30
CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute for Nanotechnology Northwestern University, Evanston, IL 60208-3113 + - + - hν e - N N O O O O O O N N N N Zn hν e - hν e - N N O O O O O O N N N N Zn + - Energy Transfer, 21 ps Electron Transfer, 7 ps Energy Transfer, 21 ps Electron Transfer, 7 ps

CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

CHARGE TRANSPORT MECHANISMSIN ORGANIC MATERIALS

Michael R. WasielewskiDepartment of Chemistry and Institute for Nanotechnology

Northwestern University, Evanston, IL 60208-3113

+ -+ -

hν e-

NN

O

O

O

O

O

O

N

N N

NZn

hν e-hν e-

NN

O

O

O

O

O

O

N

N N

NZn

+ -

Energy Transfer, 21 ps

Electron Transfer, 7 ps

Energy Transfer, 21 ps

Electron Transfer, 7 ps

Page 2: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

SUPEREXCHANGE: COHERENT ET

D B1 B2 B3 A

kET = k0 e-βr

HOPPING: INCOHERENT ET

D B1 B2 B3 A

kET = k0 (1/r)

Page 3: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Molecular Wire Behavior inp-Phenylenevinylene Oligomers

Charge Separation

WIRE N

O

O

N

O

O

C8H17

Donor Acceptor

RO

OR

RO

OR

RO

OR

R = 2-ethylhexylWire = 1.

2.

3.

4.

5.

Charge Recombination

Davis, W. B., W. A. Svec, Ratner, M.A., Wasielewski, M.R., Nature, 1998, 396, 60-63.

Page 4: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Rylenes Absorbing the Entire Solar Spectrum• Chemically robust, easily oriented due to their rectangular shape• Excellent chromophores as well as electron donors and acceptors• Strong tendency to π stack in a variety of solvents and in the solid

R = 3,5-di-t-butylphenoxy

N

O

O

R

R

N(CH2)nNN

O

O

O

O

R

R

PDI 5PMI (n=0), 6PMI (n=1)

5PDI (n=0), 6PDI (n=1)

N

O

OR

R

PMI

NN

O

O

O

O

N

N

(CH2)n

(CH2)n

R

R

R

R

NN

O

O

O

O

QDI

Page 5: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Acceptor-Bridge-Donor Series

N N

RO

ORO

O

O

O

N N

RO

ORO

O

O

O

N N

RO

ORO

O

O

O

N N

RO

ORO

O

O

O

N N

RO

ORO

O

O

O

N S

N S

N S

N S

N S

Michael Ahrens

Page 6: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

p-Phenylene Oligomer Properties

Eox. (vs. SCE) UV-vis250

350

2.4 V

1.85 V

1.60 V

1.47 V

~1.4 V

1.34 V

Meerholz, K., Heinze, J., Electrochimica Acta, 1996, 41(11/12), 1839-1854.

Page 7: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

UV-Vis Spectra andSpectroelectrochemistry

300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Abs

orba

nce

(nor

mal

ized

)

Wavelength (nm)

1 2 3 4 5

400 500 600 700 800

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

∆A

NN

O

O

O

O O

O

C8H17C8H17

potential = 0 eVpotential = -0.6 eV

E0X= 0.83 eV vs. SCE

PDI Properties:RobustEred = -0.53 V Eox. = 1.7 VEs = 2.25 eVFluorescence Quantum yield ~ 1Intense Radical Anion Absorption

Daub, J., et. al., J. Phys. Chem. A, 2001, 105, 5655-5665.

Page 8: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

500 600 700 800-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

∆ A

Wavelength, nm

3 ps 400 ps

Stimulated emissionfrom 1*PDI

Transient Spectroscopy of PTZ+-Ph2-PDI-

Observation of PDI radical anionat 720 nm

Stimulated emission Decay from 1*PDI at 620 nm

NN

OR

RO

O

O O

O

C8H17NS

0 100 200 300 400 500 600 700 8000.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

∆ A

Time, ps

τ = 202 ps

Louise Sinks

Page 9: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Distance Dependence of Charge Separation forPTZ-(Ph1-5)-PDI

β = 0.46 Å-1

12 14 16 18 20 22 24 26 28 30 32107

108

109

1010

1011

n=4

n=5

n=3

n=2

n=1k C

S (

s-1)

rDA (Å)

Page 10: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Energy Levels Relevant to Charge Separation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n = 5n = 4n = 3

n = 2

PTZ-Phn-3*PDI

PTZ-Phn+.-PDI-.

