Cheat Sheet_Exam 3

Embed Size (px)

Citation preview

  • 8/10/2019 Cheat Sheet_Exam 3

    1/20

    1

    Chapter 1: Introduction to Heat Transfer

    - Fouriers law ( T ! T ( x ) ): !!q x = " k dT dx

    [Wm -2]

    - Newtons law of cooling: !!q = h(T s " T # ) [Wm-2

    ]

    - Stefan-Boltzmann law: E b = ! T s4 [Wm -2] where ! = 5.67 ! 10 " 8 Wm -2K -4

    - Conservation of energy: E

    in ! E

    out + E

    g = E

    st [W]

    Chapter 2: Introduction to Conduction

    - Fouriers law ( T !

    T ( x, y, z) ):!!

    q x = "

    k

    # T # x ,

    !!q y

    = "k

    # T # y ,

    !!q z

    = "k

    # T # z [Wm

    -2

    ]

    - Thermal diffusivity: ! =k

    " c p [m 2s-1]

    - Heat diffusion equation (Cartesian): !! x

    k !T ! x

    "#$

    %&'

    +!! y

    k !T ! y

    "

    #$

    %

    &' +

    !! z

    k !T ! z

    "#$

    %&'

    + q

    = ! c p! T ! t

    Chapter 3: One-Dimensional, Steady-State Conduction

    3.1 Plane wall without heat generation

    - Heat equation ( T ! T ( x ) ):d

    dxk

    dT

    dx

    !"#

    $%&

    = 0

    - Equivalent thermal circuit:

    q x =T ! ,1 " T ! ,2

    1

    h1 A+

    LkA

    +1

    h2 A

  • 8/10/2019 Cheat Sheet_Exam 3

    2/20

    2

    - Composite wall:

    3.2 Cylinder without heat generation

    - Heat equation ( T ! T (r ) ):d

    drkr

    dT

    dr

    !"#

    $%&

    = 0

    - Equivalent thermal circuit:

    3.3 Plane wall with heat generation

    - Heat equation ( T ! T ( x ) ):

    d dx

    k dT dx

    !"#

    $%&

    + q

    = 0

    - Temperature distribution:

    T ( x) =q

    L2

    2 k 1 ! x

    2

    L2

    "

    #$

    %

    &' +

    T s,2 ! T s,12

    x

    L+

    T s,1 + T s,2

    2

    q x =T ! ,1 " T ! ,4

    1

    h1 A+

    L Ak A A

    + L Bk B A

    + LC k C A

    +1

    h4 A

    qr =T ! ,1 " T ! ,2

    1

    h1 2 ! r1 L+

    ln( r2 / r1 )2 ! kL

    +1

    h2 2 ! r2 L

  • 8/10/2019 Cheat Sheet_Exam 3

    3/20

    3

    Chapter 5: Transient Conduction

    - Biot number: Bi =hL

    c

    k , where Lc = V / A s

    - Lumped capacitance method ( Bi < 0.1):! ! i

    =

    T ! T "T

    i ! T "= exp !

    hAs

    " Vc#

    $%

    &

    '( t

    )

    *+

    ,

    -.

    where T ! T (t )

    - Total energy transfer up to some time t [J]:

    Q = ( ! Vc )! i 1! exp ! t

    ! t

    "

    #$

    %

    &'

    (

    )*

    +

    ,- where ! t =

    " Vc

    hAs

    Chapter 6: Introduction to Convection

    - Definition of heat transfer coefficient:

    h =! k " T " y

    y= 0

    T s ! T #

    - Reynolds number (flat plate):

    Re x

    =

    ! u ! x

    =

    u!

    x

    "

    - Prandtl number: Pr =!

    "

    - Local Nusselt number: Nu x = hxk

    = f ( x*, Re x, Pr)

    - Average Nusselt number: Nu x =hxk

    = f (Re x, Pr)

  • 8/10/2019 Cheat Sheet_Exam 3

    4/20

    4

    Chapter 7: External Flow

    7.1 Flow over a flat plate

    - Critical Reynolds number:

    Re x , c = ! u

    ! x

    c

    = 5 " 10 5

    - Convection correlations (properties evaluated at T f = (T ! + T s ) / 2 ):

    Local Nusselt number Average Nusselt numberLaminar flow overan isothermal flatplate

