27
Chem 117 Reference Spectra Spring 2011 1 H, 13 C NMR data taken from: Silverstein, Robert M.; Webster, Francis X.; Kiemle, D. J. Spectrometric Identification of Organic Compounds,7 th ed.; Wiley: 2005. IR data taken from: Lambert, Joseph F.; Shurvell, H. F.; Lightner, D. A.; Cooks, R. Graham Organic Structural Spectroscopy,1 st ed.; Prentice‐Hall: 1998.

Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

Chem 117 Reference Spectra Spring 2011 

 1H, 13C NMR data taken from:   Silverstein, Robert M.; Webster, Francis X.; Kiemle, D. J. Spectrometric Identification of Organic Compounds, 7th ed.; Wiley: 2005.  IR data taken from:  Lambert, Joseph F.; Shurvell, H. F.; Lightner, D. A.; Cooks, R. Graham Organic Structural Spectroscopy, 1st ed.; Prentice‐Hall: 1998. 

Page 2: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

I: 1, J

188 CHAPTER 3 PROTON NMR SPECTROMETRY

CHART A.1 CHEMICAL SHIFTS OF PROTONS ON A CARBON ATOM ADJACENT (a POSITION) TO A FUNCTIONAL GROUP

APPENDIX A IN ALIPHATIC COMPOUNDS (M - V) ~~------------------

I M = methyl 8 M methylene

M methine 8 A 2 5 ~ £ A 2 4 ~ £ A 2 3 ~ ~ A 2 2 ~ £ A 2 1 • £ A 2 0

M-CH2R 0 • 1 • M-C~C

0 0

M-C:::C I M-Ph • I • M-F I 15 I

M-CI • 0 I • 0

M-6r • • I

M-I • 0 .1 L • 0

M-OH I I

M-OR

M-OPh 1 I:! 0 I 0

M-OC(=O)R !. 0

I • i 0 -

I M-OC(=O)ph • I .. •

M-OC(=O)CF3 0 I 0

M-OTs' • I ! 0 I • 0

M-C(~O)H • >

i • M-C(=O)R • :0

I I • 0

M-C( OIPh 0

0 i

M-C(=O)OH • : 0 I • 0

! J: 0 M-C(=OIOR 0

M-CI=OINR2 0 0

• 0 I M-C:=N • 0

M NH2 • 0 I . • 0

M-NR2 • I • M NPhR

I

0 1

0

M WR3 ~ I !

M-NHC(=O)R 0 I 0

M-N02 ~I I

A 2 5 ~ £ A 2 4 ~ £ A 2 3 ~ £ A 2 2 ~ £ A 2 1 B £ A 2 0

Page 3: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

APPENDIX A 189

APPENDIX A (Continued)

4 2 5 8 6 4 2 4 8 6 4 2 3 8 6 4 2 2 8 6 .4 .2 1 .8 .6 .4 .2 0

• 0 I M-N=C • 0

0 M-N=C=O 0

M-O-C-N

M-N=C=S 0 0

M-S-C=:N • I • M-O-N=O M-SH • I • M-SR • I • M-SPh I

0 M-SSR 0

M-SOR 0

0

M-S0 2 R 0

0

M-S03 R

M- PR 2

M-P+CI 3 I

M-P(=O)R 2

M-P(=S)R2

.4 2 5 ~ ~ .4 2 4 ~ ~ .4 2 3 ~ ~ .4 2 2 ~ ~ .4 2 1 ~ ~ .4 2 0

*OTS is

o 110 -O-~ \ II CH3

o

Page 4: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

190 CHAPTER 3 PROTON NMR SPECTROMETRY

CHART A.2 CHEMICAL SHIFTS OF PROTONS ON A CARBON ATOM ONCE REMOVED (fJ POSITION) FROM A FUNCTIONAL

APPENDIX A GROUP IN ALIPHATIC COMPOUNDS (M-C-V)

• M methyl 8 M methylene

M = methine /j

.6 .5 .4 .3 .2 .1 1 .9 .8 .7 .6 .5 4 3 2 1 0

M-C -CH 2 • I

~ • .

M-C-C=C • • 0

. • 0

M-C-C::::C I

~ M-C-Ph 41 I

M-C -F :. 0 I • 0

M-C-CI • I • M-C-Br 0

0 t M-C-j ~ I

H-i--

M-C-OH • • M-C-OR •

tfi M-C-OPh 0

++ 0

I

M-C-OC( OIR

M-C-OC(=O)Ph • 0 I I n • 0 .

M-C-OC(=OICF3 0 0

M-C-C(=O)H 0:

0,

M-C-C(=O)R • 0 I +-H-4 • 0

M-C-C(=O)Ph 0 I

M- C -C("' OIOR I -I

I .

ffi M- C -C( = O)NR 2 (

M-C-C:::N 0 I 0

M-C-NR 2 m I I

M-C-NPhR

IT I--

+ • 0 M-C-NR3 • 0

r----' M-C-NHC( OIR

I

M-C-N02 0

!

I 10

M-C-SH • • M -C -SR I

Page 5: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

APPENDIX B 191

EFFECT ON CHEMICAL SHIFTS BY TWO OR THREE DIRECTLY APPENDIX B ATTACHED FUNCTIONAL GROUPS

Y-CH2-Zand Y-CH-Z I

W

The chemical shift of a methylene group attached to two functional groups can be calculated by means of the substituent constants ( u values) in Table B.l. Shoolery's rule* states that the sum of the constants for the attached functional groups is added to S 0.23, the chemical shift for CH4 :

The chemical shift for the methylene protons, of C6HsCH2Br, for example, is calculated from the u values in Table B.1.

0.23 O'PI! 1.85 UBr 2.33

() = 4.41 Found, () 4.43

Shoolery's original constants have been revised and extended in Table B.1. Ibe observed and calculated chemical shifts for 62% of the samples tested were within :to.2 ppm, 92% within :to.3 ppm. 96% within 0.4 ppm, and 99% within :to.5 ppm:r Table B.l contains substituent constants (Friedrich and Runkle, 1984) for the more common functional

* Shoolery, IN, (1959), Varian Technicallnforll1atiol1 Blllletin. Vol 2, No.3. Palo Alto, CA: Varian Associales. t Data from Friedrich, E.C., and Runkle. K.G. (1984) . .1. Chem. Educ. 61,830; (1986)63,127.

TABLE B.1 Substituent Constants for Alkyl Methylene (and Methyl) Protons.

Substituent Substituent Constants Constants

YorZ (u) YorZ ( u)

-H 0.34 -OC(=O)R 3.01 0.68 -OC(=O)Ph 3.27

-C-C 1.32 -C(=O)R 1.50 -C=C 1.44 -C(=O)Ph 1.90 -Ph 1.83 -C(=O)OR 1.46

1.12 -C( =0 )NR2(H2) 1.47 - CF3 1.14 -C=N 1.59 -F 3.30 -NR2(H2) 1.57 -Cl 2.53 -NHPh 2.04 -Br 2.33 -NHC(=O)R 2.27 -1 2.19 -N3 1.97 -OH 2.56 -N02 3.36 -OR 2.36 -SR(H) 1.64 -OPh 2.94 -OS02R 3.13

groups. Note that chemical shifts of methyl protons can be ealculated by using the constant for H (0.34). For example H-CH2-Br is equivalent to CH)Br.

Tables B.2a, B.2b, and B.2c: Chemical Shift Correlations for Methine Protons

Table B.2a the substituent constants* to be used with the formulation

() CHXYZ = 2.50 + Ux + Uy + O'z

which is satisfactory if at least two of the substituents are electron-withdrawing groups. In other words, only a single substituent may be an alkyl group (R). Within these limits, the standard error of estimate is 0.20 ppm. For example, the chemical shift of the methine proton in

OEt I

CH-CH-OEt 3

is calculated from Table B.2a as follows:

() = 2.50 -+ 1.14 + 1.14 + 0.00 4.78

TIle found value is 4.72. Tables B,2b and B.2c are used jointly for methine pro­

tons that are substituted by at least two alkyl groups

Bell. H.M., Bowles, D.B. and Senese, F. (1981). Org. Magn. Resoll .. 16,285. Wilh permission.

TABLE B.2a Substituent Constants for Methine Protons.

Group (u)

-F 1.59 -CI 1.56 -Br 1.53 -N02 1.84 -NH2 0.64 -NH3+ 1.34 -NHCOR 1.80 -OH. -OR 1.14 -OAr 1.79 -OCOR 2.07 -Ar 0.99 -C=C 0.46 -C=C 0.79 -C=N 0.66 -COR, -COC)R, -COOH 0.47 -CONH2 0.60 -COAr 1.22 -SH, -SR 0.61 - S02R 0.94 -R 0

Page 6: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

192 CHAPTER 3 PROTON NMR SPECTROMETRY

TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives.

