenpyr-diethyl

Examples of Novel Agrochemicals Registered in 2011-2012

Colecalciferol

rodenticide

Oxathiapiprolin

fungicide

Pyrisoxazole

fungicide

Isofetamid

fungicide Pyflubumide

acaricide

Tolprocarbe

fungicideBenzovindiflupyr

fungicide

Flometoquin

insecticide

Flupyradifurone

insecticide

agro type compounds

insecticide 648

fungicide 326

herbicide 576

total 1550

descriptor definition

RotB no. of rotatable bonds

H_acceptor no. of H-bond acceptors

H_donor no. of H-bond donors

Log_Dlog of 1-octanol/water

partition coeff. at pH 7.4

insecticide fungicide herbicide

insecticide (in %, diff. 3D)

Similar models have also been developed based on Sammon algorithm,

RP as well as NN-based approach

the average percentage of correct classification - 80%

Kohonen-based model

Ref.dataset Molecular descriptors

(3D representation)

Differences in the distribution of

molecular descriptor values

HERBICIDES

ACCase inhibitors

ALS inhibitors

Auxin mimetics

Elongases inhibitors

GGPP cyclase inhibitors

PPO inhibitors

4-HPPD inhibitors

Weed cell cycle inhibitors

PDS inhibitors

EPSPS inhibitors

Photosystem I/II inhibitors

Inhibition of carotenoid

biosynthesis

DOXP synthase inhibitors

Glutamine synthetase inhibitors

DHP synthase inhibitors

Inhibition of cell wall

synthesis

Uncoupling

(membrane disruption)

Inhibition of lipid synthesis

(not ACCase inhibition)

Inhibition of auxin transport

Prominent Biotargets for Herbicides

ACS inhibitors

GST stimulators

14-reductase inhibitors

Examples of active compounds

ACCase inhibitors ALS inhibitors Auxin mimetics

pinoxaden

haloxyfop-R-methyl

fluazifop-P-butyl

chlorsulfuron

imazaquin

flumetsulam

triasulfuron

dicamba

clopyralid

2,4-D

aminopyralid

O

O

SO2CH

3

Cl

N

O

O CHCL2

CH3

ON

COOC2H

5

O

N

O

SO2CH

3

CF3

N

O

O CH3

CH3

Cl

NN

COOC2H

5

CH3

Cl

ClO

C2H

5O

N

CH3

CH3

O

O

Cl

N N

Cl

NO

O

CH3

CH3

CH3

CH3

CH3

CH3

CH3

O

O N

CH3

CH3 S

N

N O

N CH3

Cl

CH3

OO

O

O

O CH3 O

NO

CH3

O

O

N

N

N

O

CH3

CH3

CH3

N

N

O N

S

CH3CH

3Cl

N

N

N

O

N

N

O

O

OF

2C

N

CN

S

NN

O NF

ClS

OO CH

3

S

NN

CF3

O

N

O

F

CH3

CH3

NCl

O O

CH3

N

Cl

Cl

O

F

NO

N

O

O

aviglycine

benzobicyclone

benzocsakor isoxaflutole

cloquintocet-methyl

mefenpir-diethyl

petoksamid pyrimidifene

spiroksamin tiadinil trineksapak-ethylfamoksadon

fenazaquinefenamidone fentrazamid

fludioksonil

fluthiacet methyle

flufenacet

quinmerak

kvinoksifen

?

Examples of active compounds

Representative Examples of Synthetic Agro-templates

Suggested in ChemDiv Lib.