    Nu x

    = 0.332 Re x

    1 2 Pr 1 3

    Pr ! 0.6

    Nu x = 0.664Re x1 2 Pr 1 3 = 2 Nu

    x

    Pr ! 0.6

    Turbulent flowover an isothermalflat plate

    Nu x

    = 0.0296 Re x

    4 5 Pr 1 3

    0.6 ! Pr ! 60

    Nu L = (0.037Re L4 5

    ! A )Pr 1 3

    0.6 " Pr " 60

    Re x ,c " Re L " 108

    A = 0.037Re x ,c4 5 ! 0.664Re x ,c

    1 2 Note : A = 0 if fully turbulent

    7.2 Cylinder in cross flow

    - Critical Reynolds number:

    Re D ,cr =! VD

    = 2 ! 10 5

    - Average Nusselt number:

    Nu D =hD

    k = C Re D

    m Pr 1 3 , Pr ! 0.7

  • 8/10/2019 Cheat Sheet_Exam 3

    5/20

    5

    Chapter 8: Internal Flow

    8.1 Hydrodynamic considerations

    - Mean velocity (tube of circular cross-

    section): u m = 2r

    o2

    u (r , x )r dr0

    r0

    !

    - Mass flow rate: m

    = ! u m A c

    - Reynolds number: Re D =! u m D

    - Critical Reynolds number: Re D ! 2300 " Laminar flowRe D ! 10, 000 " Turbulent flow

    - Hydrodynamic entry length for laminar flow: x fd ,h

    D

    !

    "#

    $

    %&lam' 0.05Re

    D

    - Hydrodynamic entry length for turbulent flow: x fd ,h D

    !"#

    $%&

    turb

    ' 10

    8.2 Thermal considerations

    - Mean temperature (tube of circular

    cross-section): T m =2

    um

    ro

    2 uTr dr0

    r0

    !

    - Thermal entry length for laminar flow: x fd , t D

    !

    "#

    $

    %&

    lam

    ' 0.05Re D Pr

    - Thermal entry length for turbulent flow: x fd , t D

    !"#

    $%&

    turb

    ' 10

    - Fully developed thermal conditions:dT m

    dx! 0 and h ! f ( x)

  • 8/10/2019 Cheat Sheet_Exam 3

    6/20

    6

    - Total heat rate in the tube [W]: q = m

    c p (T m,o ! T m,i ) where T m,o and T m,i are the meantemperatures at the outlet and the inlet of the tube, respectively.

    8.3 Boundary condition 1: Constant surface heat flux

    - Total heat rate in the tube:

    q = m

    c p (T m,o ! T m,i ) =

    ""q s PL , where!!

    q s is

    the known surface heat flux, P is the perimeter of the tube, and L is the lengthof the tube.

    - Mean temperature as a function of x: T m ( x) = T m,i +P

    m

    c p

    !!

    q s x

    8.4 Boundary condition 2: Constant surface temperature

    - Mean temperature as a function of x:

    T s ! T m ( x)T s ! T m,i

    = exp ! Px

    m

    c ph

    "

    #

    $$

    %

    &

    ''

    - Total heat rate in the tube: q = m

    c p (T m,o ! T m,i ) = hAs" T lm

    where ! T lm =! T

    o " ! T

    i

    ln( ! T o / ! T i ) with ! T o = T s " T m

    ,o and ! T i = T s " T m

    ,i

  • 8/10/2019 Cheat Sheet_Exam 3

    7/20

    7

    8.5 Convection correlations (fully developed region)

    - All properties are evaluated at the average mean temperature: T m =T

    m ,i + T

    m ,o

    2

    Nusselt number ( Nu D = hD / k ) Laminar flow,constant surfaceheat flux

    Nu D

    = 4.36

    Laminar flow,constant surfacetemperature

    Nu D

    = 3.66

    Turbulent flow,constant surfaceheat flux andconstant surfacetemperature

    Nu D

    = 0.023Re D4 5 Pr n

    0.6 ! Pr ! 160

    Re D " 10, 000

    L / D " 10

    n = 0.4 if T s > T m and n = 0.3 ifT s < T m

    Chapter 11: Heat Exchangers

    11.1 Overall heat transfer coefficient and energy balance

    - Overall heat transfer coefficient U [Wm -2K -1]:1

    UA= R

    tot =

    1

    (hA )c+ R

    w +

    1

    (hA )h

    where the subscripts c and h refer to cold and hot side, respectively, while Rw is the wallthermal resistance by conduction.