(CH3hCHZ (CH3hCHZ

8 (ppm) 8 (ppm) Z obs Z obs

H 1.33 HO 3.94 H3C 1.56 RO 3.55 R 1.50 C6HsO 4.51 XCHz 1.85 R(H)C(=O)O 4.94 R(H)C(=O) 2.54 C6HsC(=0)0 5.22 C6HSC(=0) 3.58 F3CC(=0)0 5.20 R(H)OC(=O) 2.52 ArS020 4.70 R2(H2)NC( =0) 2.44 C6HS 2.89 R(H)S 3.16 R2(H2)C=CR(H) 2.62 RSS 2.63 R(H)C=C 2.59 N=C 2.67 F 4.50

CI 4.14 R2(H2)N 3.07 Br 4.21 R(H)C(=O)NH 4.01 I 4.24 02N 4.67

(or other groups of low polarity). Friedrich and Runkle pro­posed the relationship

0CHXYZ O(CH)),CHZ Axy

in which the X and Y substituents are alkyl groups or other groups of low polarity. The Z susbstituent covers a range of polarities. ~xy is a correction factor. Ine relationship states that the chemical shift of a methine proton with at least two low-polarity groups is equivalent to the chemical shift of an isopropyl methine proton plus correction factor.

The substituent constants for a Z substituent on an isopropyl methine proton are given in Table B.2b. The ~y correction factors are given in Table B.2c.

The following example illustrates the joint use of Tables B.2b and B.2c, with CH3, CH=CH2, and as sub­stituents. The most polar substituent is always designated Z.

TABLE B.2c Correction Factors for Methine Substituents of Low Polarity.

Cyclic Open-Chain Methine Methine Proton Proton Systems lixy Systems lixy

Z I

CH]-Cll-CH] 0.00 -1.0

Z Z

I d-ll CH]-Cll-R -0.20 +0.40

Z 0: I R-Cll-R -0.40 +0.20

Z 0: I CE3-Cll-CE2X +0.20 monosub. -0.20

axial E -0.45 Z I

CH]-Cll-CH=CHz +0.40 equal. H +0.25 Z

0: I CEl-Cll-CbHs +1.15 0.00

Z 0: I R-Cll-C,H5 +0.90 0.00

C6HS

I From Table B.2b, 8 2.89 for CH3 -CH -CH3 .

From Table B.2c, Lixy 0.00 for CH3• ~xy = 0.40 for CH=CH2•

C6H, I .-Therefore, 8 CH3-CH-CH=CH2 = 2.89 0.00 +

0.40 = 3.29 (Found: 8 3.44).

Page 7: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

APPENDIX c 193

APPENDIX C CHEMICAL SHIFTS IN ALICYCLIC AND HETEROCYCLIC RINGS

TABLE C.1 Chemicals Shifts in Alicyclic Rings.

\! D 0 0 0.22 1.96 1.51 1.44

° ° ° ° ° 6238 A 1.96u'.03 6 200 6222

1.65 2.02 -1.8

~1.8

TABLE C.2 Chemical Shifts in Heterocyclic Rings.

2.54

V

1.62 \7 N Hom

2.27

V

H 2.38

[J 2.23 3.54

01.85

3.75

°

H 2.01

R 0J X 3.9-4.1

H ° 4.75-4.90

5.90< I OJ) ° ~

° 30{~

°

2.08n 4.38

2.31 l (0

°

0 1.51

3.52

° 1.50

0 1.50

2.74 N H 1.84

02.23

3.00 S O2

COi4.70

1.68 ° 3.80

1.62

1.62(l4.06

2.27 yO °

0 1.78

° C>30 -1.94

~1.52 ~1.52

Page 8: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

194 CHAPTER 3 PROTON NMR SPECTROMETRY

CHEMICAL SHIFTS IN UNSATURATED APPENDIX D AND AROMATIC SYSTEMS

(See Table D.l)

8H = 5.25 +

For example, the chemical shifts of the alkene protons in

are calculated:

C6H5gelll

OR,rans

ORge;/I C6H51ml1s

TABLE D.1 Substituent Constants (Z) for Chemical Shifts of Substituted Ethylenes.

Z Z

Substituent R gem cis trans Substituent R gem cis

-H 0 0 0 H -Alkyl OA4 -0.26 -0.29 -C/O 1.03 0.97 - Alkyl-ring/l 0.71 -0.33 -0.30 -CH20, -CH2I 0.67 -0.Q2 -0.07 N -CH2S 0.53 -0.15 -0.15 / 1.37 0.93 -c=o -CH2C1, -CH2Br 0.72 0.12 0.07 -CH1N 0.66 -0.05 -0.23 /CI 1.10 1.41 -C-C 0.50 0.35 0.10 -C=O -C-N 0.23 0.78 0.58 -OR, R: aliph 1.18 -1.06 -C=C 0.98 -0.04 -0.21 -OR, R: conjb 1.14 -0.65 -C=Cconj') 1.26 0.08 -0.01 -OCOR 2.09 -OAO -C=O 1.10 1.13 0.81 -Aromatic 1.35 0.37 -C=Oconjb 1.06 1.01 0.95 -Cl 1.00 0.19 -COOH 1.00 1.35 0.74 -Br 1.04 OAO

R -COOHconjb 0.69 0.97 0.39 / 0.69 -1.19 -N R:aJiph

" R

R

-COOR 0.84 1.15 0.56 /

R:conj" 2.30 -0.73 -N

" R

-COORconjb 0.68 1.02 0.33 -SR 1.00 -0.24 -SOz 1.58 1.15

a Alkyl ring indicates that the double bond is part of the ring

1.35 ~1.28

1.18 ~0.1O

trans

1.21

0.35

0.99

-1.28 ~1.05

-0.67 ~0.10

0.03 0.55

1.31

-0.81

-0.04 0.95

I'The Z factor for the conjugated substituent is used when either the substituent or the double bond is further conjugated with other groups. Source: Pascual c.. Meier,]., and Simon, W. (1966) Helv. Chim. Acta, 49, 164.

5.25 0.07

85.32

5.25 1.08

i5 6.33

Page 9: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

TABLE 0.2 Chemical Shifts of Miscellaneous Alkenes

R=C~OCH3 ~-6--,------------1-.9-7 ------------2.-12----') HI. R H C R H,C R

>=< 3>=< J>=< H3C CH3 H CH3 H,C H

1.73 1.95 5.98 1.93 1.84 5.62

CH2 3.92

H,C,2.00jl . 1.06 CH2 OSlMe3

, 1 /I02 Ry T H2

5.70H H6.50

5.80

1.

650 2.150 5

.92 o~

1.96 ~ ~ // 5.59 7.36

2.02

R = C(=O)CH3 R OC(=O)CH3

&05 a 1.900 60

0.92

6.4n

oACH 3

2.13

5.95 2.28

2.20 7.71 Q 9

6.88

? 66 6.10 ~. 5.93

o 0

~o 6.05 ¢o} 1 1 6.72

6.75

5.78

0 4.43

o

1~090 I 4.65 02

.

66

4.63 003

.341

4.83

! 1 1 6.16 ~ 6.83 3.97 0 6.37 0 0

CH2Ph 0

6.94

U.40 '-':::::5.89 1.41

o 0 H

4.53

7.28

7.50

7.53 7.72

TABLE 0.3 Chemical Shifts of Alkyne Protons

HC=CR HC=C-C=CR HC=C-Ph

1.73-1.88 1.95 2.71-3.37

piperitone

HC-C-COH HC-CH

TABLE 0.4 Chemical Shifts of Protons on Fused Aromatic

7.81

co~

I 7,46 § §

7.65

8.69

8.31 7.91

cco~ ~

I 7.39 § § §

linalool

2.23 1.80 2.60-3.10

8.64

7.64 ;/

~ 5.60

(y-terpinene

7.65 8.01

APPENDIX D 195

Page 10: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

196 CHAPTER 3 PROTON NMR SPECTROMETRY

CHART D.1 CHEMICAL SHIFTS OF PROTONS ON MONOSUBSTITUTED BENZENE RINGS

9 8 6 4 2 8 8 ~ A 2 7 ~ ~ A 2 6 Benzene a :

CH3 (omp) : CH3CH1 (omp) : (CH3)lCH (omp) : (CH3),C o,m,p : : · · C=CH1 (omp) · · C=CH o,(mp) : · · Phenyl 0, m, p

• tit i · .. CF3 (omp) . · CH1CI(omp)

CHCI2 (omp) . . CCI3 0, (mp) : · · FA CH10H (omp) : CH2OR(omp) : CH2OC(=O)CH3 (omp) r±t : •

CH2NH2 (omp) : Fm,p.o ; · . · . CI (omp) :

Br 0, (pm) : : lo,p,m : : : OHm,p,o : : : ORm,(op)

I

: : OC(=O)CH3 m,p,o : · . OTsb(mp),o · : · CH(=O)o,p,m : : : C(=O)CH3 0, (mp) : :

~ : · . · . C(=O)OR 0, p, m : : : C(=O)CI 0, P. m . . . . . . Ci5N(omp)

tat NH2 m,p,o . . . . .

