24
Spring 2012 Chem 350: Statistical Mechanics and Chemical Kinetics Chapter 5:Partition Functions and Properties of Real Molecules 1 Thermodynamics of a system of independent particles .......................................................................... 1 The Partition function .............................................................................................................................. 2 Origin of factor 1 ! N for identical particles .............................................................................................. 2 Reworking the Helmholtz free energy ..................................................................................................... 3 Translational Partition Function: Particle in the box wave function (atoms) .......................................... 4 Relating to thermodynamic properties ................................................................................................... 5 Statistical Mechanics of diatomic molecules ........................................................................................... 7 Vibrational Partition function in harmonic approximation ..................................................................... 8 Rotational Partition Function for a diatomic ......................................................................................... 11 The origin of the symmetry factor in rotational partition function ....................................................... 13 Polyatomic Systems ............................................................................................................................... 17 Chemical Reactions and Equilibrium ..................................................................................................... 20 Statistical Mechanics ............................................................................................................................. 21 Connect to thermodynamics ................................................................................................................. 22 Chapter 5: Partition Function and Properties for Real Molecules Thermodynamics of a system of independent particles neglect internal degrees of, in particular rotations, vibrations eg. Atoms, rare gases Will look at molecules in the gas phase, which are dilute and at high temperature (ideal gases) Quantum Hamiltonian () ˆ i H hi = no interatomic interactions Solve () () () 1 1 1 a a a h ϕ εϕ = () () ( ) ( ) ˆ 1 2 ..... a a z H N ϕ ϕ ϕ () () ( ) () ( ) () () () ( ) ( ) 1 1 2 .... 1 2 2 .... a a z a b z h N h N ϕ ϕ ϕ ϕ ϕ ϕ = + () () ( ) ( ) ( ) .... 1 1 .... a b z hN N ϕ ϕ ϕ + + ( ) () () ( ) ... 1 2 ... a b z a b z N ε ε ε ϕ ϕ ϕ = + + product of single particle wavefunction is eigenfunction sum of 1particle eigen values total energies

Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Embed Size (px)

Citation preview

Page 1: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     1    

 Thermodynamics  of  a  system  of  independent  particles  ..........................................................................  1  

The  Partition  function  ..............................................................................................................................  2  

Origin  of  factor  1!N  for  identical  particles  ..............................................................................................  2  

Reworking  the  Helmholtz  free  energy  .....................................................................................................  3  

Translational  Partition  Function:  Particle  in  the  box  wave  function  (atoms)  ..........................................  4  

Relating  to  thermodynamic  properties  ...................................................................................................  5  

Statistical  Mechanics  of  diatomic  molecules  ...........................................................................................  7  

Vibrational  Partition  function  in  harmonic  approximation  .....................................................................  8  

Rotational  Partition  Function  for  a  diatomic  .........................................................................................  11  

The  origin  of  the  symmetry  factor  in  rotational  partition  function  .......................................................  13  

Polyatomic  Systems  ...............................................................................................................................  17  

Chemical  Reactions  and  Equilibrium  .....................................................................................................  20  

Statistical  Mechanics  .............................................................................................................................  21  

Connect  to  thermodynamics  .................................................................................................................  22  

   Chapter  5:  Partition  Function  and  Properties  for  Real  Molecules    Thermodynamics  of  a  system  of  independent  particles       -­‐  neglect  internal  degrees  of,  in  particular  rotations,  vibrations  eg.  Atoms,  rare  gases     -­‐  Will  look  at  molecules  in  the  gas  phase,  which  are  dilute  and  at  high  temperature  (ideal  gases)      

  Quantum  Hamiltonian   ( )ˆi

H h i=∑    no  inter-­‐atomic  interactions  

         

→  Solve   ( ) ( ) ( )1 1 1a a ah ϕ ε ϕ=  

  →   ( ) ( ) ( )( )ˆ 1 2 .....a a zH Nϕ ϕ ϕ  

           

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1 2 .... 1 2 2 ....a a z a b zh N h Nϕ ϕ ϕ ϕ ϕ ϕ= +  

            ( ) ( ) ( ) ( )( ).... 1 1 ....a b zh N Nϕ ϕ ϕ+ +  

        ( ) ( ) ( ) ( )... 1 2 ...a b z a b z Nε ε ε ϕ ϕ ϕ= + +  

      -­‐  product  of  single  particle  wavefunction  is  eigenfunction         -­‐  sum  of  1-­‐particle  eigen  values  →  total  energies    

Page 2: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     2    

       The  Partition  function  

      /

allE kT

all statesQ e−= ∑  

      ( ). ... /

, , , ....

a b c d kT

a b c dQ e ε ε ε ε− + + += ∑  

              / / / ..a b ckT kT kT

a b ce e eε ε ε− − −⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠∑ ∑ ∑  

....a b cQ q q q= ⋅ ⋅      Since  every  atom/molecule  is  the  same   ....a b Nq q q q= =  

        ( )NQ q=    

 Where   N  is  the  number  of  particles, q  is  the  partition  function  for  a  single  component  (molecule).  The  overall  partition  function  Q of  the  system  is  just  the  product  of  the  individual  partition  functions.    General  feature:  If  Hamiltonian  is  a  sum  of  terms  without  cross  terms  (interactions)     →  partition  function  will  be  a  product  of  terms  corresponding  to  terms  in  H     →  form  wavefunction  is  product  function  too      -­‐  This  is  a  big  simplification.  However  this  is  only  partially  correct  as  it  only  applies  if  the  particles  were  distinguishable  from  one  another.  In  many  cases  the  particles  in  multi  molecule  systems  are  indistinguishable.  

   

Origin  of  factor  1!N  for  identical  particles  

        All  particles  in  nature  should  be  viewed  as  either  bosons  or  fermions.  

→  Quantum  mechanical  wavefunctions  are  either  symmetric  or  antisymmetric  under  interchange  of  particle  coordinates  

      Fermions  →  anti  symmetric,    Bosons  →  symmetric       If       ( ) ( ) ( )( )1 2 3a b cAψ ϕ ϕ ϕ=   a b c≠ ≠  

    In  our  sum  we  counted  all  permutations  of   , ,a b c  as  distinct  states   3!→  contributions        

But  there  is  only  1  fully  antisymmetryic  wavefunction   abc  (Slater  determinant)  and  also  only  1  symmetric  function.         →  For  3  particles  divide  by  3!                      For   N  particles  divide  by   !N    

Page 3: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     3    

If  the  number  of  available  states  >>  the  number  of  particles  then  it  is  a  very  good  approximation  to  simply  divide  by   !N  

!

