Charles Banks

Embed Size (px)

Citation preview

  • 8/2/2019 Charles Banks

    1/26

    Mass and energy balance around theLudlow food waste digester

    Charles BanksBioenergy and Organic Resources Group

    University of Southampton

    25 November 2010

  • 8/2/2019 Charles Banks

    2/26

    Study period 1 st June 2007 to 31 st July 2008

    2

  • 8/2/2019 Charles Banks

    3/26

    Feedstock Source segregated

    food waste fromdomestic properties

    3936 tonnes over the14-month

  • 8/2/2019 Charles Banks

    4/26

    Sample measurement and analysis Quantification of input waste and other materials

    Weighbridge and water meters Biogas production and composition

    Gas meter, infrared analyser, STP (273.15 oK and 101.325 kPa) Waste input parameters

    TS, VS, NPK, metals

    Digester and digestate parameters TS, VS, Ammonia, VFA, alkalinity, pH, NPK, metals, temperature

    Power production and utilisation

    Supply and export meters

  • 8/2/2019 Charles Banks

    5/26

    Feedstock characteristics

    5

    Biowaste input Unit Domestic CommercialSamples analysed no 547 114Average DM g g -1 0.277 0.278Min DM g g -1 0.139 0.080Max DM g g -1 0.439 0.467

    Average ODM g g-

    0.244 0.243Min DM g g - 0.122 0.072Max DM g g - 0.374 0.403DM:ODM 87.9% 87.5%

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 100 200 300 400Day

    D o m e s

    t i c f o o d w a s

    t e T S a n d

    V S

    ,

    g g -

    1 TSVS21-day TS21-day VS

  • 8/2/2019 Charles Banks

    6/26

    Feedstock nutrient content Average TKN 8.9, P 1.9, K 3.3 kg tonne -1 wet weight for

    domestic, commercial similar

    6

    0

    2

    4

    6

    8

    10

    12

    1 - 1 7 O c t

    1 8 - 3 0 O c t

    1 - 1 6 N o v

    1 9 - 3 0 N o v

    1 - 1 3 D e c

    2 - 1 4 J a n

    1 5 - 3 1 J a n

    1 - 1 4 F e b

    1 5 - 2 8 F e b

    1 - 1 5 M a r

    1 - 1 4 A p r

    1 6 - 3 0 A p r

    1 - 1 6 M a y

    1 9 - 3 0 M a y

    1 - 1 2 J u n

    1 6 - 3 0 J u n

    N u t r i e n t c o n c e n t r a

    t i o n

    k g t o n n e -

    1 w e t w e i g h

    t

    Nitrogen (TKN) Phosphorus (P) Potassium (K)

  • 8/2/2019 Charles Banks

    7/26

    Digester operational parameters 2.5 kg ODM m -3 day -1 based on digester volume 900 m 3

    Average HRT 80 days

    7

  • 8/2/2019 Charles Banks

    8/26

    Digestate characteristics Some variation, ratio TS:VS constant

    Average TS 4.5%, VS 2.9%

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    01/06/2007 10/08/2007 19/10/2007 28/12/2007 07/03/2008 16/05/2008 25/07/2008

    D i g e s

    t a t e

    D M a n

    d O D M

    ,

    g g -

    1

    DM ODM

  • 8/2/2019 Charles Banks

    9/26

    Digestate metals

    9

    0

    100

    200

    300

    400

    1 - 1 7 O c t

    1 8 - 3 0 O c t

    1 - 1 6 N o v

    1 9 - 3 0 N o v

    1 - 1 3 D e c

    2 - 1 4 J a n

    1 5 - 3 1 J a n

    1 - 1 4 F e b

    1 5 - 2 8 F e b

    1 - 1 5 M a r

    1 6 - 3 0 M a r

    1 - 1 4 A p r i l

    1 - 1 6 M a y

    1 9 - 3 0 M a y

    M e t a l c o n c e n

    t r a t

    i o n ,

    m g

    k g - 1

    d r y w e i g h

    t

    Lead (Pb) Nickel (Ni) Zinc (Zn) Copper (Cu) Chromium (Cr)

  • 8/2/2019 Charles Banks

    10/26

    Digestate nutrients TKN 5.6, P 0.4, K 2.3 kg tonne -1 wet weight

    Mass balance 86.1, 32.8, 96.4%

    10

    0

    2

    4

    6

    8

    10

    1 - 1 7 O c t

    1 8 - 3 0 O c t

    1 - 1 6 N o v

    1 9 - 3 0 N o v

    1 - 1 3 D e c

    2 - 1 4 J a n

    1 5 - 3 1 J a n

    1 - 1 4 F e b

    1 5 - 2 8 F e b

    1 - 1 5 M a r

    1 6 - 3 0 M a r

    1 - 1 4 A p r i l

    1 - 1 6 M a y

    1 9 - 3 0 M a y

    1 - 1 6 J u n e

    N u t r i e n t c o n c e n t r a

    t i o n

    k g t o n n e -

    1 w e t w e i g h

    t

    Nitrogen (TKN) Phosphorus (P) Potassium (K)