N(CH3h m(op) : NHC(=O)R o,m,p

NH; o (mp) . . . . . N02 o,p,m : : . m=R SR(omp) :

N=C=O(omp) :

(I The benzene ring proton is at I) 7.27, from which the shift increments are calculated as shown at the end of Section 3.4. b OTS p-toluenesulfonyloxy group.

Page 11: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

APPENDIX E 197

TABLE 0.5 Chemical Shifts of Protons on Heteroaromatic Rings

-0 3.88

6.63

I ~ 7.24 7.83

o

o 7.10

![)7.30 S

H~O (;o~ 9.92 3.88

7.68~ S 7.66~ S

7.22 7.78 6.91 7.40

-0 3.92

7.43 / ~

7.15 7.98 S

o

H2)0 °6~ 6.22 9.45 386 o 6.68 7.32 6.57 ~ 7 .. .4~ N ;r NH ~ H -8.0 - -11.0 NIl

°6", '0° '.62 '" 8n ow N - 0 7.1509.24 CNrj, ~I

6.77 y2 "- 'I ll;;;J ~ N 7.64 ~ /; 7.27 N~ 8.59 N-/N 7.37 N~.26 N~ 6.67 7.78 6.76 -10.0 6.10 6.92 7.12 7.18

TABLE 0.6 Chemical Shifts of HC=O,HC=N,and HC(Oh Protons

RCH=O 9.70 HC(=O)OR 8.05 RCH=NOHcis PhCH=O 9.98 HC(=O)NRz 8.05 RCH=NOH trans

RCH=CHCH=O 9.78 HC(OR)3 5.00 R N I ~ qNO' Y'ii !! N02

7.25 6.65

6.05

PROTONS SUBJECT TO HYDROGEN-BONDING EFFECTS APPENDIX E (PROTONS ON HETEROATOMs)a

8 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Proton Class • ~I OH Carboxylic acids

Sulfonic acids Phenols Phenols (intramolecular H bond)

il1D~ [SO Alcohols

aE, Enols (cyclic a-diketones)

fTm Enols ({:3 diketones) Enols (J3-ketoesters) j: in acetone

Water b H HH Oximes

NE2 and NHR Alkyl and cyclic amines Aryl amines Amides , I

• Urethanes I H Amines in trifluoroacetic acid

~ SH Aliphatic mercaptans H ....

I

8 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

"Solvent CDCl]. Chemical shifts within a range are a function of concentration. b See Section 3.6.1.2.

Page 12: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

198 CHAPTER 3 PROTON NMR SPECTROMETRY

APPENDIX F PROTON SPIN-COUPLING CONSTANTS

Type Jab (Hz) Jab Typical Type Jab (Hz) Jab Typical

H H"" /Hi> ,,/"

/C" 0-30 12-15 C=C 6-12 10

/ " Hi>

CH"" /CHb CHa-CHb (free rotation) 6-8 7 C=C 0-3 1-2

/ " I

" /CH" CH"-r-CHb 0-1 0 C=C 4-10 7

/ "

c:::[H" Hb

" /CH" 0-3 1.5 C=C

/ " H" Ha

ax-ax 6-14 8-10 H" CH" 0-3 2 "C=C/

ax-eq 0-5 2-3 / " eq-eq 0-5 2-3 C=CH,,-CHb=C 9-13 10

H"" /Hb 3 member 0.5-2.0

QH" cis 5-10 4 member 2.5-4.0 C=C 5 member 5.1-7.0

trans 5-10

~ Hb 6 member 8.8-11.0 (cis or trans) 7 member 9-13

8 member 10-13

o:H" CH,,-C CH" 2-3

cis 4-12 -CH,,-C-C-CHb-trans 2-10 2-3

Hb (cis or trans) H"

H~ 6

~:"H b

cis 7-13 trans 4-9 H"~H,,

4

b 0 (cis or trans)

~Hb 2.5 CHa-OH" (no exchange) 4-10 5 H" 0

H" .T (ortho) 6-10 9 0

G-no .T (meta) 1-3 3 " II /CH,,-CHb 1-3 2-3 .T (para) 0-] ~O

0 II .T (2-3) 5-6 5 C=CH"-CH,, 5-8 6

.T (3-4) 7-9 8 4 .T (2-4) 1-2 1.5

H 503 a" / .T (3-5) 1-2 1.5 /C=C" 12-18 17

6 '0. 2 .T (2-5) 0-1 1 Hb N .T (2-6) 0-] ~O

H .T (2-3) 1.3-2.0 1.8

" /" :0: .T (3-4) 3.1-3.8 3.6 C=C 0-3 0-2

/ " .T (2-4) 0-1 ~O

Hb 0 .T (2-5) 1-2 1.5

Page 13: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

APPENDIX F (Continued)

Type

:0: S

:0: N I

H

4 seN 6"" )2

N

J (2-3) J (3-4) J (2-4) J (2-5)

J (1-3) J (2-3) J (3-4) J (2-4) J (2-5)

1(4-5) 1 (2-5) 1 (2-4) J (4-6)

1 (4-5) 1 (2-4) 1 (2-5)

Jab (Hz)

4.9-6.2 3.4-5.0 1.2-1.7 3.2-3.7

2-3 2-3 3-4 1-2

1.5-2.5

4-6 l-2 0-1 2-3

3-4 ~O

t-2

Jab Typical

5.4 4.0 1.5 3.4

Type

Proton - Carbon-13 (See Tables 5.17,5.18)

Proton - Fluorine

" /Ha /C"

Fb

" I CH,-CFb / ' I

" , I I /CH"-r-rFb

" / /C=C" H" Fb

Proton - Phosphorus o

"II /PH

(CH3hP (CH3hP=0 (CH)CH2hP ( CH3CH2hP=0

o II

CH3P (OR)2 o

I II CH3CP (OR)2 I . CH30P (OR)2 P[N(CH3hh O=P[N(CH3hb

630-707

2.7 13.4 0.5 (HCCP) 13.7 (HCP)

11.9 (HCCP) 16.3 CHCP)

10-13

15-20

10.5-12 8.8 9.5

Source: Complied by Varian Associates. Absolute values. Reproduced with permission.

APPENDIX F 199

Jab (Hz)

44-81

3-25 0-4

1-8

12-40

06-10 m 5-6

p2

a:y 4.3 131' 48

Jab Typical

Page 14: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

200 CHAPTER 3 PROTON NMR SPECTROMETRY

CHEMICAL SHIFTS AND MULTIPLICITIES OF RESIDUAL PROTONS IN COMMERCIALLY AVAILABLE DEUTERATED

APPENDIX G SOLVENTS (MERCK & CO., INC.)

CompoundU Molecular Weight

Acetic acid-d4

64.078 Acetone-d6

64.117 Acetonitrile-d,

44.071 Benzene-d6

84.152 Chloroform-d

120.384 Cyclohexane-d 12

96.236 Deuterium oxide

20.028 1,2-Dichloroethane-d4

102.985 Diethyl-d lO ether

84.185 Diglyme-dl4

148.263

N, N-Dimethylformamide-d7

80.138

Dimethyl-db sulphoxide 84.170

p-Dioxane-ds 96.156

Ethyl alcohol-d6 (anh) 52.106

Glyme-d lO

100.184 Hexafturoacetone deuterate

198.067 HMPT-d I8

197.314 :..iethyl alcohol-d4

36.067 Methylene chloride-d2

86.945 Nitrobenzene-ds

128.143

8H (multiplet)

11.53 (1) 2.03 (5) 2.04 (5)

1.93 (5)

7.15 (br)

7.26(1)

1.38 (br)

4.63 (ref. DSSY 4.67 (ref. TSPY 3.72 (br)

3.34 (m) 1.07 (m) 3.49 (br) 3.40 (br) 3.22 (5) 8.01 (br) 2.91 (5) 2.74 (5) 2.49 (5)

3.53 (m)

5.19 (1) 3.55 (br) 1.11 (m) 3.40 (m) 3.22 (5) 5.26 (1)

2.53 (2 X 5)

4.78 (1) 3.30 (5) 5.32 (3)

8.11 (br) 7.67 (br) 7.50 (br)

"Purity (Atom % D) up to 99.96 % ("100 %") for several solvents.