NqQN

=    

 This  was  done  even  for  classical  partition  functions,  but  the  reasons  were  not  clear  (although  [erroneous]  arguments  were  made)    This  statistics  is  known  as  Boltzmann  Statistics.      The  procedure  is  not  rigourously  correct  for  either  bosons  or  fermions  eg.   a bϕ ϕ=       a b= ,  same  wavefunction     →   For  fermions:  wavefunctions  =  0                       For  bosons:  different  factor  to  count  symmetric  wavefunctions  

Many  more  states  than  #  of  particles  (  >> 2310 )       However,  Boltzmann  approximation  is  not  always  valid       Eg.   -­‐  Electrons  in  metals         -­‐  photons  in  a  light  source         -­‐  very  light  particles     (more  elaborate  discussion  later  on)       In  general  if  we  have  species   ,A B  etc.  the  partition  function  is  given  by    

     ( ) ( )

! !

A BN NA BAB

A B

q qQ

N N=    

 Reworking  the  Helmholtz  free  energy        

Using  Stirling’s  approximation  for   !N         lnA kT Q= −         ( )ln ! ln ln 1N N N N N N= − = −  

  ln!

NqA kTN

⎛ ⎞= − ⎜ ⎟

⎝ ⎠             ( )ln ln ln NN N e N

e⎛ ⎞= − = ⎜ ⎟⎝ ⎠

 

        ( )ln ln !NkT q N= − −             lnNN

e⎛ ⎞= ⎜ ⎟⎝ ⎠

 

            ln lnN

N NkT qe

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠     !

NNNe

⎛ ⎞≈ ⎜ ⎟⎝ ⎠    (another  Stirling  approximation)  

      ln qeNkTN

⎛ ⎞= − ⎜ ⎟⎝ ⎠        

ANkT nN kT nRT= =   8.314 /AN k R J molK= =  

ln qeA nRTN

⎛ ⎞= − ⎜ ⎟⎝ ⎠  

Page 4: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     4    

  A  contain  terms  that  do  not  scale  linearly  with     N ,  non  interacting  particles  seem  to  interact!  This  is  a  consequence  of  (anti)  –  symmetry  requirement  of  many-­‐particle  wavefunction.  Later  we  will  see  ~q V .  

      ln qeA NkTN

⎛ ⎞= − ⎜ ⎟⎝ ⎠     ~         ln VNkT

N⎛ ⎞− ⎜ ⎟⎝ ⎠

 

    A  will  be  proportional  to   N ,  in  the  end,  as  should  be  the  case.       Simple  system:  Non-­‐interacting  atoms            

n e ti α β γε ε ε ε= + +  

n :  nuclear  wave  function  (only  nuclear  spin  is  important)  e :  electronic  (important  for  open  shell  atoms)  t :  translational  (kinetic  energy)  

 Translational  Partition  Function:  Particle  in  the  box  wave  function  (atoms)       Look  at  the  quantum  problem  1-­‐D  system,  then  extrapolate  to  3D            

   2 2

2d E

m dxψ ψ− =h    

sin n xLπψ =    

22

sind n n xdx L Lψ π π⎛ ⎞= −⎜ ⎟⎝ ⎠

 

22

sin sin2

n n x n xEm L L L

π π π⎛ ⎞ =⎜ ⎟⎝ ⎠h

 

2 22

22nE nmLπ⎛ ⎞

= ⎜ ⎟⎝ ⎠

h 22

28h nmL

=    2hπ

=h  

     2

228

,1

h nmL kT

T Dn

q e−

=∑                   1,2,3...n =  

  Define      2

28hmL kT

Δ =   and   nx n= Δ    22

,1nxn

t Dn n

q e e−−Δ= =∑ ∑  

   Since  the  energy  spacings  are  small  relative  to   kT  it  is  possible  to  use  an  integral  in  the  place  of  summation    General  integral        

        ( )nn

q f x=∑ ( )( )1( )n n n nn

f x dx f x x x+= = −∑∫  

    1 ( 1 1)n nx x n+ − = Δ + − = Δ  

  ( ) ( )n nnf x f x dxΔ =∑ ∫  

  ( ) 1 ( )n nnf x f x dx≈

Δ∑ ∫      

Page 5: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     5    

This  approx  is  correct  if   ( )nf x  is  smoothly  varying    Back  to  the  partition  function  

2 2

,1 0

1 1 12 1

nx xt D

nq e e dx π∞− −= ≈ =

Δ Δ∑ ∫      (look  up  the  integral)  

2

,1 2

1 1 82 4 4t D

mkTL Lqh

π ππ= = = =Δ Δ Λ

 

242hm kTπ π

Λ = Δ =    where  Λ  is  called  the  thermal  deBroglie  wavelength  

,1x

t DLq =Λ  

    Moving  into  3D         ,3 ,1 ,1 ,1t D x D y D z Dq q q q= ⋅ ⋅    

    ,3 3 3x y z

t D

L L L Vq⋅ ⋅

= =Λ Λ

       the  molecular  partition  function  for  translational  motion  

 Approximation  is  best  if  particle  is  heavy,  box  is  large  →  classical  limit  (many  energy  levels,  high  density  of  states)    

 

   3 3/2

3/2 3/23 2 2

1 2 2mkT mk T Th h

π π α⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟Λ ⎝ ⎠⎝ ⎠

   define  3/2

2

2 mkhπα ⎛ ⎞= ⎜ ⎟⎝ ⎠

 (constant)  

      3/2,3 3t D

Vq VTα= =Λ

 

      on nq g=              (nuclear)  

      /iE kTe

iq e−=∑  (sum  over  states)        (electronic,  only  for  open-­‐shell  atoms)  

            /E kTg e αα

α

−=∑    (sum  over  energy  levels)  

    /iE Eα :  molecular  energies,  do  not  depend  on   ,N V !      Relating  to  thermodynamic  properties  

    ln qeA nRTN

⎛ ⎞= − ⎜ ⎟⎝ ⎠     3/2

,3T Dq VTα=  

     3/2

ln VT eA nRTN

α⎛ ⎞= − ⎜ ⎟

⎝ ⎠  

      3ln ln ln2

VnRT e TN

α⎛ ⎞= − + +⎜ ⎟⎝ ⎠  

Page 6: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     6    

1A NP nRTV V N∂⎛ ⎞ ⎛ ⎞= − = ⋅⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 

PV nRT=   (ideal  gas  law!)      

