28
Charge transport in Disordered Organic Semiconductors Eduard Meijer Dago de Leeuw Erik van Veenendaal Teun Klapwijk

Charge transport in Disordered Organic Semiconductors ·  · 2006-08-30• Non-constant density of states ... For P3HT: T 0*¡550 K ... Eduard Mejer Charge transport in disordered

  • Upload
    vothuan

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Charge transport in Disordered Organic Semiconductors

Eduard MeijerDago de LeeuwErik van VeenendaalTeun Klapwijk

Outline

• Introduction:Ordered vs. Disordered semiconductorsThe field-effect transistor

• Parameter Definition:Threshold voltage and Mobility

• Modelling the temperature dependence

• Temperature dependence of the field-effect mobility

• Field dependence of the conductivity

• Conclusions

Conductionband

Valenceband

Eg

Electronenergy

Holeenergy

Simplified band diagram of a

semiconductor

Ordered system:conduction takes placein the extended states

(CB&VB)

IntroductionOrdered Semiconductor

IntroductionDisordered Semiconductor

• Non equivalent sites• Variation in energy levels

• Localized states have a Gaussian distribution• Charge carriers hop between localized states

HOMO

LUMO

E

DOS

EF

EF

E

DOS

EF

E

DOS

The tail of the Gaussian is approximated by an Exponential

IntroductionDisordered Semiconductor

H. Bässler, Phys. Stat. Sol. B, 175, 15 (1993).M.C.J.M. Vissenberg and M. Matters, Phys. Rev. B. 57, 12964 (1998)

IntroductionField-Effect Transistor

DS

Vds

Vg

+

organic semiconductor

++

• What moves?• How (fast) does it move?

Basic questions:

Sn

S

C6H13

n

Poly(2,5-thienylene vinylene) (PTV)

Poly(3-hexyl thiophene) (P3HT)

Pentacene

IntroductionField-Effect Transistor

-20 -15 -10 -5 0

0

2

4

6

8

Vg=-10 V

Vg=-15 V

Vg=-20 Vx10-5

I ds [A

]

Vds [V]

• P-type semiconductors

• Charge carrier densityis varied with applied Vg.

• Mobility ~ 10-3-10-1 cm2/Vs

Vds=-2 V

Vds=-30 V

pentacene

-35 -30 -25 -20 -15 -10 -5 0 510-1110-1010-910-810-710-610-510-410-3

I ds [A

]Vg [V]

IntroductionField-Effect Transistor

2 important characterization parameters:

• Charge carrier mobility (steepness of the Ids-Vg-curve)• Threshold voltage (position of the curve)

Standard MOSFET modeling is often used for the parameterextraction:

linear:

saturation: ( )2, 2 thgiFEsatd VVCLWI −= µ

( )thgidFElind VVCVLWI −= µ,

IntroductionField-Effect Transistor

But standard MOSFET analysis is not allowed, since:

• These are accumulation devices (no inversion observed)• No extended state transport• Non-constant density of states

Threshold voltage can not be definedMobility depends on the charge density

Parameter definition

{

Instead of the threshold voltagefor accumulation FETs the flatband voltage is important#

#Appl. Phys. Lett. 80, 3838 (2002)*Tanase et al. submitted.

0 2 4 6 8 101016

1017

1018

1019

1020

Gate

Semiconductor

Source Drainx

Au Au

n++Si

SiO2

ρ [cm

-3]

x [nm]

Vg=-10 V Vg=-19 V

Parameter definition

Assumption that all induced carriers move with one mobility is still found to be reasonable*:

µFE=L

WCiVds

∂Ids

∂Vg

Modelling the temperature dependence

We use a hopping model in an exponential density of states*(based on polyled modelling)

*M.C.J.M. Vissenberg and M. Matters, Phys. Rev. B. 57, 12964 (1998)

EF

E

DOS

=

00

exp)(TkE

TkNEg

BB

t

( )( ) 12

03

0

40

0

0

0

0

0

22

sin2

2

=TT

s

FBgi

B

s

TT

cs

Bsdds

VVCTkB

TT

TT

TkTT

TLq

WVIε

εα

π

εσε

Conductivity prefactorOverlap parameter between localized sites

Width of exponential distributionFlat-band voltage

Modelling the temperature dependence4 modelling parameters

Sn

Modelling the temperature dependencePTV

Modelling the temperature dependencePentacene

S

C6H13

n

Modelling the temperature dependenceP3HT

But what do these parameters mean?