PTZ+.-Phn-PDI-.

PTZ-Phn-PDI

PTZ-Phn-1*PDI

Ene

rgy

(eV

)n = 1

n = 5n = 4n = 3n = 2n = 1

Page 11: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

PDI Radical Anion Decay and 3*PDI Formation

NN

OR

RO

O

O O

O

C8H17NS

50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

∆A (N

orm

aliz

ed)

Time (ns)

723 nmτ = 21 ns

50 100 150 200 250 300

-0.015

-0.010

-0.005

0.000

0.005

0.010

∆A

Time (ns)

450 nmτ = 20 ns

Page 12: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Singlet and Triplet Radical Ion Pair States

B(2J)

(S)

(T+1)

(T0)

Splitting of Triplet Levelswith Applied B-Field

(T-1)

2J

Ener

gy (a

rbitr

ary

units

)

Magnetic Field Strength

∑−∆

ΨΨ=∆=

nnRP

nelRPST E

VEJ

2

2

VRPS-S0

VRPT-T1

hfc

3(D-A)

VRPS-S1

3(D+-A-)1(D+-A-)

D-A

1*D-A

Ene

rgy

(arb

itrar

y un

its)

[ ] ( )∑∞

= ⎥⎥⎦

⎢⎢⎣

⎡ ++∆−−=

0

22

4exp

!exp

412

n B

TCR

n

BDAET Tk

nGnSS

TkVk

λωλ

πλπ ηη

Page 13: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Spin-Spin Interactions in Wire-Like Systems

0 50 100 150 2000.7

0.8

0.9

1.0

1.1

1.2

1.3

Rel

ativ

e Tr

iple

t Yie

ld (T

/T0)

Magnetic Field (mT)0 2 4 6 8 10 12

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Rel

ativ

e R

P Y

ield

(RP

/RP 0)

Magnetic Field (mT)

PTZ+. Ph3 PDI-. PTZ+. Ph4 PDI-.

2J = 31 mT 2J = 6.2 mT

Emily Weiss

Page 14: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Distance Dependencies in Wire-Like Phn Systems

Spin-Spin Exchange Interactionin PTZ+.-(Ph)n-PDI-.

Charge Recombination Rate toTriplet PDI

β = 0.67 Å-1

16 18 20 22 24 26 28 30 321

10

100

1000

n= 5

n= 4

n= 3

2J (

mT

)

rDA (Å)

n= 2

12 14 16 18 20 22 24 26 28 30 32106

107

108

109

n= 5n= 4

n= 3

n= 2

k CR (s

-1)

rDA (Å)

n= 1

Page 15: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Energy Levels Relevant to Charge Recombination

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n = 5n = 4n = 3

n = 2

PTZ-Phn-3*PDI

PTZ-Phn+.-PDI-.

PTZ+.-Phn-PDI-.

PTZ-Phn-PDI

PTZ-Phn-1*PDI

Ene

rgy

(eV

)n = 1

n = 5n = 4n = 3n = 2n = 1

Page 16: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

PTZ – (FL)n – PDI

NN

O

O

O

O

O

ONS

n

C6H13C6H13

Eox (FL)n n = 1-4: ~1.3 V vs. SCE (in DCM)

Eox (PTZ) = 0.8 V vs. SCEEox (PDI) = -0.5 V vs. SCE

300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Abs

orba

nce

(nor

mal

ized

)

Wavelength (nm)

n = 1 n = 2 n = 3 n = 4

PTZ

FL1

FL2

FL3

FL4 PDI

Randall Goldsmith

Page 17: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Charge Recombination through Oligofluorenes