3/2

,

lnN V

A d VT eS nRTT dT N

α⎡ ⎤∂⎛ ⎞= − = ⎢ ⎥⎜ ⎟∂⎝ ⎠ ⎣ ⎦    

3ln ln ln ln2

d nRT e V T NdT

α⎡ ⎤⎛ ⎞= + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦      

3/2 3ln2

VT e nRTnRN T

α= +  

3/23 ln2

VT eS nR nRN

α= +  

 

2 AU TT T

⎛ ⎞∂ ⎛ ⎞= − ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠    

3/22 ln VTT nRT N

α⎛ ⎞⎛ ⎞∂= − ⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠    

232nRTT

=  

32

U nRT=  32V

UC nRT

∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠  

 H U PV= +  

3 52 2

H nRT nRT nRT= + =  

52P

HC nRT

∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠  

 

    ln lnqe qeA nRT NkTN N

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  

     3/2

,

lnT V

A VT eNkTN N N

αµ⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞= = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

   

           3/2 1ln VT ekT NkTN N

α ⎛ ⎞⎛ ⎞= − + − ⋅ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠     lnkT e= −

3/2VTkT kTN

α− +  

     3/2

ln VTkTN

αµ = −  

      ( )3/2 3/2 5/2

, , ln ln lnT NkT T kT kTN P T kT kT kTNP P P

α α αµ = − = − = −  

 

     5/2 5/2

ln lnA AT k T kN N kT RTP P

α αµ µ= = − = −  

     

     5/2

0

0

ln PT kG n nRTP P

αµ⎛ ⎞

= = − ⋅⎜ ⎟⎝ ⎠

 

Page 7: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     7    

     5/2

0

0

ln ln PT kG nRT nRTP P

α⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠  

      00 ln lno

o

P PG G nRT G nRTP P

⎛ ⎞⎛ ⎞= + = − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠  

    Check  formula  for   S  compound  to  thermodynamics:  

     3/23 ln

2VTS nR nRNα⎛ ⎞

= + ⎜ ⎟⎝ ⎠

     

5/23 ln2

kTnR nRPα⎛ ⎞

= + ⎜ ⎟⎝ ⎠

 

1 2 V V→ ,    T        constant   2

1

ln VS nRV

⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠  

1 2 T T→ ,      V        constant   2

1

3 ln2

TS nRT

⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠  

1 2 T T→ ,       P        constant   2

1

5 ln2

TS nRT

⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠  

1 2 P P→ ,      T        constant   2

1

ln PS nRP

⎛ ⎞Δ = − ⎜ ⎟

⎝ ⎠  

All  of  ideal  gas  thermodynamics  follows  from   ln tq eA NkTN

⎛ ⎞= − ⎜ ⎟⎝ ⎠,   ( )

!

NtqQN

=  translational  

partition  function      Statistical  Mechanics  of  diatomic  molecules          

Molecules  have:  translational,  rotational,  vibrational,  electronic  and  nuclear  spin  degrees  of  freedom    To  good  approximation:   t r v e nE E E E E E= + + + +    This  is  not  quite  true,  in  particular  there  could  be  a  coupling  between  rotational  and  vibrational  motions  (certainly  for  higher  levels).    

        t r v e nq q q q q q= ⋅ ⋅ ⋅ ⋅    (not  quite  true  as  well,  complications  do  arise)  

tq  is  the  same  as  for  atoms..   3/2tq VTα= ,  

3/2

2

2 Mkhπα ⎛ ⎞= ⎜ ⎟⎝ ⎠

.  Same  ideal  gas  assumptions,  

works  best  at  low  density,  light  molecules,  and  works  only  for  gases.  At  low  temperatures,  gases  condense  or  solidify  due  to  (weak)  interactions.      

eq :  typically  only  one  electronic  level  contributes.  This  would  be  different  for  radicals  or  triplet  states.  Even  then:  simply  account  for  degeneracies.  

Page 8: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     8    

 Unexpected  complication:  strong  coupling  between  nuclear  and  rotational  wavefunction  (another  manifestation  of  (anti)symmetry).    

nrq  rotation  +  nuclear  should  be  treated  together  “Pauli  principle  for  nuclei”.  

Note:  the  factor  1!N  was  also  result  of  requiring  (anti)symmetric  wavefunctions.  This  

aspect  will  be  discussed  later.    Simple  results  are  obtained  when  vibrations  and  rotations  can  be  treated  separately  (no  coupling)  and  harmonic  oscillator  is  used  for  vibrations.  

 Vibrational  Partition  function  in  harmonic  approximation    

  212harmE kx=    

where   ( )0x R R= −  (Harmonic  approximation)  

 2 2

22

1ˆ2 2

dH kxdxµ

⎛ ⎞= − + ⎜ ⎟⎝ ⎠h        

 where   1 2

1 2

m mm m

µ =+

 (reduced  mass)    

  12nE n ω⎛ ⎞= +⎜ ⎟⎝ ⎠h             0,1,2...n =      and        

kωµ

=        

( k  is  the  force  constant  and  depends  on  the  molecule)               (only  need   k and   µ  and  you  will  find  all  the  energies)         This  would  be  discussed  in  a  quantum  mechanics  class      Finding  the  partition  function  

  Energy  levels  harmonic  oscillator:    12nE nω ω= +h h           0,1,2...n =  

     1 // /2n

kTE kT n kTe e eω ω−− −= ⋅h h

       

     ( ) ( )1 / /2

0,1,2..

kT n kTV

nq e e

ω ω− −

=

= ∑h h  

      Set   ( )/kTy e ω−= h  ( ) ( ) ( )2 / / / 2kT kT kTe e e yω ω ω− − −= =h h h          so             ( )/n kT ne yω− =h  

 

     ( ) ( ) ( )1 1/ /2 32 2

0,1,21 ....

kT kT nV

nq e y y y e y

ω ω− −

=

= + + + + = ∑h h

   

( )2 3

0,1,2...