CompoundU Molecular Weight

Nitromethane-d3

64.059 Isopropyl alcohol-ds

68.146

Pyridine-do 84.133

Tetrahydrofuran-d R

80.157 Toluene-d~

100.191

Trifluoroacetic acid-d 115.030

2,2,2-Triftuoroethyl alcohol-d3

103.059

8H (multiplet)

4.33 (5)

5.12 (1) 3.89 (br) 1.10 (br) 8.71 (br) 7.55 (br) 7.19 (br) 3.58 (br) 1.73 (br) 7.09 (m) 7.00 (br) 6.98 (m) 2.09 (5)

11.50 (1)

5.02 (1) 3.88 (4 X 3)

h TIle residual proton consists of one proton of each kind in an otherwise completely deuterated molecule. For example, deuterated acetic acid has two different kinds of residual protons: CD2H-COOD and CD 3-COOH.TIle CD2H proton. coupled to two D nuclei is at 02.03 with a multiplicity of 5 (i.e., 2111 I 2 x 2 XII = 5). The carboxylic proton is a singlet at 0 11.53. , DSS is 3-trimethyJsilyJ)-I-propane sulfonic acid, sodium salt. TSP is sodium-3-trimethylpropionate-2,2,3.3-d4• Both are reference standards used in aqueous solutions.

Page 15: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

APPENDIX I 203

APPENDIX I PROTON NMR CHEMICAL SHIFTS OF AIVIINO ACIDS IN D20

O}-o_ 1.46 --\3.76

NH3 + .

Alanine (Ala) (A)

0/-0-

Hi~C 3.05 SH

Cysteine (Cys) (C)

6

+ NH2 )~ 1.67 3.74

o

H2N N 3.22 1.87 H

NH, + .

Arginine (Arg) (R)

o 0

o 2.33 3.72 ~

2.06 0-

NH, + .J

Glutamic Acid (GIu) (E)

0.92 0 3.18 lo-N 3.98 1.24".4sr1t 7.84\

I 7.08 ~ 1.95 0

HN NH3 0.99 !'l'H3 +

Histidine (His) (H) Isoleucine (Ilue) (I)

0 +

/S 2.12 3.83 ~ H2 3340w<:0 2.12 2.64 0-

NH3 2.01 4.11 0-f· .

~ 2.07,2.32

0-

o H 2N, ~3.97~

'(2.911 '0

o NH, + .

Asparagine (Asn) (N)

o 0 Jl2,43/'..3.73Jl

H2N' ~2.lOy '0-

NH, + .

Glutamine (GIn) (Q)

0 0.96 1.703.70

1.70 0-

0.96 NH, + .

Leucine (Leu) (L)

o -0, ~3.85j~

1(2.70Y 0-

o NH3 t

Aspartic Acid ( Asp) (D)

Glycine (Gly) (G)

+ + H3N HiN 0

~ 3.02 3.73 0

1.70 1.87

Lysine (Lys) (K)

< ) 3?32~O ~ + 3.98

~o' H}l' 3.93

7.40 H3N 0- 3.85 OH

Methionine (Met) (M) Proline (Pro) (P) Phenylalanine (Phe) (F) Serine (Ser) (S)

HO~NH3 0 4.22 3.51

0-1.31

Threonine (Thr) (T)

7.54

N H

o 3.38 4.24

Tryptophan (Trp) (W)

0-

+ H3N 0

n~~ HO~_ 2.~;;:3'i .. 1311 (

0

6.88 7.20

Tyrosine (Tyr) (Y)

1.~00'97 2.25

6 3.59 NH3

o Valine (Val) (V)

Page 16: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

240 CHAPTER 4 CARBON·13 NMR SPECTROMETRY

THE 13C CHEMICAL SHIFTS, COUPLINGS, AND MULTIPLICITIES APPENDIX A OF COMMON NMR SOLVENTS

Structure Name

CDCl3 Chloroform-d1

CD30D Methanol-d4

CD3SOCD3 DMSO-d6 0 II

DCN(CD3)2 DMF-d7

CfiD6 Benzene-d6

D2C-CD, I \-

THF-ds D2C" /CD2

° /0" D2C CD,

I 1- Dioxane-ds D2C" /CD2

° D

Di.?xD Pyridine-ds

D 9 D

0 II

CD3CCD3 Acctone-d6

CD3CN Acetonitrile-d3

CD3N02 Nitromethane-d3

CD3CD2OD Ethanol-d6

(CD3CD2)20 Ether-dID

[(CD3hNhP =O HMPA-dI8 CD3C02D Acetic acid-d4

CD2Ch Dichloromethane-d2

(Methylene chloride-d2)

a Triplet intensities 1 :1:1,quintet = 1:2:3:2:l,septet = 1:3:6:7:6:3:1. b Unresolved, long·range coupling.

o(ppm)

no 49.0 39.7

30.1 35.2

167.7 128.0

25.2 67.4

66.5

123.5 (C-3,5) 135.5 (C-4) 149.2 (C-2,6)

29.8 (methyl) 206.5 (carbonyl)

1.3 (methyl) 118.2 (CN) 60.5 15.8 (C-2) 55.4 (C-l) 13.4 (C-2) 64.3 (C-1) 35.8 20.2 (C-2)

178.4 (C-1) 53.1

Ic_n(Hz) Multiplicity"

32 Triplet 21.5 Septet

21 Septet

21 Septet 21 Septet 30 Triplet 24 Triplet

20.5 Quintet 22 Quintet

22 Quintet

25 Triplet 24.5 Triplet 27.5 Triplet

20 Septet <1 Septet/> 32 Septet

<1 Septd) 23.5 Septet 19.5 Septet

22 Quintet 19 Septet 21 Quintet 21 Septet 20 Septet

<1 Septet" 29 Quintet

Source: Breitmaier, E., and Voelter, W. (1987). Carboll-13 NMR Spectroscopy, 3rd ed. New York: VCll, p. 109; with pennission. Also Merck & Co., Ine.

Page 17: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

242 CHAPTER 4 CARBON·13 NMR SPECTROMETRY

APPENDIX B (Continued)

n-hexane CH:; 14.14 14.34 13.88 14.32 14.43 14.45 CH2(2) 22.70 23.28 22.05 23.04 23.40 23.68 CH2(3) 31.64 32.30 30.95 31.96 32.36 32.73

HMPA CH3 36.87 37.04 36.42 36.88 37.10 37.00 methanol CH3 50.41 49.77 48.59 49.97 49.90 49.86 nitromethane CH3 62.50 63.21 63.28 61.16 63.66 63.08 n-pentane CH3 14.08 14.29 13.28 14.25 14.37 14.39

CHi2) 22.38 22.98 21.70 22.72 23.08 23.38 CHz(3) 34.16 34.83 33.48 34.45 34.89 35.30

2-propanol CH3 25.14 25.67 25.43 25.18 25.55 25.27 CH 64.50 63.85 64.92 64.23 64.30 64.71

pyridine CH(2) 149.90 150.67 149.58 150.27 150.76 150m CH(3) 123.75 124.57 123.84 123.58 127.76 125.53 CH(4) 135.96 136.56 136.05 135.28 136.89 138.35

silicone grease CH3 1.04 1.40 1.38 2.10 tetrahydrofuran CH2 25.62 26.15 25.14 25.72 26.27 26.48

CHP 67.97 68.07 67.03 67.80 68.33 68.83 toluene CH3 21.46 21.46 20.99 21.10 21.50 21.50

C(i) 137.89 138.48 137.35 137.91 138.90 138.85 CH(o) 129.07 129.76 128.88 129.33 129.94 129.91 CH(rn) 128.26 129.03 128.18 128.56 129.23 129.20 CH(p) 125.33 126.12 125.29 125.68 126.28 126.29

triethylamine CH3 11.61 12.49 11.74 12.35 12.38 11.09 CHz 46.25 47.07 45.74 46.77 47.10 46.96

APPENDIX C THE 13C CORRELATION CHART FOR CHEMICAL CLASSES

R ~ H or alkyl sUbsituents Y '" polar substituents Acyclic hydrocarbons

-CH J

I -CH2

I CH I

I -C­

I

Alicyclic hydrocarbons

CJHS

C. He to C,o H2O

Alkenes

HzC C - R HzC= C - Y C=C-C C - R

Allenes C=C=C

Alkynes C C-R C"C Y

Aromatics Ar R Ar Y

Heteroaromatics

Alcohols C-OH

Ethers C-O-C

220 200 180 160 140 120 100 80 60 40 20 o -20

---- -----+-

=C R

-:~:'==~~-----l--TT; -'J--=-c""=~~~= ---~ --- -- --- ----"i---- ----- I -- ----

I I HC" "C-R -I ---- ---- ~;~ __ .::L -:::- _--.......,......-- ---

i ---~-~~$t~~~~ ~~~~ -+---:"_"""'---1

1

- - - - t ---- ----- -

1 ---..... ---I

36.46 49.50 63.22

24.38 64.88

149.18 125.12 138.27

25.67 68.68

9.07 47.19

Page 18: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

APPENDIX C 243

APPENDIX C (Continued)

Acetals, Ketals O-C-O

Halides

C - F'_3

C - CI'_4 C - Br,_4 C - 1,-,

Amines C-N R2

Nitro C-N02 Mercaptans, Sulfides

C-S-R

Sulfoxides, Sulfones

C-SO-R, C-S02 -R

Aldehydes, sat. RCHO

Aldehydes, Ct, tJ-unsat.