    - Total heat rate [W]:

    q = m

    h c p,h (T h,i ! T h,o ) = m

    c c p,c (T c ,o ! T c ,i )

    - Heat capacity rates [WK -1]:

    C h = m

    h c p, h and C c = m

    c c p , c

  • 8/10/2019 Cheat Sheet_Exam 3

    8/20

    8

    11.2 LMTD method: Parallel-flow heat exchanger

    - Total heat rate: q = UA! T lm where

    ! T lm

    =

    ! T 2

    " ! T 1

    ln( ! T 2 / ! T 1 )

    ! T 1

    = T h ,1

    " T c ,1

    = T h ,i

    " T c , i

    ! T 2

    = T h ,2

    " T c ,2

    = T h ,o

    " T c ,o

    11.3 LMTD method: Counterflow heat exchanger

    - Total heat rate: q = UA! T lm where

    ! T lm

    =

    ! T 2 " ! T 1

    ln( ! T 2 / ! T 1 )

    ! T 1

    = T h ,1

    " T c ,1

    = T h , i

    " T c ,o

    ! T 2

    = T h ,2

    " T c ,2

    = T h ,o

    " T c ,i

    11.4 NTU method

    - NTU (number of transfer units): NTU = UAC

    min

    - Effectiveness of a heat exchanger: ! = qqmax

    =

    qC min (T h,i ! T c,i )

    - Heat capacity ratio: C r =C

    min

    C max

  • 8/10/2019 Cheat Sheet_Exam 3

    9/20

    9

    - Effectiveness-NTU relations: ! = f ( NTU , C r )

    - Effectiveness-NTU relations: NTU = f (! , C r )

  • 8/10/2019 Cheat Sheet_Exam 3

    10/20

    10

    - Effectiveness-NTU relations in graphical forms:

    Parallel-flow heat exchanger (Eq. (11.28)) Counterflow heat exchanger (Eq. (11.29))

    Shell-and-tube heat exchanger with one shell andany multiple of two tube passes (Eq. (11.30)) Shell-and-tube heat exchanger with two shell

    passes and any multiple of four tube passes (Eq.(11.31) with n = 2).

  • 8/10/2019 Cheat Sheet_Exam 3

    11/20

    11

    Single-pass, cross-flow heat exchanger with bothfluids unmixed (Eq. (11.32)).

    Single-pass, cross-flow heat exchanger with onefluid mixed and the other unmixed (Eqs. (11.33)and (11.34)).

    Chapter 12: Thermal Radiation: Processes and Properties

    12.1 Solid angle, emissive power, irradiation and radiosity

    - Electromagnetic spectrum:

    - Net radiative heat flux from a surface(outgoing energy incoming energy)

    [Wm-2

    ]:!!qrad = J " G

  • 8/10/2019 Cheat Sheet_Exam 3

    12/20

    12

    - Solid angle [sr]: d ! =dA

    n

    r 2 = sin " d " d #

    - Intensity: I ! (! ," , # )=

    dqdA1 cos " d $ d ! [Wm

    -2

    sr -1

    m-1

    ]

    - Total, hemispherical emissive power[Wm -2]:

    E = I ! ,e (! ," , # )cos " sin " d " d # d !

    " = 0

    $ 2

    ! # = 0

    2 $

    ! ! = 0

    "

    !

    - Diffuse emitter: I ! ,e ! f (" , # )

    - Total, hemispherical irradiation[Wm -2]:

    G = I ! ,i (! ," , # )cos " sin " d " d # d !

    " = 0

    $ 2

    ! # = 0

    2 $

    ! ! = 0

    "

    !

    - Diffuse incident radiation: I ! ,i ! f (" , # )

    - Total, hemispherical radiosity [Wm -2]:

    J = I ! ,e + r (! ," , # )cos " sin " d " d # d !

    " = 0

    $ 2

    ! # = 0

    2 $

    ! ! = 0

    "

    !

  • 8/10/2019 Cheat Sheet_Exam 3

    13/20

    13

    - Diffuse reflector and diffuse emitter: I ! ,e+ r ! f (" , # )

    12.2 Blackbody radiation

    - Blackbody spectral emissive power

    [Wm-2

    m-1

    ]:

    E ! ,b ( ! , T ) = " I ! , b (! , T )

    - Wiens displacement law:!

    maxT = 2898 m !K

    - Stefan-Boltzmann law [Wm -2]:

    E b (T ) = E ! ,b ( ! , T )

    ! = 0

    !