11 ....1

n

ny y y y

y=

= + + + + =−∑    (known  math  relation)  

Page 9: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     9    

     ( )1 /2 1

1kT

Vq ey

ω− ⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠

h  

   ( )

( )

1 /2

/

11

kT

V kTq ee

ω

ω

−⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠

h

h   partition  function  with  zero  point  energy  included  

 

Define    vibrational  temperature,   VT kω= h    →   1/J JK−    =  K  (kelvins)    so   VT

T  is  dimensionless  

 ( )

( )

1 /2

/

11

V

v

T T

V T Tq ee

−⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠

 

 For  some  molecules,  the  internal  rotation  can  range  from  relatively  small   1200cmω −≈h ,  to  something  like  C-­‐H  stretching   13100cmω −≈h    

Knowing   1 10.695k cm K− −= ,   VT kω= h  can  range  from  400  –  6000K  

( ) ( )1 1/ / //2 2 V V

kT T T n T Tn kTe e e eω ω− − −−⋅ = ⋅h h  ,  since   VT ranges  from  400  –  6000K,  a  large  T  value  is  

needed  for  a  decent  population    

       Energy  scale  is  not  convenient  if  we  want  to  consider  mixtures  of  molecules,  as  we  have  chosen  the  zero  of  energy  as  the  bottom  of  the  well.    More  convenient:  choose  zero  of  energy  as  the  energy  of  dissociated  atoms  →  same  energy  scale  for  all  molecules  

         

12v eE D nω ω= − + +h h      

  0D n ω= − + h           Results  we  obtain  from  partition  function  are  independent  of  the  overall  shift  in  energy  

     11 // 22

eD kTkTe e

ωω⎛ ⎞−− ⎜ ⎟⎝ ⎠→

hh           / oD kTe=  

 

Page 10: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     10    

  The  vibrational  partition  function  becomes     ( )0 /

/

11 V

D kTV T Tq e

e−⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠

 

    If   ( )/VT T  is  large  (low  T )    →       0 /D kTVq e=  

    If   ( )/VT T  is  small  (high  T )  →   0 /D kTV

V

Tq eT

⎛ ⎞= ⎜ ⎟

⎝ ⎠        (high  T limit)    

 Thermodynamic  values    

( )0 /

/

11 V

D kTV T Tq e

e−⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠

 

 

( )( )0 / /ln ln 1 VD kT T TVA NkT e e−= − − −  

  ( )/0 ln 1 VT TD N NkT e−= − + −  

      ( ) ( ) ( )/ /2/

ln 11

V V

V

T T T TV VV T T

A TNkTS kN e eT Te

− −−

∂⎛ ⎞ ⎛ ⎞= − = − − −⎜ ⎟ ⎜ ⎟∂ −⎝ ⎠ ⎝ ⎠  

    If  we  multiply  this  by  /

/

V

V

T T

T Tee

 then  we  get  

        ( ) ( )/

/

/ln 11

v

V

T T VV T T

NkT TS Nk ee

−= − − +−

 

     ( )0 / 1V

VT T

NkTU A TS D Ne

= + = − +−

 

      ( )/0

,

ln 1 VT TV

T V

A D kT eN

µ −∂⎛ ⎞= = − + −⎜ ⎟∂⎝ ⎠  

      This  is  all  exact,  for  harmonic  oscillator       Consider  the  large  T  limit  of  better   / VT T  is  large  

      0 //

11 v

D kTT Te

e−⎛ ⎞⎜ ⎟−⎝ ⎠

    /1 , 1 /VT TxVe x e T T−− ≈ − − ≈  

                      0 /D kTV

V

Tq eT

⎛ ⎞= ⎜ ⎟

⎝ ⎠    

      0ln lnV VV

TA NkT q ND NkTT

⎛ ⎞= − = − − ⎜ ⎟

⎝ ⎠%  

      lnVV

TS Nk NkT

⎛ ⎞= + +⎜ ⎟

⎝ ⎠%  

      0 0V V VU A TS ND NkT ND nRT= + = − + = − +% %%         VC Nk nR= =    

Page 11: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     11    

Classical  Equipartition  theorem:  For  every   ( )2xP  and   2x  in  Hamiltonian,  the  contribution  to  

internal  energy  is  12RT  per  mole  →  contribution  to   VC  is  

12R  

  “Every  vibrational  mole  contributes   nRT  to  U ,  and   nR  to   VC  at  high  termperature”      Rotational  Partition  Function  for  a  diatomic    

Use  the  so  called  rigid  rotor  approximation,  neglect  coupling  between  rotations  and  vibrations  (small  error)    

 The  Quantum  Mechanical  Hamiltionian    for  rotations  

   2

2

ˆˆ2LHRµ

=       1 2

1 2

m mm m

µ =+

   

2L̂ :  an  angular  momentum  operator  depending  on   ,θ ϕ  ,           R :  internuclear  distance  

  Note:   2L̂ is  the  same  operator  that  shows  up  in  the  H-­‐atom  orbital’s  s,p,d,f  functions           ( ) ( ) ( )2 2ˆ , 1 ,m m

l lL y l l yθ ϕ θ ϕ= +h      

      .....lm l l= − +         0l =     s     0         1l =     p                    -­‐1,  0,  +1    

2l =     d        -­‐2,  -­‐1,  0,  +1,  +2  3l =     f   -­‐3,  -­‐2,  -­‐1,  0  ,  +1,  +2,  +3  

    Known  solutions  for  energy  eigenvalues  

      ( )2

2 12JE J JRµ

= +h ( )1BJ J= +   0,1,2...J =  

      Has  degeneracy   ( )2 1Jg J= +        

States:   ( ),mJY θ ϕ   , 1..... 1,m J J J J= − − + −           ( ) 2 1J→ +  

 

  Energy  levels  are  often  expressed  in   1cm−  hch hckυλ

= = %  

      ( )1JE BJ J= +%2 28hc Rπ µ

=        (in   1cm− )       2R Iµ =    (moment  of  inertia)  

    A  convenient  conversion:       11 8065.5eV cm−≈    Rotational  partition  function    