R-C=C-CH=O

Ketones, sat. R2 C=O

Ketones, Ct, tJ-unsat. R-C=C-C=O

Carboxylic aCids, sat. RCOOH

Salts RCOO­Carboxylic acids,

Ct, iJ-unsat. R-C-C-COOH

Esters, sat.

R-COOR'

Esters, Ct, iJ-unsat.

R-C=C-COOR'

Anhydrides (RC02 )0

Amides RCONH2

Nitriles R-C=N

Oximes R2 C=NOH Garbarmates R2NCOOR' Isocyanates R-N=C=O

Cyanates R-O-C=N

220 200 lBO 160 140 120 100 80 60 40 20 o -20

-i---- •

,...- -- ---- - ----~-----~----~--+---~----~----- --------~-----.~-------------

--,- - ---I- --- --28.5

----I- '- -- -292.5

- --------

---- .- --------

1-- .- .- --r-------

-- .- - - -1--- --1-

----r·----+·---~----+----- --- -- ---- ---- 1---- .-

1--...,-.--- ---t----- - - --!----- ---- -_.-

---+-------l----+ ----1---- -r----------i _________ 1 ___ _ .-- ·--:----4·----·

--

- --~------1---- ---- 1- -- -- -- -1-

- .-

--- -~---------'------l_--- ---- ----I-

I •

220 200 180 160 140 120 100 80 60 40 20 o -20

1------1----_._---+--- ------- ---_.-------------1-- --------- ----!--.--~----~---.---------- ------- ---- ---- ---- ---- ----- ----

--- - ---- ----

lsothiocyanates R-N=C=S

Thiocyanates R-S-C=N ---- -----,---- -- - -1-----;- ------t-----

Page 19: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

244 CHAPTER 4 CARBON-13 NMR SPECTROMETRY

APPENDIX D 13C NMR DATA FOR SEVERAL NATURAL PRODUCTS (0)

112.9 16.0 137.2 ~ 58.7

39.7 124.5 on

24.4

162.1

32.5 ~ 128,7 30.8 1139.0

26.1 115.5 26.6 27.2 CHO 189.4

124.41131.0

17.1 25.1

Myrcene

23.8

033.2

120.8 :::?' 30.9

30.6 28.0

41.2:

~.7 20.5 108.4

Limonene

38.7

1124

.9

131.2

17.4 25.5

Geraniol

22.2

131.5

119.6:::?' ; 28.5

116.5 ~ 24.8

140.9 34.0

20.6

a -Terpil1el1e

20.0 19.5

dJ 30.1 t---r----t

36.9 30.1 9.7 0

Norbornane Camphor

o ~.5

25.2

31.8 19.7

I3-Ionone

41.4

17.5 25.3

Linalool

23.1

132.9

120.7 :::?' 30.9

25.9 23.6

on 26.7 27.1

a-Terpineol

26.4 22.8

23.0

",-Pinene

42.4 121.3

Cholesterol

32.9

28.5

123.1

132.9

17.4 25.3

cis·Citral

(Neral, Citral b)

21.7

131.7 1 0 140.8

22.7 21.8

Pulegone

2~6'1 21.8 40.5 23.6

40.5 23.6

27.0 51~1.8 105.9

I3·Pinene

35.2022.6 134.9

12" 6 a68,:.?, 57.0

-' 1 138.9~ 148.5 h 149.5

N CH)40.3

35.9

CH3-N~2'1

25.8 .. 65.4

171.6 51.5

lOlCH)

50.8

o IIJ~7.1

OC 0 133.6 130.5

Nicotine

o

(~5'2

100.9 NH

143.0 1 ~52.7 N 0 H

Uracil

25.8 67.5 129.1 131.0

Cocaine

22.1

34.8

23.0

49.9

20.9

25.6

44.9

71.3

OH

15.9

Menthol

13 -o-Glucose

OH

Page 20: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

TABLE 8-2 An Alphabetical Listing of Some Functional Groups and Classes of Compounds with Their Absorption Frequencies in the Infrared

Groups or Class

l Acid halides R-C

\ X

Aliphatic

Aromatic

Alcohols Primary -CH 2OH

Secondary -CHROH

Tertiary -CR2OH

General -OH

Aldehydes

Alkenes Monosubst -CH=CHz Disubst -CH=CH-

\=CH / z

Trisubst

\ C=CH-

/

Tetrasubst

Alkyl

Alkynes RC=C-H

Amides Primary -CONH2

Secondary -CONHR

Frequency Ranges (cm- 1) and Intensities *

1810-1790 (s) 965-920 (m) 440-420 (s)

1785-1765 (s)

890-850 (s)

3640-3630 (s) 1060-1030 (s) 3630-3620 (s) 1120-1080 (s)

3620-3610 (s) 1160-1120 (s) 3350-3250 (s)

1440-1260 (m-s, br) 700-600 (m-s, br)

2830-2810 (mIl 2740-2720 (m) 1725-1695 (vs) 1440-1320 Is) 695-635 (s) 565-520 (s)

3050-3000 (w) 1690-1655 (w-m) 850-790 (m)

1690-1670 {wI

2980-2850 (m) 1470-1450 (m) 1400-1360 (m) 740-720 (w)

3300-3250 (m-s) 2250-2100 (w-m) 680-580 (s)

3540-3520 (m) 3400-3380 (m) 1680-1660 (vs) 1650-1610 (m)

1420-1400 (m-s) 3440-3420 (m)

1680-1640 (vs) 1560-1530 (vs) 1310-1290 (m) 710-690 (m)

*KEY: s ~ strong; m medium; w weak; v = very; br broad.

Assignment and Remarks

C=O stretch; fluorides 50 cm- 1 higher C-C stretch CI-C=O in-plane deformation C=O stretch; also a weaker band (1750-

1735 cm- 1) due to Fermi resonance C-C stretch (Ar-C) or C-CI stretch

OH stretch, dil CCI4 soln C-OH stretch; lowered by unsaturation OH stretch, dil CCI4 soln C-OH stretch; lower when R is a branched

chain or cyclic OH stretch, dil CCI 4 soln C-OH stretch; lower when R is branched OH stretch; broad band in pure solids or

liquids C-OH in-plane bend C-OH out-of-plane deformation

Fermi doublet; CH stretch with overtone of CH bend

C=O stretch; slightly higher in CCI4 soln H-C=O bend in aliphatic aldehydes C-C-CHO bend C-C=O bend

See Vinyl See Vinylene

See Vinylidene

CH stretch C=C stretch CH out-of-plane bending C=C stretch, may be absent for symme-

trical compounds

CH stretch, several bands CH 2 deformation CH 3 deformation CH 2 rocking

Terminal C-H stretch C=C, frequency raised by conjugation -C=CH bend

NHz stretch (dil solns); bands shift to 3360-3340 and 3200-3180 in solid

C=O stretch (Amide I band) NHz deformation; sometimes appears as a

shoulder (Amide II band) C-N stretch (Amide III band) NH stretch (dil soln); shifts to 3300-3280 in

pure liquid or solid C=O stretch (Amide I band) NH bend (Amide II band) C-N stretch Assignment uncertain

Continued

Page 21: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

190 Part II I Vibrational Spectroscopy

TABLE 8-2 An Alphabetical Listing of Some Functional Groups and Classes of Compounds with Their Absorption Frequencies in the Infrared-cont'd

Groups or Class

Amides-cont'd Tertiary -CONR2 General -CONRz

Amines Primary -NHz

Secondary -NHR

Tertiary -NRz

Amine hydrohalides RNH3 -x-+

R'NHzR x-

7Hz

Amino acids -C-COOH I

+ (or -CNH3COO)