→ Look at the temperature dependence in a different way

Modelling the temperature dependence

T0 [K] σ0[106S/m] α-1 [Å] VFB [V]PTV 382 5.6 1.5 1

Pentacene 385 3.5 3.1 1

P3HT 425 1.6 1.6 2.5

Typically observed: • Thermally activated behaviour• Ea depends on the amount of induced charge (Vg)

0 2 4 6 8 10 12 1410-810-710-610-510-410-310-210-1100101102

µ FE [c

m2 /V

s]

Vg=-25 V

Vg=-20 V Vg=-15 V Vg=-10 V Vg=-5 V

1000/T [K-1]

T0*=EMN/kB

µ0

Ea

Temperature dependence of the field-effect mobility

Appl. Phys. Lett. 76, 3433 (2000)

ln(µ0) ~ Ea→

Meyer-Neldel Rule*.

*W. Meyer and H. Neldel, Z. Tech. Phys. 18, 588 (1937).

0.0 0.1 0.2 0.30.1

1

10

100

pref

acto

r µ0 [

cm2 /V

s]

Ea [eV]

nS

kBT0*=38 meV for pentacenekBT0*=42 meV for PTV

Common intersection point at T0*:

−−=

*11exp0

00 TkTkE

BBaFE µµ

Temperature dependence of the field-effect mobility

Temperature dependenceDiscussion

. T ,T ,T

:forlinearity improved No

41

31

21

−−−

kBT0* ~ 40 meV for pentacene, PTV, P3HTC60 and sexithiophene*.

→ common origin?

What are µ0and T0* ?

+?

Jump rate from site to site

i , Ei

j , Ej

+

The energy for a hop is suppliedby phonons.

δ−

δυ=

δ−υ=υ

TkHexp

kSexp

TkGexp

BBB00

STHG with δ−δ=δ

Jump rate:

A. Yelon and B. Movaghar, Phys. Rev. Lett. 65, 618 (1990).D. Emin Phys. Rev. B 61, 14543 (2000).

Entropy change results in Meyer-Neldel rule

Temperature dependenceDiscussion

Etc.

Single phonon → attempt frequency ↑

Multi phonon → entropy ↑

ln(µ0) ~ Ea

A. Yelon and B. Movaghar, Phys. Rev. Lett. 65, 618 (1990).

Temperature dependenceDiscussion

Temperature dependenceDiscussion

+

Ea

+

Ea+

Single ormulti-phonon?

hω0 < Eahω0 > Ea

A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960). D. Emin Phys. Rev. Lett. 32, 303 (1974).

Field dependence of the in-plane conductivity

E

Glass

Au

Field dependence in PTV

0 1 2 3 4 5 6 710-13

10-12

10-11

10-10

10-9

10-8

10-7 209 K 187 K 170 K 156 K 145 K 135 K 125 K 115 K

σ

[S/c

m]

E1/2 [(V/µm)1/2]

Sn

Synth. Metals. 121, 1351 (2001).

0 2 4 6 8 1010-1310-1210-1110-1010-910-810-710-610-510-410-3

49MV/m34MV/m25MV/m15MV/m

σ [S

/cm

]

1000/T [K-1]

Field dependence in PTV

T0*

−+

∆−= F

TkTkB

Tk BBB *11exp0

0µµ

Field dependence of the mobility

−+

∆−= F

TkTkB

Tk BBB *11exp0

0µµ

For PTV: T0* 520 K

For P3HT: T0* 550 K

−−=

*11)(exp0

00 TkTkVE

BBgaFE µµ

For PTV: T0* 490 K

For P3HT: T0* 510 K

Related?#

#A. Peled, L. Schein, Phys. Scripta 44, 304 (1991).

• Hopping in an exponential DOS gives a reasonabledescription of the charge transport

• Meyer-Neldel rule is related to the Field dependence

• T0* found in MNR and the field-dependent mobility indicates a multiphonon process (entropy)

• Entropy considerations are important to describe the charge transport (polaron)

Conclusions