      ( ) ( )1 /

0,1,2..2 1 BJ J kT

RJ

q J e− +

=

= +∑  

  Note:  we  sum  over  energy  levels   J ,  and  need  to  explicitly  include  degeneracies    Using  a  math  program,  one  can  carry  out  the  sum  explicitly  (eg.  Run  until   maxJ =  100)  

Page 12: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     12    

 In  practice,  in  the  “high  temperature”  limit  one  replaces  the  sum  by  an  integral  

        ( ) ( )1 /02 1 Bx x kT

Rq x e dx∞ − +≈ +∫

%%  

  Substitute     ( ) 21y x x x x= + = +  

      ( )2 1dy x dx= +  

  / /

0 0

By kT By kTR

kT kTq e dy eB B

∞∞ − −⎡ ⎤= = − =⎣ ⎦∫ % %% %% %

% %  

  RR

kT TqTB

= =%%          where   B%, k%  are  in  units  of   1cm−    

  RBTk

=    Rotational  temperature  (in  Kelvins)  

     This  formula  is  “correct”  for  heteronuclear  diatomics  with  heavy  masses  like  CO ,  but  for  homonuclear  case,  like   2H it  is  off  by  a  factor  of  2.      Correcting  for  this    

      RR

kT TqB Tσ σ

= =    

where  σ  is  the  symmetry  factor    ;     1σ =  for  heteronuclear,   2σ =  for  homonuclear        

 To  understand  the  symmetry  factor  one  has  to  take  nuclear  spin  into  consideration.  It  is  a  

consequence  of  the  Paulo  principle  for  nuclei.  It  is  comparable  to  the  Boltzmann  factor  1!N  in  

!

NqQN

= .  

 In  the  next  lecture  I  will  discuss  the  rotational  partition  function  for   2 2,H D  and  HD  isotopes.  This  will  give  us  a  better  idea  of  the  origin  of  the  mysterious  σ .  

 Thermodynamics  in  high  temperature  limit:  Contributions  due  to  rotational  degree  of  freedom  

      lnRR

TA nRTTσ

= −  

     ,

lnRR

V N R

A TS nR nRT Tσ

∂⎛ ⎞= − = +⎜ ⎟∂⎝ ⎠  

      R R RU A TS nRT= + =           ,V RC nR=  

     ,

lnRR

T V R

A TRTN T

µσ

∂⎛ ⎞= − = −⎜ ⎟∂⎝ ⎠  

Page 13: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     13    

   Probability  to  find  molecules  in  energy  level   ( )JP E  

    ( ) ( ) ( )1 /2 1RJ J T T

JR

JP E e

q− ++

=  

      ( ) ( )1 /2 1 RJ J T TRTJ eTσ − +≈ +  

 We  can  also  plot  the  probability  to  find  a  particular  state  (one  from   2 1J + )     ,J Jmψ      

 

        This  peaks  at  the  ground  state,  which  always  has  the  highest  probability        The  origin  of  the  symmetry  factor  in  rotational  partition  function        

Nuclei  can  be  bosons  (consisting  of  even  number  of  fermions)  or  fermions  (consisting  of  odd  number  of  fermions).  This  character  is  reflected  by  nuclear  spin:  Bosons  will  have  integer  spin,  Fermions  have  half  integer  spin.      Nuclei  are  described  by  Quantum  Mechanical  wave  functions  and  they  obey  fundamental  symmetries  of  nature     -­‐  ψ  is  symmetric  under  interchange  of  identical  bosons     -­‐  ψ  is  anti  symmetric  under  interchange  of  identical  fermions      Consider  a  system  consisting  of  2  nuclei  diatomics  →  nuclear  wavefunction  has  both  a  spatial  and  a  spin  part.  Focus  first  on  H -­‐  atom,  spin  ½,   ,α β  functions.      Nuclear  spin  functions:  

Page 14: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     14    

          ( ) ( )1 2α α  

    orthohydrogen   →         ( ) ( ) ( ) ( )1 2 1 2 2α β β α⎡ + ⎤⎣ ⎦      symmetric  

             =  triplet     ( ) ( )1 2β β               Parahydrogen     ( ) ( ) ( ) ( )1 2 1 2 2α β β α⎡ + ⎤⎣ ⎦   antisymmetric  

           =  singlet       Nuclear  spin  functions  are  virtually  degenerate  (even  in  presence  of  a  magnetic  field)    

For  us  the  symmetry  of  the  spin-­‐eigenfunctions  are  most  important.  Consider  2  nuclei  of  general  spin   I  

          Symmetric   ( )1 2 2 1 2mm m m+  

    ( )( ) ( )( )1 2 1 2 2 1 2 12

I I I I+ + = + +    (symmetric  functions)    1 3 2 32 2

I = → ⋅ =      

    Antisymmetric   ( )1 2 2 1 2mm m m−  

    ( )( ) ( )1 2 1 2 2 12

I I I I+ = +    (functions)  1 1 2 12 2

I = → ⋅ =      (see  above)    

(compare  symmetric   ( )1 12n n +  and  antisymmetric   ( )1 1

2n n − ,  including  diagonal)  

 Symmetry  of  spin  function  under  permutation  is  understood.  What  about  spatial  part  of  nuclear  wave  function?    Consider  the  nuclear  coordinates   1 2,R R

r r  

      1 2

2 cmR R R+ =

r   (for  identical  nuclei)    

1 2R R−r r

       =   sin cosR θ ϕ       sin sinR θ ϕ       cosR θ  

2 1R R R= −r r

 

      Nuclear  wavefunction:  

      ( ) ( ) ( ),t cm V RR Rψ ψ ψ θ ϕ⋅ ⋅r

 

Page 15: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     15    

      If   1 2R R↔r r

 then   cmRr

 and   R  are  unaffected  

    However:         ( ) ( )12 2 1 2 1P R R R R− = − −r r r r

 

                         =     sin cosR θ ϕ−             sin sinR θ ϕ−             cosR θ−     Interchanging  nuclei   1 2R R↔

r r  is  equivalent  to    

      θ π θ→ −   ( ) ( )cos cosπ θ θ− = −  

          ( ) ( )sin sinπ θ θ− =  

      ϕ ϕ π→ +   ( ) ( )cos cosϕ π ϕ+ = −  

          ( ) ( )sin sinϕ π ϕ+ = −          

Hence  interchanging   1Rr  and   2R

r  is  equivalent  to  changing  

          θ π θ→ −             ϕ ϕ π→ +  

      ( ),mlY π θ π ϕ− + =   ( ),m

lY θ ϕ+       l    even                 ( ),m

lY θ ϕ−       l  odd     Transformations  are  equivalent  to  

       x xy yz z

−⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟→ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