Ammonium NH/

Anhydrides -CO

\0 /

-CO Aromatic compounds

, Azides -N=N=N

Bromo -C-Br tert-Butyl (CH3)3C-

Carbodiimides -N=C=N-

Carbonyl \C=O /

Carboxylic acids

I Chloro -C-CI

I Cycloalkanes

Frequency Ranges (em-I) and Intensities *

1670-1640 (vs) 630-570 (s) 615-535 (s) 520-430 (m-s)

3460-3280 (m)

2830-2810 (m) 1650-1590 (s) 3350-3300 (vw) 1190-1130 (m) 740-700 (m) 450-400 (w, br) 510-480 (s)

2800-2300 (m-s) 1600-1500 (m)

3200-3000 (s)

1600-1590 (s) 1550-1480 (m-s) 1425-1390 (w-m) 560-500 (s)

3350-3050 (vs) 1430-1390 (s)

1850-1780 (variable) 1770-1710 (m-s) 1220-1180 (vs)

3100-3000 (m) 2000-1660 {wI 1630-1430 (variable) 900-650 (s)

580-420 (m-s)

2160-2080 (s)

650-500 (m) 2980-2850 (m) 1400-1370 (m)

and 1380-1360 (s)

2150-2100 (vs)

1870-1650 (VS, br)

3550-3500 (s) 3300-2400 (s, v br) 1800-1740 (s) 1710-1680 (vs)

700-590 (s) 550-465 (s)

850-550 (m)

580--430 (s)

Assignment and Remarks

C=O stretch I\I-C=O bend C=O out-of-plane bend C-C=O bend

I\JH stretch; broad band, may have some structure

CH stretch NHz deformation NH stretch C-N stretch NH deformation C-N-C bend C-N-C bend

NH3 - stretch, several peaks NH deformation (one or two bands)

H-bonded 1\1 Hz and OH stretch; v broad band in solid state

COO antisym stretch -NH3 deformation COO- sym stretch COO rocking NH stretch; broad band NHz deformation; sharp peak

Antisym C=O stretch Sym C=O stretch C-O-C stretch (higher in cyclic anhydrides)

CH stretch, several peaks Overtone and combination bands Aromatic ring stretching (four bands) Out-of-plane CH deformations (one or two

bands depending on substitution) Ring deformations (two bands)

N=N=N stretch

C-Br stretch CH stretch; several bands

CH3 deformations

N=C=N antisym stretch

C=O stretch

OH stretch (monomer, dil soln) H-bonded OH stretch (solid and liquid states) C=O stretch of monomer (dil soln) C=O stretch of dimer (solid and liquid states) 960-910 (s) C-OH deformation O-C=O bend C-C=O bend

C-CI stretch

Ring deformation

Page 22: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

TABLE 8-2 An Alphabetical Listing of Some Functional Groups and Classes of Compounds with Their Absorption Frequencies in the Infrared-cont'd

Groups or Class

Diazonium salts -N=N

#0 Esters R-C

7

"oR' Ethers -C-O-C-

Fluoroalkyl -CF3' -CH2-, etc.

Isocyanates -N=C=O

Isothiocyanates -N=C=S

Ketones R\

C=O R/

Lactones

Methyl -CH3

Methylene -CH 2 -

Naphthalenes

Nitriles -C=N

Nitro -N02

Oximes =NOH

Phenols Ar-OH

Frequencv Ranges (em-I) and Intensities *

2300-2240 (s)

1765-1720 (vs) 1290-1180 (vs) 645-575 (s)

1280-1220 (s) 1140-1110 (vs) 1275-1200 (vs) 1250-1170 (s) 1050-1000 (s)

1400-1000 (vs)

2280-2260 (vs)

2140-2040 (vs, br) 1725-1705 (vs) 1700-1650 (vs) 1705-1665 (s)

and 1650-1580 (m)

1850-1830 (s) 1780-1770 (s) 1750-1730 (s)

2970-2850 (s) 2835-2815 (s) 2820-2780 (s) 1470-1440 (m) 1390-1370 (m-s)

2940-2920 (m) and 2860-2850 (m)

3090-3070 (m) and 3020-2980 (m)

1470-1450 (m)

645-615 (m-s) and 545-520 (s)

490-465 (variable)

2260-2240 (w) 2240-2220 (m)

580-530 (m-s)

1570-1550 (vs) and 1380-1360 (vs)

1480-1460 (vs) and 1360-1320 (vs)

920-830 (m) 650-600 (s) 580-520 (m) 530-470 (m-s)

3600-3590 (vs) 3260-3240 (vs) 1680-1620 (w)

720-600 (s, br) 450-375 (w)

3100-3000 (w-m) 2000-1700 (w)

Assignment and Remarks

N=N stretch

C=O stretch C-O-C antisym stretch O-C-O bend

C-O-C stretch in alkyl aryl ethers C-O-C stretch in dialkyl ethers C-O-C stretch in vinyl ethers C-O-C stretch in cyclic ethers R(alkyl)-C-O stretch in alkyl aryl ethers

C-F stretch

N=C=O stretch

C=N=S antisym stretch

C=O stretch in saturated aliphatic ketones C=O stretch in aromatic ketones C=O and C=C stretching in

a,j3-unsaturated ketones

C=O stretch in j3-lactones C=O stretch in y-Iactones C=O stretch in 8-lactones

CH stretch in C-CH3 compounds CH stretch in methyl ethers (0-CH3) CH stretch in N-CHa compounds CH3 antisym deformation CH3 sym deformation

CH stretches in alkanes

CH stretches in alkenes

CH2 deformation

In-plane ring bending

Out-of-plane ring bending

C=N stretch in aliphatic nitriles C=N stretch in aromatic nitriles C-C-CN bend

N02 stretches in aliphatic nitro compounds

N02 stretches in aromatic nitro compounds

C-N stretch N02 bend in aliphatic compounds N02 bend in aromatic compounds N02 rocking

OH stretch (dil soln) OH stretch (solids) C=N stretch; strong in Raman

O-H out-of-plane deformation C-OH deformation CH stretch Four weak bands; overtones and combinations

Continued

Page 23: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

TABLE 8-2 An Alphabetical Listing of Some Functional Groups and Classes of Compounds with Their Absorption Frequencies in the Infrared-cont'd

Groups or Class

Phenyl-----cont'd

Phosphates (RO)3P=0 R = alkyl

R aryl

Phosphines -PHz' -PH

Silanes -SiH3 -SiHz-

Silanes (fully substituted)

Sulfates R-O-SOz-O-R

R-O-S03-M+ (M Na+, K+, etc.)

Sulfides C-S-

Sulfones -S02-

Sulfonic acids -S020H

Sulfoxides \S=O /

Thiocyanates -S-C-N

Thiols -S-H

Triazines C3NzY3

1 ,3,4,5-trisu bst

Vinyl -CH=CH2

Vinylene -CH=CH-

Vinylidene \=CH / 2

Frequency Ranges (em-I) and Intensities"

1625-1430 (m-s) 1250-1025 (m-s) 770-730 (vs) 710-690 (vs) 560-420 (m-s)

1285-1255 (vs) 1050-990 (vs) 1315-1290 (vs) 1240-1190 (vs)

2410-2280 (m) 1100-1040 (w-m) 700-650 (m-s)

3080-3020 (m) 1620-1580 (vs)

and 1590-1560 (vs) 840-720 (s)

635-605 (m-s)

2160-2110 (m) 950-800 (s)

1280-1250 (m-s) 1110-1050 (vs) 840-800 (m)

1140-1350 (s) and 1230-1150 (s)

1260-1210 (vs) and 810-770 (s)

710-570 (m)

1360-1290 (vs) 1170-1120 (vs) 610-545 (ms)

1250-1150 (vs, br)

1060-1030 (s, br) 610-545 (m-s)

2175-2160 (m) 650-600 (w) 405-400 (s)

2590-2560 (w) 700-550 (w)

1600-1500 (vs) 1380-1350 (vs) 820-800 (s)

3095-3080 (m) and 3030-2980 (w-m)

1850-1800 (w-m) 1645-1615 (m-s) 1000-950 (s) 950-900 (vs)

3040-3010 (m) 1665-1635 (w-m) 1675-1665 (w-m) 730-665 (s) 980-955 (s)

3095-3075 (m) 1665-1620 (w-m) 895-885 (s)

Assignment and Remarks

Aromatic C=C stretches (four bands) CH in-plane bending (five bands) CH out-of-plane bending Ring deformation Ring deformation

p=o stretch P-O-C stretch P=O stretch P-O-C stretch

P-H stretch P-H deformation P-C stretch

CH stretch

C-C and C-N stretches

CH out-of-plane deformation (one or two bands, depending on substitution)