100 200 300 400 500

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

∆ (N

orm

aliz

ed)

nanoseconds250 500 750 1000 1250 1500

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

∆A

nanoseconds100 200 300 400 500

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆A

nanoseconds100

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

200 300 400 500

nanoseconds

∆A

n = 1 n = 2 n = 3

τCR = 32 ns τCR = 266 ns τCR = 51 ns τCR

Kinetic Traces monitoring the formation of 3*PDI at 455 nm

n = 4

= 22 ns

-200 0 200 400 600 800 1000 1200 1400 1600

0.6

0.8

1.0

1.2

1.4

1.6

Rel

ativ

e Tr

iple

t Yie

ld (T

/T0)

Magnetic Field (mT)0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Rel

ativ

e Tr

iple

t Yie

ld (T

/T0)

Magnetic Field (mT)0 20 40 60 80

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Rel

ativ

e Tr

iple

t Yie

ld (T

/T0)

Magnetic Field (mT)

n = 2 n = 4n = 3

2J = 240 2J = 40 2J = 6 mT

Magnitude of the Spin-Spin Exchange Interaction in PTZ+.-(FL)n-PDI-.

Page 18: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Distance Dependencies in Wire-Like FLn Systems

Spin-Spin Exchange Interactionin PTZ+.-(FL)n-PDI-.

Charge Recombination Rate toTriplet PDI

20 22 24 26 28 30 32 34 36 38 401

10

100

1000

n = 4

n = 3

2J (

mT)

rDA (Å)

n = 2

10 15 20 25 30 35 40106

107

108

n = 4

n = 3

n = 2k C

R (s

-1)

rDA (Å)

n = 1β = 0.23 Å-1

Page 19: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n = 1-4

PTZ-FLn-3*PDI

PTZ-FLn+.-PDI-. PTZ+.-FLn-PDI-.

PTZ-FLn-PDI

PTZ-FLn-1*PDI

Ene

rgy

(eV

)

n = 5n = 4n = 3n = 2n = 1

Energy Levels Relevant to Charge Recombination

Page 20: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Charge Transport in Self-AssembledArtificial Photosynthetic Systems

hν e-

NN

O

O

O

O

O

O

N

N N

NZn

hν e-hν e-

NN

O

O

O

O

O

O

N

N N

NZn

ZnTTPEox= 0.82 eVEs = 2.06 eVΦf = 0.035

PDIEred= -0.53 VEs = 2.25 eVΦf = 1

T. van der Boom et al., J. Am. Chem. Soc.124, 9582-9590 (2002).

Page 21: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

• The first two equations predict that• B1/2 = 1.1 mT.• The observed B1/2 = 68 mT is 60x larger.• This could be due to:

1) uncertainty broadening2) a distribution of 2J values

2/12 )1( ⎥

⎤⎢⎣

⎡+= ∑

kkkiki IIaB

21

22

21

2/1)(2

BBBBB

++

=

Magnetic Field Effect on Charge Recombination in(ZnTTP-PDI4)n Nanoparticles in Solution

B(2J)

(S)

(T+1)

(T0)

Zeeman Splitting of theTriplet Energy Levels

(T-1)

2J

Ene

rgy

Magnetic Field 0.0 0.1 0.2 0.3 0.4 0.50.92

0.94

0.96

0.98

1.00

1.02

Rel

ativ

e Tr

iple

t Yie

ld

Magnetic Field (T)

17 mT

68 mT

η≅⋅τ2/1B

Page 22: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Radical Ion Pair Distances within (ZnTPP-PDI4)n

1.48 nm

1.60 nm

1.78 nm

2.01 nm

2.27 nm

2.55 nm

2.84 nm

3.15 nm

3.46 nm

1.44 nm

3.78 nm

ZnTPP PDI

The fact that 2J = 17 mTindicates that the averageradical ion pair distance is21 Å. This corresponds toa PDI molecule 5 layersremoved from thelayer in which the initialradical ion pair wasgenerated.

hν e-

NN

O

O

O

O

O

O

N

N N

NZn

hν e-hν e-

NN

O

O

O

O

O

O

N

N N

NZn

The observed B1/2 = 68 mTImplies that khop = 4 x 1010 s-1

Page 23: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Symmetry-Breaking in the Excited State Leads to Quantitative Charge Separation in Dimers of 5PDI, a Green Chlorophyll a Mimic

• Strong absorber of 600-800 nm light.• EOX = 0.68 V and ERED = -0.76 V vs. SCE• The π-stacked cofacial chromophores

undergo symmetry breaking in theexcited state leading to quantitativecharge separation.