  (inversion)  

    s,  d,  g        functions  are  even  under  inversion       p,  f   functions  are  odd  under  inversion           0,2,4..J =   even  under   1 2R R↔       1,3,5..J =   odd  under   1 2R R↔  

     Antisymmetric  nuclear  wavefunctions  (fermions):       ( ),triplet

spin Jφ ψ θ ϕ⋅          Even                    Odd  

Or   ( )sin glet ,spin Jφ ψ θ ϕ⋅     The  only  allowed  combinations  for   2H              Odd     Even          

            (H is  fermion)              Symmetric  nuclear  wavefunctions  (bosons):        

( ),tripletspin Jφ ψ θ ϕ⋅  

       Even                    Even  Or   ( )sin glet ,spin Jφ ψ θ ϕ⋅     Overall  symmetric  for   2D  

         Odd     Odd        

            (D  is  boson)  

Page 16: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     16    

The  restriction  to  either  overall  symmetric  wavefunctions  or  overall  antisymmetric  wavefunctions  amounts  to  a  coupling  between  rotational  and  nuclear  partition  function.  Hence  they  should  be  treated  together    

For   2H  (fermions,  antisymmetric)  12

I =  

    ( ) ( ) ( ) ( )2 1 / 1 /

1,3,5.. 0,2,4..3 2 1 1 2 1BJ J kT BJ J kTH

nRJ J

q J e J e− + − +

= =

= + + +∑ ∑  

For   2D  (bosons,  symmetric)   1I =  

    ( ) ( ) ( ) ( )2 1 / 1 /

0,2,4.. 1,3,5..6 2 1 3 2 1BJ J kT BJ J kTD

nRJ J

q J e J e− + − +

= =

= + + +∑ ∑  

 Remember  number  of  spin  states:             ( )1/ 2H I =     ( )1D I =  

    Odd           ( )2 1I I +                  1                  3  

    Even   ( )( )1 2 1I I+ +                  3                  6  

    Total   ( )22 1I +    For  HD  no  symmetry  requirement,   2 3 6ng = ⋅ = (degeneracies)  

    ( ) ( )1 /

0,1,2..6 2 1 BJ J kTHD

nRJ

q J e− +

=

= +∑  

In  general  for  homonuclear  diatomics  with  spin   I  Fermion:   ( )( ) ( )( )1 2 1 2 1Odd Even

R RI I q I I q+ + ⋅ + + ⋅  

Bosons:         ( )( ) ( )( )2 1 1 2 1Odd EvenR RI I q I I q+ ⋅ + + + ⋅  

    For  heteronuclear  diatomics:         ( )( )2 1 2 1 total

nR A B Rq I I q= + + ⋅            For  spin   AI  and  spin   BI    How  does  this  reduce  to  the  symmetry  factor  σ  for  rotational  wavefunction?  

a) ( )22 1 nucleareven oddn n I q+ = + =    

b) 12

even odd totalR R Rq q q≈ ≈  

Proof  of  b):   ( ) ( )1 /

0,2,42 1 BJ J kT

JJ e− +

=

+∑     2J k→ =  

    ( ) ( )2 2 1 /

0,1,2..4 1 B k k kT

kk e− +

=

= +∑     24 2y k k= + ,   8 2dy k= +  

    ( )/

0

1 1 2 2

y B kT kTe dyB

∞ −→ =∫  

  Similarly:    

    ( ) ( )1 /

1,3,52 1 BJ J kT

JJ e− +

=

+∑     2 1J k= + ,   0,1,2..k =  

Page 17: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     17    

    ( )( ) ( )( )2 1 2 2 /

1,3,52 2 1 1 B k k kT

Jk e− + +

=

+ +∑    

( )( )2 1 2 2y k k= + + ,           ( ) ( )2 2 2 2 2 1dy k k= + + +  

( )/

0

1 1 2 2

y B kT kTe dyB

∞ −→ =∫    

 →      Same  high  temperature  limit     This  analysis  is  quite  involved,  We  will  do  a  simulation  in  Matlab  to  clarify  

   

Polyatomic  Systems    

Consider  system  with   N  atoms   3N→  coordinates.  3  collective  coordinates  describe  the  overall  translation  of  center  of  mass.If  we  choose  to  optimize  the  equilibrium  geometry  we  can  identify  3  collective  coordinates  that  describe  rigid  rotation  (2  for  linear  molecules).    3 6N − collective  coordinates  remain  that  describe  internal  vibrations  ( 3 5N −  for  linear  molecule)    Solve  electronic  Schrodinger  equation  for  fixed  nuclear  position   iR ,   1i = ,  3N  

      { }( ) { }( ) { }( ) { }( ), ,H R r R E R r Rψ ψ=r r rr r  

  3N→  dimensional  potential  energy  surface  (PES)  

      0j

ER∂ =∂

       →    extreme  on  PES  

              Different  isomers:  different  minima  on  PES       Transition  State:  Saddle  points  on  PES  (Max  in  one  direction,  min  in  all  others)       Taylor  series  of  potential  energy  surface  around  minimum   eR

r  

    ( ) ( ) ( ) ( ) ( )21

2e e

e e e ei i ji ii i jR R R R

E EE R E R R R R R R RR R R

= =

∂ ∂= + − + − −∂ ∂ ∂∑ ∑

r r r r

r r r r r r r r  

      Extremum    →     0i

ER∂ =∂

 

  Mass-­‐weighted  Hessian    

Page 18: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     18    

     2

e

ij i ji j R R

EH M MR R

=

∂=∂ ∂ r r

 

(to  account  for  nuclear  masses  in  nuclear  kinetic  energy  term)         Diagonalize   ijH  

    6  (5)  eigenvalues  are  0:  correspond  to  overall  translation,  overall  rotation.  3 6N −       (3 5N − )  eigenvalues   iε  of  Hessian  correspond  to  normal  mode   i .    