In-plane ring bending

Si-H stretch Si-H deformation

Si-C stretch Si-O-C stretch (aliphatic) Si-O-C deformation

S-O stretches in covalent sulfates

S=O stretches in alkyl sulfate salts C-O-S stretch

C-S stretch

S02 antisym stretch S02 sym stretch S02 scissor mode

S=O stretch

8=0 stretch S02 SCissoring

C=N stretch S-CN stretch 8-C-N bend

S-H stretch; strong in Raman C-S stretch; strong in Raman

Ring stretching Ring stretching CH out-of-plane deformation

=CHz stretching =CH stretching Overtone of CHz out-of-plane wagging C=C stretch CH out-of-plane deformation CH2 out-of-plane wagging

=CH2 stretching C=C stretch (cis isomer) C=C stretch (trans isomer) CH out-of-plane deformation (cis isomer) CH out-of-plane deformation (trans isomer)

=CHz stretching C=C stretch CH2 out-of-plane wagging

Page 24: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

Chapter 8 I Group Frequencies: Infrared and Raman 193

TABLE 8-3

A Numerical Listing of Wavenumber Ranges in Which Some Functional Groups and Classes of Compounds Absorb in the Infrared

Range (em- 1)

and Intensity*

3700-3600 (s) 3520-3320 (m-s)

3420-3250 (5) 3360-3340 (m) 3320-3250 (m) 3300-3250 (m-s) 3300-3280 (s)

3200-3180 (s) 3200-3000 (v br) 3100-2400 (v br) 3100-3000 (m)

2990-2850 (m-s)

2850-2700 (m) 2750-2650 (w-m) 2750-2350 (br) 2720-2560 (m) 2600-2540 (w) 2410-2280 (m) 2300-2230 (m) 2285-2250 (5) 2260-2200 (m-s) 2260-2190 (w-m) 2190-2130 (m) 2175-2115 (s) 2160-2080 (m) 2140-2100 (w-m) 2000-1650 (w)

1980-1950 (s) 1870-1650 (vs) 1870-1830 (s) 1870-1790 (vs) 1820-1800 (s)

1780-1760 (s) 1765-1725 (vs) 1760-1740 (vs) 1750-1730 (s) 1750-1740 (vs)

1740-1720 (s)

1720-1700 (s)

1710-1690 (s) 1690-1640 (s) 1680-1620 (s)

1680-1635 (s) 1680-1630 (m-s) 1680-1630 (vs) 1670-1640 (s-vs) 1670-1650 (vs) 1670-1630 (vs)

Group and Class

-OH in alcohols and phenols NH2 in aromatic amines, primary amines and amides

-OH in alcohols and phenols -NH2 in primary amides -OH in oximes =CH in acetylenes -NH in secondary amides

-NH2 in primary amides -NH3 in amino acids -OH in carboxylic acids =CH in aromatic and unsaturated

hydrocarbons -CH3 and -CH 2- in aliphatic

compounds -CH3 attached to 0 or N -CHO in aldehydes -NH/ in amine hydrohalides -OH in phosphorus oxyacids -SH in alkyl mercaptans -PH in phosphines N-N in diazonium salts N=C=O in isocyanates C=N in nitriles C=C in alkynes (disubstitution) C=N in thiocyanates N=<;: in Lsonitriles N=N=N in azides C=C in alkynes (monosubstitution) Substituted benzene rings

C=C=C in allenes C=O in carbonyl compounds C=O in ~-Iactones C=O in anhydrides C=O in acid halides

C=O in y-Iactones C=O in anhydrides C=O in a-keto esters C=O in I:l-Iactones C=O in esters

C=O in aldehydes

C=O in ketones

C=O in carboxylic acids C=N in oximes C=O and NH2 in primary amides

C=O in ureas C=C in alkenes, etc. C=O in secondary amides C=O in benzophenones C=O in primary amides C=O in tertiary amides

Assignment and Remarks

OH stretch (dil soln) NH stretch (dil soln)

OH stretch (solids and liquids) NH2 antisym stretch (solids) O-H stretch =C-H stretch NH stretch (solids); also in polypeptides

and proteins NH2 sym stretch (solids) NH3 ~ antisym stretch H-bonded OH stretch =C-H stretch

CH antisym and sym stretching

CH stretching modes Overtone of CH bending (Fermi resonance) NH stretching modes Associated OH stretching S-H stretch; strong in Raman P-H stretch; sharp peak N=N stretch, aq soln N=C=O antisym stretch C=N stretch C=C stretch; stong in Raman C=N stretch N C stretch N=N=N antisym stretch C=C stretch Several bands from overtones and

combinations C=C=C antisym stretch C=O stretch C=O stretch C=O antisym stretch; part of doublet C=O stretch; lower for aromatic acid

halides C=O stretch C=O sym stretch; part of doublet C=O stretch; enol form C=O stretch C=O stretch; 20 cm1 lower if

unsaturated C=O stretch; 30 cm- 1 lower if

unsaturated C=O stretch; 20 cm- 1 lower if

unsaturated C=O stretch; fairly broad C=N stretch; also imines Two bands from C=O stretch and NH2

deformation c=o stretch; broad band C=C stretch C=O stretch (Amide I band) C=O stretch C=O stretch (Amide I band) C=O stretch

Continued

Page 25: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

194 Part II I Vibrational Spectroscopy

TABLE 8·3

A Numerical Listing of Wavenumber Ranges in Which Some Functional Groups and Classes of Compounds Absorb in the Infrared-cont'd

Range (cm~l) and Intensity'"

1655-1635 (vs) 1650-1620 (w-m) 1650-1580 (m-s) 1640-1580 (s) 1640-1580 (vs) 1620-1610 (s)

1615-1590 (m) 1615-1565 (s) 1610-1580 (s)

1610-1560 (vs)

1590-1580 (m) 1575-1545 (vs) 1565-1475 (vs) 1560-1510 (s) 1550-1490 (s) 1530-1490 (s) 1530-1450 (m-s) 1515-1485 (m) 1475-1450 (vs) 1465-1440 (vs) 1440-1400 (m) 1420-1400 (m) 1400-1370 (m)

1400-1310 (s)

1390-1360 (vs) 1380-1370 (s) 1380-1360 (m) 1375-1350 (s) 1360-1335 (vs) 1360-1320 (vs) 1350-1280 (m-s) 1335-1295 (vs) 1330-1310 (m-s)

1300-1200 (vs) 1300-1175 (vs)

1300-1000 (vs) 1285-1240 (vs) 1280-1250 (vs)

1280-1240 (m-s)

1280-1180 (s) 1280-1150 (vs) 1255-1240 (m)

1245-1155 (vs) 1240-1070 (s-vs) 1230-1100 (s) 1225-1200 (s) 1200-1165 (s) 1200-1015 (vs) 1170-1145 (s) 1170-1140 (s)

Group and Class

C=O in p-ketone esters N-H in primary amides NHz in primary amines NH3+ in amino acids C=O in p-diketones C=C in vinyl ethers

Benzene ring in aromatic compounds Pyridine derivatives NHz in amino acids

COO~ in carboxylic acid salts

NHz primary alkyl amide N02 in aliphatic nitro compounds NH in secondary amides Triazine compounds N02 in aromatic nitro compounds NH3 + in amino acids or hydrochlorides N=N-O in azoxy compounds Benzene ring in aromatic compounds CHz in aliphatic compounds CH3 in aliphatic compounds OH in carboxylic acids C-N in primary amides tert-Butyl group

COO- group in carboxylic acid salts

502 in sulfonyl chlorides CH3 in aliphatic compounds Isopropyl group NOz in aliphatic nitro compounds 502 in sulfonamides N02 in aromatic nitro compounds N=N-O in azoxy compounds 502 in sulfones CF3 attached to a benzene ring + ~

N-O in pyridine N-oxides P=O in phosphorus oxyacids and

phosphates C-F in aliphatic fluoro compounds Ar-O in alkyl aryl ethers Si-CH3 in silanes C-C ,,/ in epoxides o .