  • 8/2/2019 Charles Banks

    11/26

    Biogas output

    11

    0

    5000

    10000

    15000

    0 100 200 300 400Day

    W e e

    k l y g a s p r o d u c

    t i o n m

    3

    biogasCH4

    CO2

    45

    55

    65

    75

    85

    0 100 200 300 400Day

    C H 4 % Daily

    CH4

    AverageCH4

  • 8/2/2019 Charles Banks

    12/26

    Biogas output

    12

    Gas production parameters during mass and energy balance periodItem Unit Value %Methane m 3 STP 385,488 62.6Carbon dioxide m 3 STP 229,984 37.4

    Biogas m3

    STP 615,472 100.0kg WW 3,936,504 -Food waste inputkg VS 959,209 -m3 tonne -1 WW 156 -Specific biogas yieldm3 tonne -1 VS 642 -

    m3

    tonne-1

    WW 98 -Specific methane yield m3 tonne -1 VS 402 -Volumetric biogas yield a m3 m -3 reactor 1.59 -Volumetric methane yield a m3 m -3 reactor 1.00 -

    a Based on volume of digester only

  • 8/2/2019 Charles Banks

    13/26

    Digestion parameters pH 7.24 8.64, average 8.13

    IA: PA ratio average 0.4, maximum 2.74

    Ammonia maximum 5000 mg l -1 VFA maximum 15000 mg l -1

    Propionic acid 11500mg l -1

    13

  • 8/2/2019 Charles Banks

    14/26

    VFA profiles

    14

    0

    5000

    10000

    15000

    20000

    0 100 200 300 400Day

    T o t a l V F A m g

    l - 1

    Acetic Propionic Iso-Butyric n-Butyric Iso-Valeric Valeric Total

  • 8/2/2019 Charles Banks

    15/26

    pH and alkalinity

    15

    7.0

    7.5

    8.0

    8.5

    9.0

    0 100 200 300 400Day

    p H

    0

    5000

    10000

    15000

    20000

    0 100 200 300 400

    Day

    P A a n

    d I A m g

    C a C

    O 3

    l - 1

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    I A / P A

    Partial Intermediate IA/PA

  • 8/2/2019 Charles Banks

    16/26

    Mass balance Calculated in 2 ways: wet weight and volatile solids basis

    Wet weight

    Water additions for both process and facilities supplies Methane and CO 2 corrected to STP Stored materials based on tank volumes and estimated

    fibre quantities stored on site No account of evaporative loss from gas mixing system No account of fugitive emissions (gas or liquid) from site

    16

  • 8/2/2019 Charles Banks

    17/26

    Cumulative mass balance (wet weight)

    17

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 100 200 300 400

    Day

    C u m u l a t

    i v e w e t

    t o n n e s

    input output output + change in storage balance

  • 8/2/2019 Charles Banks

    18/26

    Wet weight mass balance

    18

    Mass balance for study period (wet weight)Parameter Unit ValueFood waste input kg 3,936,504Water input (washwater) kg 1,490,000Total input kg 5,426,504

    Methane kg 275,177Carbon Dioxide kg 451,473Water vapour kg 12,526Digestate a kg 3,969,080Fibre a kg 39,240All waste leaving site kg 35,820Total output kg 4,783,315Wet tanks kg 92,433Stored material kg 30,000Total storage kg 122,433

    kg 520,756Balance accounted for% 90.4%

    a Any liquid digestate produced is recirculated through the process and leavesthe site as whole digestate

  • 8/2/2019 Charles Banks

    19/26

    Mass balance Volatile solids

    VS taken from average of lab determinations VS of reject stream assumed equal to incoming food

    waste Stored materials based on tank volumes and VS assumed

    equal to that in digestate storage

    No account of volatiles lost in VS determination (VFA,ammonia)

    19

  • 8/2/2019 Charles Banks

    20/26

    VS mass balance

    If volatile losses aretaken into account,mass balance is95.7%

    Mass balance for study period (VS)Parameter Unit ValueFood waste input kg WW 3,936,504Food waste VS kg VS kg -1