By  diagonalizing  the  Hessian  the  vibrational  problem  is  reduced  to  3 6N − independent  harmonic  oscillator  problems  

 

        ( ) ( ) ( )2

22

1 12 2

ii i n i n i

i

d q q E qdq

ε χ χ⎡ ⎤− + =⎢ ⎥⎣ ⎦

 

      Define    1i

iεω =   (analog  of   i

km

ω = ,  with   1m = )  

        ( ) 12

in i iE n ω⎛ ⎞= +⎜ ⎟⎝ ⎠

h  

If  all   iε ,   iω  >  0  then  stationary  points  is  minimum.  If  precisely  one  of  the   iε  is  negative,  or,   iω  is  imaginary,  then  structure  is  transition  state    Vibrational  frequencies  and  normal  modes  are  obtained  from  Hessian.    Rotations:     Position  of  minimum:             , jRα     , ,x y zα = ,       1,2,...j N=  (number  of  nuclei)  

        ,1

cm k kk

j

R m Rm

αα= ∑

∑r

 

  Moment  of  inertia  tensor:  

      ( )( ) ( )2, , , , ,1

N

j j cm j cm j j cmj j

I m R R R R m R Rα β γα β α β α β γ

γδ

=

= − − − + −∑ ∑ ∑  

        ,Iα β  →    3  x  3  matrix  

  Diagonalizing  matrix   I  yields  3  eigenvalues     , ,A B CI I I       -­‐  Spherical  Top     A B CI I I= =       -­‐  Symmetric  Top     A B CI I I= >    (prolate  cigar)  or   A B CI I I> =      (oblate  disk)       -­‐  Asymmetric  Top     A B CI I I> >        

  Rotational  eigenvalues  spectrum  can  be  calculated  purely  from   , ,A B CI I I .  The  various  cases  are  somewhat  complicated       ‘High’  Temperature  partition  function  always  has  a  simple  form  (used  in  practice)  

Page 19: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     19    

        ( )1/21/2 1/2

RA B C

T T Tq TT T T

πσ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

2

2AA

TI

= h       2I Rµ=  

This  formula  always  works,  except  for  linear  molecules,  where  one  uses     RR

TqTσ

= ,  2

2RT I= h  (2  

rotational  degrees  of  freedom)        

Symmetry  Factorσ :  #  of  pure  rotations  in  the  point  group  of  the  molecule,  known  from  group  theory.  (#  of  rotations  that  map  molecule  onto  itself).  

      2H O   σ =  2       4CH         3 4 12σ = × =  

3NH          σ =  3       6 6C H           12σ =    Overall  partition  function  for  polyatomic  molecule:             ind

t R v n eq q q q q q=    

  Translational:     3/2tVq TNα=  

3/2

2

2 Mkπα ⎛ ⎞= ⎜ ⎟⎝ ⎠h   j

jM m=∑  

  Vibrational:      

1 /3 6 2

1 /1 21

i

i

h kTN

vh kTi

eqe

ω

ω

−−

−=

=−

∏    

One  factor  for  each  vibrational  mode,  including  zeropoint  frequency    

  Rotational:  

11 122 2

RA B C

T T TqT T T

πσ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠    

2

2AA

TI

= h    etc.    

        Nuclear  Spin     ( )2 1nq Iα

α= +∏   Iα :  nuclear  magnetic  moment  for  nucleus  α  

 

  Electronic:     /eD kTe        or     /iE kT

ie−Δ∑    

    eD :  atomization  energy,  bottom  of  well    →   separated  atoms      Many  quantities  can  be  calculated  accurately  from  contemporary  electronic  structure  calculations.  Geometries  and  vibrational  frequencies  are  fairly  accurate  (but  within  harmonic  approximations).  Atomization  energies/reaction  energies  would  be  the  hardest  to  obtain  accurately.    The  harmonic  approximation  is  poor  for  floppy  molecules.  This  is  difficult  to  correct.  Other  very  low  frequencies  of  vibrations,  internal  rotation  for  example  in  ethane   3 3CH CH−         Potential  along  torsional  mode  

Page 20: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     20    

          ( ) ( )cos 3V Aϕ ϕ=   A :  barrier  height    

This  can  be  included  (neglect  mode-­‐coupling).  There  are  problems  for  floppy  molecules  though.      Chemical  Reactions  and  Equilibrium  

 Consider  reactions  in  gas  phase    a) Thermodynamics:  

Prototype  reaction:       aA bB cC dD+ +Ä    

, , ,a b c d :  stoichiometric  coefficients                   , , ,A B C D :  chemical  species     Reactants  →  Products  

      Write  it  in  the  form           0cC dD aA bB+ − − =  

      0AA

Aυ =∑   0Aυ > for  products             0Aυ <  for  reactants  

    Since  we  will  consider  equilibrium,  reactants  vs  products  is  an  arbitrary  choice         At  chemical  equilibrium  

        0reactionGΔ =      and       0A AAυ µ =∑  

( ) ( )ln /oA A A oT RT P Pµ µ= +  

  oP =  standard  pressure,     AP =  partial  pressure  of  species   A    For  ideal  gases:   A AP x P=   Ax :  mole  fraction  of  species   A  

      ( ) ( )ln / lnoA A o AT RT P P RT xµ µ= + +  

        ( ), lnoA AT P RT xµ= +          (alternative  expression  in  mole  fractions)  

 

      0reaction A AA

G υ µΔ = =∑  

        ( ) ( )ln / AoA A A o

A AT RT P P υυ µ= +∑ ∑  

        ( ) ( )ln / AoA A A o

A AT RT P P υυ µ= +∑ ∏  

Page 21: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     21    

    Define  equilibrium  constant         ( )/ A

p A oA

K P P υ=∏  

        ( ) lnoA A p

AT RT Kυ µ = −∑   ( )o

A AA

Tυ µ∑  from  stat  mech  

    In  practice  we  can  calculate   ( )o

A Tµ  from  QM  and  Stat-­‐Mech         →  first  principle  theory  of  chemical  equilibrium       For  previous  example:       aA bB cC dD+ +Ä  

       ( ) ( )( ) ( )/ /

/ /

c dC o D o

p a bA o B o

P P P PK

P P P P=  

    Often  it  is  easier  to  work  with  molefractions   A AP x P=  

      ( ) ( )/ /A A

P A o A oA A

K P P x P Pυ υ= =∏ ∏  

        ( ) / AAA o

A Ax P P υυ= ⋅∏ ∏  

        ( ) /AA o

Ax P P υυ Δ= ⋅∏     A

Aυ υΔ =∑  

      ( )/P x oK K P P υΔ=  

        ( ) ( )/A

x A p oA

K x K P Pυ υ−Δ= =∏  

 Statistical  Mechanics         Chemical  potential  =  Gibbs  Free  energy           G A PV A NkT= + = +   (ideal  gas)  

              ln!