N

NN

O

O

R2a

R1a N

N

N

NR

1a

R2a

N

N

N

O

R2a

R1a

N

N

N

OR

1a

R2a R

2b

N

N

ON

R2a

R1a

N N

N

N N

OR

2a

R1a

R1b

N

ON

S

O

O

R2a

R1a

NN

O

N

O

R2a

R1a

R2b

NN

N

R3a

R2a

R1a

N

N O

O

R2a

R1a

R2b

N

N

NN

R2a

R1a

R1b N

O

OR

1a

R2a

N

N

NO

O

R2a

R1a

O

N

R3a

R2a

R1a

N

N

N

NR1a

R2a

N

N N

N

O

R3a

R1a

R2a

NN

S

N

N

R1a

R2a

R3a

NS

N

O

O

O

N

R3a

R2a

R2b

R1a N

N

O

R3a

R1a

R2a

N N

NN

N

R2a

R1a

R1b

N N

O

O

R2a

R1a

N

N

N

O

R3a

R1a

R2a

N

N

N O

R1a

R2a

N

N

OR1a

R1b

R2a

CM1218 CM1886CM2434_1 CM3189

CM2890 CL9652a

CM0221 CL3311

CM1042

CM1854

CM2889 CM3034

CL5373 CM2967 CM3476CL6963

CL5918 CM1062 CM0469a CM3137

CM1434

CL9209c

CM2600

CM2992

thiamine pyrophosphate = ThDP

ALS

O

O

O

CH3

N

N

N

S O

P OO

O

P

O

O

ONH

2

CH3

CH3

OHCH

3

OH

O

O

R

2-ketoacids

acetohydroxy acids

-CO2

OH

O

O

R

O

CH3

OH

O

OH

R

O

CH3

pyruvate

(pyruvate, 2-ketobutyrate)

2-acetolactate 2-aceto-2-hydroxybutyrate

valine and leucine isoleucine

BCCA

Mg2+ThDP anchoring

transition state

Glu579

Asp550

Asn577

ALS

ThDP

N

N

NH

N O

O

OH

OHOH

O

PO O

OP

O

O

O O

OH OH

N

N

N

N

NH2

Presumably, FAD plays a purely structural role, but it can undergo reduction toFADH2 as a side reaction of the catalytic cycle. Several sulfonylureas make

contacts with the isoalloxazine ring, but in many cases these contacts are notrequired for sufficient binding.

FAD

ThDP fragmentation occures

(carbanion formation)

blocked by Sulphonylureas further methabolism

A brief Insight into ALS mechanism of action

Chlorsulfuron in the active binding sites of АLS (А); a detailed site

composition and crucial binding points (B) / crystallographic data

(A) (B)

McCourt JA, Pang SS, Guddat LW, Duggleby RG. Elucidating the specificity of binding of sulfonylurea

herbicides to acetohydroxyacid synthase. Biochemistry. 2005, 44, 2330-8.

Conservative ALS binding site

Metsulfuron methyl Sulfometuron methyl

Tribenuron methyl

3D-overlapping

Examples of related sulphonylureas

Imazaquin and Chlorimuron ethyl in the

ABS of ALS

(crystallographic data)

the inhibition constants for yeast ALS range from 3.25 nM for Chlorimuron ethyl to 127 nM for

Chlorsulfuron

►the effect of active site tunnel mutations varies widely between these inhibitors. Thus, the G116S

mutation in yeast ALS increases the inhibition constant for Chlorimuron ethyl by more than 1000-

fold, while that for Chlorsulfuron is increased by less than 5-fold. These observations suggest that

the interactions with the protein must differ among various sulfonylureas

N

OH

O

N

NO

McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG. Herbicide-binding sites revealed in the structure

of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci., 2006, 103(3), 569-73.

Examples of novel ALS-targeted privileged

scaffolds designed in silico

N NH

[O,S]

R1

D

S

O

O

O

R2

R1, preferably:

N

N

*

OAlk

OAlk

N

N

N

*

OAlk

OAlk

D = H, alkyl, alkenyl, etc.

Alk = Me, Et

[C,N]

N

[C,N]

N

N

NHO

S Ar/HetO

OR1

R2

R1, R2: preferably OAlk, Alk, Hal

N

NNX

X

OAlk

R

R

R

R1 = H, Alk, OAlk, Hal

Alk = Me, Et, X = C,N

SNH

O O

OAr/Het

*

1

2

3

R2 = *NH

SO O

O Ar/Het

R3 = OAlk (if X=C)

R1 = preferably OAlk, Alk

R2 = H, Alk

N

NN

[C,N]N

R

R

R

SNH

O O

Ar/Het*

NH

SAr/Het

O O

*

1

2

3

R3 =

[C,N] N

N NH

O O O

NS

AA

R

O

O

Alk

Alk

Ar/Het

R = OAlk, SO2R, COOR, CONR2, Hal, CF3, etc.