    WW 0.244

    Total input kg VS 959,209Methane kg VS 275,177Carbon Dioxide kg VS 451,473

    kg WW 3,969,080kg VS kg -1 0.029

    Digestate (includesseparated and wholedigestate) kg VS 115,521

    kg WW 39,240

    kg VS kg-1

    0.179

    Fibre

    kg VS 7,040kg WW 35,820kg VS kg -1 0.244

    Reject

    kg VS 8,728Total output kg VS 857,938

    kg WW 92,433kg VS kg -1 0.029

    Wet tanks

    kg VS 2,690kg WW 30,000kg VS kg -1 0.179

    Stored material

    kg VS 5,382Total storage kg VS 8,072Balance kg VS 93,198

    % 90.3%

  • 8/2/2019 Charles Banks

    21/26

    Electrical and heat balance from CHP

    21

    Parameter Unit Value %CHP gross energy a kWh 2,781,48

    1100.0%

    CHP gross electrical output kWh 890,074 32.0%CHP parasitic electrical requirement kWh 37,728 1.4%CHP net electrical output kWh 852,346 30.6%CHP gross heat output kWh 1,891,40

    768.0%

    CHP recoverable heat output kWh 1,474,18

    5

    53.0%

    CHP waste heat kWh 417,222 15.0%

    a Calculated as electrical output divided by conversion efficiency taken as 32%

  • 8/2/2019 Charles Banks

    22/26

    Process energy requirements

    22

    Parameter Unit ValueCHP electrical parasitic kWh 37,728Rest of plant parasitic kWh 232,694Total electrical parasitic a kWh 270,422

    % of gross electrical output 30.4%Heat requirement to raise feedstocktemperature

    kWh 202,674

    Heat requirement for pasteurisation kWh 150,709Heat requirement to maintain tanktemperatures

    kWh 92,951

    Total parasitic heat requirement kWh 446,334% of recoverable heat 30.3%

    a Total electrical parasitic, divided by CHP gross electrical output from Table 4

  • 8/2/2019 Charles Banks

    23/26

    Overall energy balance

    23

    Parameter Unit ValueCHP net electrical output kWh 852,346Parasitic electrical requirement of process plant kWh 232,694Net energy output as electricity kWh 619,652Recoverable heat output from CHP kWh 1,474,185Parasitic heat requirement of plant kWh 446,334Net energy output as heat kWh 1,027,851CHP natural gas used kWh 18,413Energy required for digestate use kWh 34,350Total potentially recoverable energy (heat and electricity) a kWh 1,594,740Total potentially recoverable energy per wet tonne of foodwaste

    kWh 405

    a Includes heat energy generated but not used at the time of the study

  • 8/2/2019 Charles Banks

    24/26

    Conclusions Specific methane yield of food waste was 98 m 3 tonne -1 wet weight or

    402 m 3 tonne -1 ODM, and productivity remained high throughout thestudy period.

    Nitrogen content led to high ammonia concentrations that buffered VFA accumulation.

    Net recoverable energy 405 kWh tonne -1 wet weight, includingdigestate transport and utilisation.

    Mass balance 90.4% (wet weight), and 95.7% (VS basis) allowing forloss of volatile components.

    Since study ended the plant has continued in successful commercialoperation and provides a sustainable route for recovery of productsfrom domestic food waste.

    24

  • 8/2/2019 Charles Banks

    25/26

    Further information Banks C. J., Chesshire M, Heaven S., Arnold R, (2010).

    "Anaerobic digestion of source segregated domestic food waste: performance assessment by mass and energy balance." Bioresource Technology DOI: doi:10.1016/j.biortech.2010.08.005

    Arnold, R., Banks C.J., Chesshire, M., Foxall, M., Stoker, A.(2010). Defra Demonstration Project: Biocycle South

    Shropshire Biowaste Digester. Defra New TechnologiesProgramme. www.defra.gov.uk/environment/waste/residual/newtech/demo/documents/Biocycle-final.pdf.

    25

    http://dx.doi.org/doi:doi:10.1016/j.biortech.2010.08.005http://dx.doi.org/doi:doi:10.1016/j.biortech.2010.08.005http://dx.doi.org/doi:doi:10.1016/j.biortech.2010.08.005http://dx.doi.org/doi:doi:10.1016/j.biortech.2010.08.005
  • 8/2/2019 Charles Banks

    26/26

    Acknowledgements Funding for this project was provided by Advantage West

    Midlands and by Defra from the New TechnologiesDemonstrator Programme.

    The support and assistance of Biocycle South ShropshireLtd is gratefully acknowledged, with especial thanks to co-authors Michael Chesshire, Rebecca Arnold and SoniaHeaven.

    26