NqkT NkTN

⎛ ⎞= − +⎜ ⎟

⎝ ⎠  

              ( )ln lnNkT q kT N N N NkT= − + − +                 ln lnNkT q kTN N= − +  

              ( ) ( )ln / ln /NkT q N nRT q N= − = −    

      tv R n e

qq q q q qN N

= ⋅  

        3/2tM

q V TN N

α=                3/22

2MhMk

απ

−⎛ ⎞

= ⎜ ⎟⎝ ⎠

 

        PV NkT= →    V kTN P

=  

         5/2

t Mq kTN P

α=  

 

Page 22: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     22    

        //

11

oD kTv h kTq e

e ω−=−

     (diatomic)  

      , ,R n eq q q :  can  all  be  calculated  for  each  species  in  chemical  reactions    

    tqN

 determines  the  pressure  dependence  

     5/2

ln ln lnt M

o o

q kT PnRT nRT nRTN P P

α ⎛ ⎞⎛ ⎞− = − + ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠  

     5/2

, ln Mt o

o

kTq nRTP

α= −      →        enters   reactionGΔ  

 Connect  to  thermodynamics    

      ( )ln op A A

ART K Tυ µ− =∑  

        ln AA

A

qRTN

υ ⎛ ⎞= − ⎜ ⎟⎝ ⎠∑  

        ln lnA A

A A

A A

q qRT RTN N

υ υ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∏  

     A

Ap

A

qKN

υ⎛ ⎞= ⎜ ⎟⎝ ⎠

∏  

        ( ) ( ) ( ) ( ),A

A A A AAt o A A A A

v R n eA

qq q q q

N

υυ υ υ υ⎛ ⎞

= ⎜ ⎟⎜ ⎟⎝ ⎠∏  

        ,t o v R n eK K K K K=   each  factor  is  a  ratio  of  corresponding   q ’s    Let  us  analyze  different  factors:  

-­‐  nuclear  factor:  easiest,  since  the  number  of  nuclei  does  not  change  between  reactants  and  products  and  neither  does  nuclear  spin  

       reactants 1productsn

nn

q Kq

= =   (always)  

    -­‐  rotational  factors:  Just  has  to  be  calculated  for  each  molecule,  for  atoms  →   1A

Rq =  

    For  diatomics  use   RR

TqTσ

=    (good  enough)  

    Polyatomics:  

11 122 2

RA B C

T T TqT T T

πσ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠    

    -­‐  temperature  dependence  of   3/2T υ⋅Δ  (if  no  atoms/diatomics)    

Page 23: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     23    

  -­‐  translational  factor:    5/2

AA

Ao

kTP

υυα

Δ⎛ ⎞⎜ ⎟⎝ ⎠

∏   AA

υ υΔ =∑  

  For  both  rotational  and  translation  factors   xT υΔ  dependence  reflects  entropic  contributions    

0υΔ >  →  more  species  on  product  side  →  increase  in  entropy  (#  of  states)  upon  reaction  

    -­‐  vibrational  +  electronic  factor:  

These  factors  are  numerically  most  important.  Let  us  try  to  understand  how  the  terms  originate.  Let  us  for  definiteness  consider  a  concrete  reaction  HCN CNH→    PES  along  reaction  coordinate  

   We  would  make  a  harmonic  oscillator  model  for  reactant  and  products  (3  normal  modes  each).  The  change  in  electronic  energy  is  determined  from  the  difference  in  energy  at  the  bottoms  of  the  well.    

The  zeropoint  vibrations  energy  for  each  species  would  be   ( )12

AAzp i

iE ω=∑ h .  Here  

1,...3i = .  Sum  over  normal  modes    In  general  energy  difference  for  reaction  can  be  written  as  sum  over  electronic  energies  at  the  respective  minima  and  sum  over  zero  point  frequencies       e zpE E EΔ = Δ + Δ  

            12

A AA e i A

A A iEυ ω υ⎛ ⎞= + ⎜ ⎟

⎝ ⎠∑ ∑ ∑ h    

    ( ) /,o E kTv eK e−Δ=  

  ( )o :  indicates  the  contribution  due  to  the  ground  states  of  various  species  

Page 24: Chem%350:%Statistical%Mechanics%and%Chemical%Kineticsscienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Spring’2012’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics

Spring  2012   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  5:Partition  Functions  and  Properties  of  Real  Molecules     24    

 

For  each  species  there  would  be  in  addition  the  factor   , /

11 i

dv x kT

iq

e ω−=−∏ h .  This  factor  is  

very  close  to  unity  (1).      

  I  think  it  would  be  clearest  to  write  the  contribution  as           e zp vK K K⋅ ⋅  

        /eE kTeK e−Δ=   A

e A oA

E EυΔ =∑  

        /zpE kTzpK e−Δ=  

,

12zp i A

A i AE ω υ

⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠∑ ∑ h  

        /,

11

A

iv kTA i A

Ke

υ

ω−

⎛ ⎞= ⎜ ⎟−⎝ ⎠∏ ∏ h  

      A :  label  for  species   i :  level  for  normal  mode       This  clearly  indicates  the  origin  of  the  various  terms             p e zp t R vK K K K K K=  

  This  indicates  the  importance  of  various  factors     ~e zp t R vK K K K K>> > >  

 ,e zpK K  contribute  to  an  exponential  factor   /E kTe−Δ  and  this  absolutely  dominates  the  

equilibrium  constant.  Other  factors  depends  on  power  of  T .  Pressure  dependence  derives  from  

translational  partition  function   lno

PRTP

.  We  have  reached  the  essential  usage  of  statistical  

mechanics  in  chemistry.  Worthwhile  to  look  at  examples