    " d ! = " T 4

    12.3 Band emission

    - Fraction of blackbody emissive power contained between 0 and ! :

    F (0 ! ! )

    =

    E ! ,b

    d !

    0

    !

    "

    E ! ,b d ! 0

    #

    "

    - Fraction of blackbody emissive power contained between ! 1 and ! 2:

    F ( ! 1! ! 2 )

    =

    E ! ,b

    d !

    0

    ! 2

    " # E ! ,b d ! 0

    ! 1

    "

    E ! ,b

    d !

    0

    $

    " = F

    (0 ! ! 2 ) # F (0 ! ! 1 )

  • 8/10/2019 Cheat Sheet_Exam 3

    14/20

  • 8/10/2019 Cheat Sheet_Exam 3

    15/20

    15

    12.4 Emissivity

    - Calculated at the surface temperature

    - Spectral, directional emissivity:

    ! " ,# (" ,# , $ , T ) = I

    " ,e (" ,# , $ ,T

    ) I

    " ,b (" , T )

    - Spectral, hemispherical emissivity:

    ! " (" , T ) = E

    " (" , T ) E

    " ,b (" , T )=

    1

    # ! " ,$ (" ,$ , % , T )cos $ sin $ d $ d %

    $ = 0

    # 2

    ! % = 0

    2 #

    !

    - Total, hemispherical emissivity:

    ! (T )=

    E (T ) E

    b (T )=

    ! " (" , T ) E " ,b (" , T ) d "

    " = 0

    !

    " E

    b (T )

    12.5 Absorptivity

    - Calculated using the temperature of the source

    - Spectral, directional absorptivity:

    ! " ,# (" ,# , $ ) = I

    " ,i ,abs (" ,# , $ ) I

    " ,i (" ,# , $ )

    - Spectral, hemispherical absorptivity:

    ! " (" ) =G

    " , abs (" )G

    " (" )=

    ! " ,# (" ,# , $ ) I " ,i (" ,# , $ )cos # sin # d # d $ # = 0

    % 2

    ! $ = 0

    2 %

    !

    I " ,i (" ,# , $ )cos # sin # d # d $

    # = 0

    % 2

    ! $ = 0

    2 %

    !

    - Total, hemispherical asborptivity:

    ! =G

    abs

    G

    =

    ! " (" )G " (" ) d "

    " = 0

    !

    "

    G" (" ) d "

    " = 0

    !

    "

  • 8/10/2019 Cheat Sheet_Exam 3

    16/20

    16

    12.6 Kirchhoffs law

    - Equality always applicable: ! " ,#

    = $ "

    ,#

    - ! " = # " if either of the following conditions is satisfied:

    (1) The irradiation is diffuse ( I ! ,i ! f (" , # ) )(2) The surface is diffuse

    - ! = " if condition (1) or (2) is satisfied, and if either of the following conditions issatisfied:

    (3) The irradiation corresponds to emission from a blackbody at the surfacetemperature(4) The surface is gray

    Chapter 13: Radiation Exchange between Surfaces

    13.1 View factors

    F ij =1

    Ai

    cos ! i

    cos ! j

    " R2 A j ! dA j dAi

    Ai

    !

    F ji =1

    A j

    cos ! i

    cos ! j

    " R2 A j ! dA j dAi

    Ai

    !

    - Reciprocity relation: AiF ij = A j F ji

    - Summation rule (enclosure of N surfaces): F ij j = 1

    N

    ! = 1

  • 8/10/2019 Cheat Sheet_Exam 3

    17/20

    17

    - View factors for common geometries:

  • 8/10/2019 Cheat Sheet_Exam 3

    18/20

    18

  • 8/10/2019 Cheat Sheet_Exam 3

    19/20

    19

    View factor for aligned parallel rectangles. View factor for coaxial parallel disk.

    View factor for perpendicular rectangles with a common edge.

  • 8/10/2019 Cheat Sheet_Exam 3

    20/20

    13.2 Blackbody radiation exchange

    - Net heat rate between two surfaces i and j:qij = qi! j " q j ! i = AiF ij ! (T i

    4" T j

    4 )

    - Net heat rate from surface i due toexchange with N surfaces within anenclosure of N black surfaces:

    qi = AiF ij ! (T i4 ! T j

    4 ) j = 1

    N

    "