C-N in aromatic amines C-O-C in esters, lactones tert-Butyl in hydrocarbons

S03H in sulfonic acids C-O-C in ethers C-C-N in amines C-O-C in vinyl ethers S02CI in sulfonyl chlorides C-OH in alcohols S02NHz in sulfonamides 502- in sulfones

Assignment and Remarks

C=O stretch; enol form NH deformation (Amide II band) NH2 deformation NH3 deformation C=O stretch; enol form C=C stretch; doublet due to rotational

isomerism Ring stretch; sharp peak Ring stretch; doublet NHz deformation; broad band

/;J -C: - antisym stretch

\. o NH2 deformation (Amide II band) NOz antisym stretch NH deformation (Amide II band) Ring stretch; sharp band NOz antisym stretch NH3 + deformation N=N-O antisym stretch Ring stretch, sharp band CHz scissors vibration CH3 antisym deformation In-plane OH bending C-N stretch (Amide III band) CH3 deformations (two bands)

l -C: - sym stretch; broad band

\. o 502 antisym stretch CH3 sym deformation CH3 deformations (two bands) N02 sym stretch 502 antisym stretch NOz sym stretch N=N-O sym stretch 502 antisym stretch CF 3 a ntisym stretch

N-O stretch P=O stretch

C-F stretch C-O stretch CH3 sym deformation

C-O stretch

C-N stretch C-O-C antisym stretch Skeletal vibration; second band near

1200 cm~1 5=0 stretch C-O-C stretch; also in esters C-C-N bending C-O-C antisym stretch 502 sym stretch C-O stretch 502 sym stretch SOz sym stretch

Page 26: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

Chapter 8 / Group Frequencies: Infrared and Raman 195

TABLE 8-3 A l'lJumerical Listing of Wavenumber Ranges in Which Some Functional Groups and Classes of Compounds Absorb in the Infrared-cont'd

Range (em-I) and Intensity"

1160-1100 (m) 1150-1070 (vs) 1120-1080 (s)

1120-1030 (s) 1100-1000 (vs) 1080-1040 (s) 1065-1015 (s) 1060-1025 (vs) 1060-1045 (vs) 1055-915 (vs)

1030-950 (w) 1000-950 (s) 980-960 (vs) 950-900 (vs)

900-865 (vs)

890-805 (vs) 860-760 (vs, br) 860-720 (vs) 850-830 (vs) 850-810 (vs)

850-790 (m)

850-550 (m) 830-810 (vs) 825-805 (vs) 820-800 (s) 815-810 (s) 810-790 (vs) 800-690 (vs) 785-680 (vs) 775-650 (m) 770-690 (vs) 760-740 (s) 760-510 (s) 740-720 (w-m)

730-665 (s) 720-600 (s, br) 710-570 (m) 700-590 (s) 695-635 (s) 680-620 (s) 680-580 (s) 650-600 (w) 650-600 (s) 650-500 (s)

650-500 (s) 645-615 (m-s) 645-575 (s) 640-630 (s) 635-605 (m-s) 630-570 (s)

Group and Class

C=S in thiocarbonyl compounds C-O-C in aliphatic ethers C-OH in secondary or tertiary

alcohols C-NH2 in primary aliphatic amines Si-O-Si in siloxanes S03H in sulfonic acids CH-OH in cyclic alcohols CHz-OH in primary alcohols S=O in alkyl sulfoxides P-O-C in organophosphorus

compounds Carbon ring in cyclic compounds CH={;H_ in vinyl compounds CH=(:H-- in trans disubstituted alkenes CH=(:H. in vinyl compounds

l CH =C in vinylidenes

2 \

R' 1 ,2,4-trisu bstituted benzenes R-NH2 primary amines Si-C in organosilicon compounds 1 ,3,5-trisu bstituted benzenes Si-CH3 in silanes

l CH=C in trisubstituted alkenes

\' C-CI in chloro compounds p-disubstituted benzenes 1 ,2,4-trisu bstituted benzenes Triazines CH=CH2 in vinyl ethers 1,2,3,4-tetrasubstituted benzenes m-disubstituted benzenes 1,2,3-trisubstituted benzenes C-S in sulfonyl chlorides Monosubstituted benzenes o-disubstituted benzenes C-CI alkyl chlorides -(CHZ)n- in hydrocarbons

CH=CH in cis disubstituted alkenes Ar-OH in phenols C-S in sulfides O-C=O in carboxylic acids C-C-CHO in aldehydes C-OH in alcohols C=C-H in alkynes S-C=N in thiocyanates NOz in aliphatic nitro compounds Ar-CF3 in aromatic trifluoro-methyl

compounds C-Br in bromo compounds Naphthalenes O-C-O in esters =CHz in vinyl compounds pyridines N-C=O in amides

Assignment and Remarks

C=S stretch; strong in Raman C-O-C antisym stretch C-O stretch

C-N stretch Si-O-'Si antisym stretch S03 sym stretch C-O stretch C-O stretch S=O stretch P-O-C antisym stretch

Ring breathing mode; strong in Raman =CH out-of-plane deformation =CH out-of-plane deformation CHz out-of-plane wag

CHz out-of-plane wag

CH out-of-plane deformation (two bands) NHz wag Si-C stretch CH out-of-plane deformation Si-CH3 rocking

CH out-of-plane deformation

C-CI stretch CH out-of-plane deformation CH out-of-plane deformation CH out-of-plane deformation CH2 out-of-plane wag CH out-of-plane deformation CH out-of-plane deformation (two bands) CH out-of-plane deformation (two bands) C-S stretch; strong in Raman CH out-at-plane deformation (two bands) CH out-of-plane deformation C-CI stretch CHz rocking in methylene chains; intensity

depends on chain length CH out-of-plane deformation OH out-of-plane deformation C-S stretch; strong in Raman O-C=O bending C-C-CHO bending C-O-H bending C=C-H bending S-C stretch; strong in Raman NOz deformation CF3 deformation (two or three bands)

C-Br stretch In-plane ring deformation O-C-O bend =CH2 twisting In-plane ring deformation N-C=O bend

Continued

Page 27: Chem 117 Reference Spectra Spring 2011 H, C NMR data ... Data Sheet.pdf192 CHAPTER 3 PROTON NMR SPECTROMETRY TABLE B.2b Observed Methine Proton Chemical Shifts of Isopropyl Derivatives

196 Part II / Vibrational Spectroscopy

TABLE 8-3

A Numerical Listing of Wavenumber Ranges in Which Some Functional Groups and Classes of Compounds Absorb in the Infrared-cont'd

Range (em-I) and Intensity*

630-565 (s) 615-535 (s) 610-565 (vs) 610-545 (m-s) 600-465 (s) 580-530 (m-s) 580-520 (m) 580-430 (s) 580-420 (m-s)

570-530 (vs) 565-520 (s) 565-440 (w-ml 560-510 (s)

560-500 (s)

555-545 (s) =CH2 in vinyl compounds 550-465 (s) 545-520 (s) 530-470 (m-s) 520-430 (m-s) 510-400 (s) 490-465 (variable) 440-420 (s) 405-400 (s)

TABLE 8·4

Group and Class

C-co-C in ketones C=O in amides S02 in sulfonyl chlorides S02 in sulfones C-I in iodo compounds C-C-CN in nitriles N02 in aromatic nitro compounds Ring in cycloalkanes Ring in benzene derivatives

S02 in sulfonyl chlorides C-C=O in aldehydes CnH2n + 1 in alkyl groups C-C=O in ketones

j,P -( - in amino acids

""­° =CH2 twisting C-C=O in carboxylic acids Naphthalenes N02 in nitro compounds C-O-C in ethers C-N-C in amines Naphthalenes CI-C=O in acid chlorides S-C=N in thiocyanates

Assignment and Remarks

C-co-C bend C=O out-of-plane bend S02 deformation S02 scissoring C-I stretch C-C-CN bend N02 deformation Ring deformation In-plane and out-of-plane ring

deformations (two bands) S02 rocking C-C=O bend Chain deformation modes (two bands) C-C=O bend

l -c: rocking \:.

° C-C=O bend In-plane ring deformation N02 rocking C-O-C bend C-N-C bend Out-of-plane ring bending CI-C=O in-plane deformation S-C=N bend

Characteristic Frequencies of Functional Groups in the Raman Spectra of Complex Molecules

Groups or Class

Acetylenes =CH (alkynes) R-C=C-R

Acid chlorides

Alcohols R-OH

Aldehydes ;?

R-C

\ n-Alkanes (general)

Frequency Ranges (em-I) and Intensities *

3340-3270 (s) 2300-2190 (s)

2140-2100 (s) 650-600 (m)

1800-1790 (s)

3400-3300 (vw) 1450-1350 (m) 1150-1050 (m-s) 970-800 (5)

1730-1700 (m)

2980-2800 (vs) 1475-1450 (s) 1350-1300 (m-s) 340-230 (s)

*KEY: s = strong; m = medium; w = weak; v very; br = broad.

Assignment and Remarks

CH stretch C=C stretch in disubstituted acetylenes,

sometimes two bands (Fermi doublet) C=C stretch in monoalkyl acetylenes C-C=CH deformation

C=O stretch

OH stretch; broad band OH in-plane bend C-O antisym stretch C-C-O sym stretch

C=O stretch

CH stretch CH3 antisym deformation CH2 bend -C-C-C- bend