N N

N

N

O

O

O

O

5PDI

O O

N

O O

O

N

N

N

O

N

O O

O

N

N

N

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

Abs

orba

nce

(AU

)

W avelength (nm )

cof-5PDI2 (to luene) 5PDI (to luene)

cof-(5PDI)2

J. M. Giaimo et al., J. Am. Chem. Soc. 124, 8530-8531 (2002).

Page 24: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

cof-(5PDI)2

O

O N

O

O

O

N

N

N

O N

O

O

O

N

N

N

τCS <150 fs τCR =880 ps

500 550 600 650 700 750 800-0.03

-0.02

-0.01

0.00

0.01

∆A

Wavelength (nm)

500 600 700 800

5PDI

cof-(5PDI)2

Page 25: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Combining Light-harvesting and Charge Separation in a Self-assembledArtificial Photosynthetic system Based on Perylenediimide Chromophores

NN

N

N

O

O O

O

N

N

O

O

O

O

O

O

N

N

O

O

O

O

O

ON

N

O

O

O

O

O

O

N

N

O

O

O

O

O

O

5PDI

PDI

PDI

400 500 600 700 8000.0

0.5

1.0

1.5

Abs

orba

nce

Wavelength (nm)

Chloroform Toluene

B. Rybtchinski et al., J. Am. Chem. Soc. 126, 12268-12269 (2004).

Page 26: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Small-Angle X-ray Scattering Structural Studies of 2 x 10-4M 5PDI-PDI4 in Toluene Solution

Guinier Plot PDF PlotScattering Intensity

0.1

100

Inte

nsity

q, Å-1

0.002 0.004 0.006 0.008

100

150

200

Rg = 18.1± 0.03

Inte

nsity

q20 20 40 60

0.0

0.4

0.8

P(r)

r, Å

Compound 1 Calculated dimer

Page 27: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Small-Angle X-ray Scattering Structural Studies of 2 x 10-4M 5PDI-PDI4 in Toluene Solution

Simulated AnnealingReconstruction of the Aggregate Shape

Page 28: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

500 600 700 800

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

∆A

Wavelength (nm)

0.6 ps 2.1 ps 9.1 ps 29 ps 306 ps 506 ps

A) 680 nm excitation

500 600 700 800-0.06

-0.04

-0.02

0.00

0.02

∆A

Wavelength (nm)

0.6 ps 0.9 ps 4.0 ps 20 ps 157 ps

B) 550 nm excitation

Transient Absorption Spectra of (5PDI-PDI4)2 in Toluene following Laser Excitation at 680 nm and at 550 nm

Energy Transfer, 21 ps

Electron Transfer, 7 ps

Energy Transfer, 21 ps

Electron Transfer, 7 ps

τCS = 7 psτCR = 420 ps

Page 29: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Summary:

•Wire-like behavior in electron donor-bridge-acceptor systems requires near-resonant energy level matching between a weakly-coupled electron donor and bridge.

•Using direct measurements of magnetic exchange interactions as a function of distance, the superexchange and hopping contributions to the overall electron transfer rate can be dissected.

•Photoexcitation of self-assembled (ZnTPP-PDI4)n arrays initiates an ultrafast charge separation that occurs with near unit efficiency to generate a coherent radical ion pair state. One of the spins hops between several closely-coupled electron acceptors.

•Self-assembly of two types of robust perylenediimide chromophores5PDI (red-absorber) and PDI (green absorber) are used to produce an artificial light-harvesting antenna structure that in turn induces self-assembly of a functional special pair that undergoes ultrafast, quantitative charge separation, (5PDI-PDI4)2 .

Page 30: CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS · 2005. 5. 31. · CHARGE TRANSPORT MECHANISMS IN ORGANIC MATERIALS Michael R. Wasielewski Department of Chemistry and Institute

Wasielewski Group – Winter 2004

Funding: DOE, NSF, ONR, DARPA, PRF

Collaborations: David Tiede and Andrew GosheArgonne National Laboratory