[C,N] N

N NH

O O O

NS

R

O

O

Alk

Alk

AAr/Het

R R

12

3

4

5

A brief Insight into ACCase mechanism of action

biotin

S

NH NH

O

(CH2)4

O

NH

(CH2)4

ACCase

lysine res.

OH O

O

PO

ADP O

OO

O OH

OP

O

O

O

bicarbonate

carbonyl-phosohate..

S

NNH

O

*

O

O

S

O

CoAH

HH

S

O

CoAOH

O

- ADP

malonyl-CoA

acetyl-CoA

Mg2+

Mg2+

ACCase

Glu296

Arg338

Arg292

Glu211

deprotonationof bicarbonate

nucleophile attack

CO2 and PO43-

release

Arg338

PO43- deprotonates biotin

carboxybiotin translocates to the carboxytransferase active site

S

O

CoAH

H -H

-transition state

- provides the malonyl-CoA substrate for the biosynthesis of flavonoids, LCFAs and their elongation

- inhibits carnitine transferase-I thereby blocking the transfer of FAs into the mitochondria

ACCase

BCCP

haloxyfop and

tepraloxydim block thecatalysis by competingwith the acetyl-CoA

CP-640186 competswith carboxybiotinN O

N

O N

O

The binding mode of pinoxaden

the electron density

at 2.8-A resolution the binding site for

pinoxaden

key interactions within

the binding site

overlay of the binding modes of

pinoxaden and tepraloxydim

overlay of the binding

modes of pinoxaden and

haloxyfop

Yu LP, Kim YS, Tong L. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A

carboxylase by pinoxaden. Proc. Natl. Acad. Sci. USA. 2010, 107(51), 22072-7.

orange – crystallographic data

yellow – docking results (E=-60 kcal/mol )

GOOD alignment

Pinoxaden in the active binding site

of ACCase (RSA data)

3D ACCase Docking Model

Tepraloxydim in the active

binding site of ACCase (RSA

data)

orange – crystallographic data

yellow – docking results (E=-54 kcal/mol )

GOOD alignment

NO O

CL2489 E=-60 kcal/mol

O O

N

Cl5932 E=-52 kcal/mol

NN

O

ON

O

F

F

CL3345 E=-66 kcal/mol

Examples of compounds with promising activity against ACCase

HIGH SCORE

HIGH SCORE

MODERATE SCORE

3D ACS Docking Model

Inhibitors of transient state

NO

N

O

O

aviglycine

orange – crystallographic data

yellow – docking results (E=~34 kcal/mol )

GOOD alignment

key Aas:

R407

E47

R150

Y19

Examples of compounds with promising activity against ACS

S

NO

O

N

O

O

N

CL1161 E=-56 kcal/mol

S

NO

O

N

O O

N

CL1161-1 E=-45 kcal/mol

NN

O

O

N

CL6690 E=-45 kcal/mol

CL3537 E=-50 kcal/mol

N

N

O

O

O

N

O

O

N

O

O

R1a

insecticide

ENT8184

CL0798

N

O

O

NN

NN

S

R2a R

1a

N

N

O

O

R2a

R1a

R1b

N

N

N

N

SR2a R

1a

ENT8184

affects cell division andcell elongation, auxin

PGR

CL3245CL6690

CL3318

N

O

O

ON

O

ON

N

O R2a

R1a

promotes pollination

PGRCL7718a

N

O

NO

NO

N O

N

R2a

R1a

NO

N O

N

R2a

R1a

fungicide

ICIA0858

CM0324CM0325

Examples of isosteric and topological analogues among

ChemDiv Argo-templates

ON

N

O

FF

F

N O

N

O

N

R2a

R1aR

1b

N O

N

O

N

R2a

R1a R

1b

N O

N

N

N

O

R1a

R2a

R1b

N

O

N

NR

2a

R1a

R1b

O

N

N O

N

R2a

R1a

R1b

N

O

N

N

N

O

R2aR

2b

R1a

N

N N

O

N

R1a

R1b

R2a R

2b

NN

O

ON

N

OR2a

R1a

herbicide

flufenican

CM0326

CM0327

CL2832

CM1866

CM0328

CM0183

CM1149d

CL7719a

NCl

O O

S

N

O O

N

N

O

R2a

R1a

R1b

S

N

OO

N

N

O

R1a

R1b

O

N

O

S

O

O

F

F

FO

N

F F

F

SO

O

N

R2a

R1a

R2b

N N

O

ON

N

O R2a

R1a

quinmerac

CL348CL348

CL948

isoxaflutol

CL7719

N

O

O

Cl

Cl

S

N

N

O

R3a R

3b

R1a

R2aN O

N

NO

O

R2a

R2b

R1a

N

N

O

O

N

O

R3a

R1a

R3b

R2a

N

ON O

R3a

R1a

R2a

NN

O

O

N

O

R3a R

2a

R1a

R1b

N

O

ON

N

O R2a

R1a

ррр antidotCL3410

CM1998

CL6788

CL9024

CL2582

CL7718a

acyclic analogues

invert analogues isosteric morphing

spiro-analogues

"next-in-class"

benoxacor

NH

O

NH

O

O

H

H

H

N

N

O

O

O

R2a

R1a

R1b

SNH

O

O

N

O

R3a

R2aR

1a

R1b

NH

O

O

N

R2aR

1a

R1b

N

O

N

N N

O

R1a

R2a

R1b

H

H

NN

O

O

R2a

R1aR

1b

H

H

N

N

O

O

R1a

R2a

H

SNH

O

O

N

O

R3a

R1a

R1b

O

ррр aviglycine

"pro-drug" moieties

H, alkyl

H, alkyl

"pro-drug" moieties

H, alkyl

alkyl

CL1161

H, alkyl

"pro-drug" moieties

CL2593

H, alkyl

CL2832

H, alkyl

CL6690

H, alkylCL2049

N-O

C(O)alkyl

N

N

Cl

Cl

O

OO

O

NS

O

R3a

NO

R2a

R1a

N

N

SO

O

OO

R3a

R3b

R1a

R2a

N N

O

N

N

R1a

R1b

N

N

N

O

N

O

R2a

R1a

R2b

R1b

R1c

R1d

R1e

NN

N

N

N

O

O

R3a

R2a

R1a

H

S

NN

O

O

N

O

R3a

R2a

R3b

R1a

R2b

R1b

R2c

R2d

R2e

S

ON

FF

F

S

O

O

NR

1a

R1b

H, Alkyl

CL5389

CL6065

CL6292

CL6441CL6527

CL7169

mefenpyr-diethyl

Me

Me

Me

O

O N

MeMe

O

N

N

O

SO

O

R2a

R1a

NO

N

O

O

O

R1a

R2a

R1b

N

O

N

R2a

R1a

R1b

O

N

R3a

R2a

R1a

N

N

R2a

R1aR

1b

N

N

N

O

R3a

R2a

R1a

R1bN

N

O

N

R2a

R1a

N

O

OR

1a

R2a

CL5116

CL3586b

CM2348

CM2967

CM1631

CM2368

CM1591

CM3034spiroksamin

O

N N

OO

ON

NOO

N

R2a

R2b

R1a

R1b

NO O

R1a

R1b R

1c

R1d

R1e

N

N

O O

R2a

R2b

R1a R

1b

R1c

R1dR

1e

O O

N

R1a

R1b

R1c

R2a

R1d

R2b

R1e

N

N

O O

N

OR

3a

R3b

R2aR

2b

R1a

R2cR

2d

R2e

S

N S

OO

O

O

N

O

R3a

R2a

R3b

R1a

R3c

R2b

R3d

CL9872

CL2489

CL2165

Cl5932

CL3345

CL7984

Pinoxaden

orange – Pinoxaden

yellow – CL2489

orange – Pinoxaden

yellow – 3345

Summary

► comprehensive in silico design of novel compounds using a range of

modern computational approaches including 3D-molecular docking,

Neural-Net modeling and 3D-pharmacophore searching;

► solid-phase as well as liquid-phase synthesis of novel compounds with

high diversity in structure using a variety of traditional and combinatorial

schemes;

► targeted library of small-molecule compounds ranged within 133

promising agrochemical templates selected in ChemDiv;

► analysis of patent landscape resulting in compounds with high IP

► HTS evaluation of novel compounds for agrochemical potency.

We can offer

THANKS YOU!