14
Characteristic-Based Flux Splitting for Implicit- Explicit Time Integration of Low-Mach Number Flows Mathematics & Computer Science Argonne National Laboratory Debojyoti Ghosh Emil M. Constantinescu 13 th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego, CA, July 26 – 30, 2015

Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Characteristic-Based Flux Splitting for Implicit-Explicit Time Integration of Low-Mach Number Flows

Mathematics & Computer Science Argonne National Laboratory

Debojyoti Ghosh Emil M. Constantinescu

13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego, CA, July 26 – 30, 2015

Page 2: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Motivation & Objectives

2  

Numerical simulation of atmospheric flows Governing equations: 2D Euler equations with gravitational forces (conservation of mass, momentum and energy)

Other (more popular) forms of the governing equations o  Exner pressure, velocity,

p o t e n t i a l t e m p e r a t u re : COAMPS (US Navy), NMM (NCEP), MM5 (NCAR/PSU) .

o  Mass, momentum, potential temperature: WRF (NCAR), NUMA (NPS).

Time scales: entropy (u) << acoustic (u ± a)

Time integration o  Explicit time-integration à time step size restricted by acoustic waves;

but acoustic waves do not significantly impact any atmospheric phenomenon.

o  Implicit time-integration à Unconditionally stable; but requires solutions to non-linear system or linearized approximation.

Ø  Implicit-Explicit (IMEX) time-integration à Integrate “fast” waves implicitly, “slow” waves explicitly.

Ø  Characteristic-based partitioning of the hyperbolic flux (Acoustic waves integrated implicitly, entropy waves integrated explicitly)

Giraldo, Restelli, Laeuter, 2010: P e r t u r b a t i o n - b a s e d I M E X splitting of the hyperbolic flux (first-order perturbations implicit, higher-order perturbations explicit)

Selective preconditioning of acoustic modes •  Implicit Continuous Eulerian

( ICE) t echn ique (Har low, Amsden, 1971)

•  Preconditioning applied to stiff modes (Reynolds, Samtaney, Woodward, 2010)

@

@t

2

664

⇢u

⇢v

e

3

775+@

@x

2

664

⇢u

⇢u

2 + p

⇢uv

(e+ p)u

3

775+@

@y

2

664

⇢v

⇢uv

⇢v

2 + p

(e+ p)v

3

775 =

2

664

0⇢g · i⇢g · j

⇢ug · i+ ⇢vg · j

3

775

Page 3: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Spatial Discretization

Conservative finite-difference discretization of a hyperbolic conservation law

3

dujdt

+1Δx

f (x j+1/2, t)− f (x j−1/2, t)#$ %&= 0u t+ f (u)x = 0; f '(u)∈ℜ

j j+1 0 N j-1 j-1/2 j+1/2

Cell centers Cell interfaces

Δx

Weighted Essentially Non-Oscillatory (WENO) Schemes §  Weights depend on the local smoothness of the

solution §  Optimal weights in smooth regions allow (2r-1)th

order accuracy §  Near-ze ro we igh t s fo r s t enc i l s w i th

discontinuities à non-oscillatory behavior §  Compact-Reconstruction WENO (CRWENO)

à Higher spectral resolution and lower absolute errors for same order of convergence

CRWENO5 (Compact finite difference scheme)

WENO5 Smoothness

indicator

Page 4: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Characteristic-based Flux Splitting (1)

4  

Separation of acoustic and entropy modes in the flux for implicit-explicit time integration

1D Euler equations Semi-discrete ODE in time Spatial discretization

Discretization operator (e.g.:WENO5, CRWENO5)

Flux Jacobian

-3

-2

-1

0

1

2

3

-3 -2.5 -2 -1.5 -1 -0.5 0

Imaginary

Real

CRWENO5

-200

-150

-100

-50

0

50

100

150

200

-250 -200 -150 -100 -50 0 50

Imag

inary

Real

u+a u-a

u

E i g e n v a l u e s o f t h e CRWENO5 discretization

Eigenvalues of the r i g h t - h a n d - s i d e operator (u=0.1, a=1.0, dx=0.0125)

Example: Periodic density sine wave on a unit domain discretized by N=80 points.

Eigenvalues of the right-hand-side of the ODE are the eigenvalues of the discretization operator times the characteristic speeds of the physical system

Time step size limit for linear stability

Page 5: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Characteristic-based Flux Splitting (2)

5  

Splitting of the flux Jacobian based on its eigenvalues

“Slow” flux

“Fast” Flux

⇤F =

2

40

u+ au� a

3

5

-200

-150

-100

-50

0

50

100

150

200

-250 -200 -150 -100 -50 0 50

Imaginary

Real

F(u) FF(u) FS(u)

Example: Periodic density sine wave on a unit domain discretized by N=80 points (CRWENO5).

Small difference between the eigenvalues of the complete operator and the split operator. (Not an error)

Page 6: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

IMEX Time Integration with Characteristic-based Flux Splitting (1)

6  

Apply Implicit-Explicit Runge-Kutta (PETSc - TSARKIMEX) time-integrators

Stage values (s stages)

Step completion

Non-linear system of equations

Solution-dependent weights for the WENO5/CRWENO5 scheme

Linearized Formulation

Redefine the splitting as

Note: Introduces no error in the governing equation.

-200

-150

-100

-50

0

50

100

150

200

-250 -200 -150 -100 -50 0 50

Imaginary

Real

F(u) FF(u) FS(u)

At the beginning of a time step:-

Is FF a good approximation at each stage?

Page 7: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

7  

Linearization of the WENO/CRWENO discretization: Within a stage, the non-linear coefficients are kept fixed.

IMEX Time Integration with Characteristic-based Flux Splitting (2)

Linear system of equations for implicit stages:

ARKIMEX 2c •  2nd order accurate •  3 stage (1 explicit, 2 implicit) •  L-Stable implicit part •  Large real stability of explicit part

ARKIMEX 2e •  2nd order accurate •  3 stage (1 explicit, 2 implicit) •  L-Stable implicit part

ARKIMEX 3 •  3rd order accurate •  4 stage (1 explicit, 3 implicit) •  L-Stable implicit part

ARKIMEX 4 •  4th order accurate •  5 stage (1 explicit, 4 implicit) •  L-Stable implicit part

ARK Methods (PETSc)

Preconditioning (Preliminary attempts)

First order upwind discretization Periodic boundaries ignored

•  Jacobian-free approach à Linear Jacobian defined as a function describing its action on a vector (MatShell)

•  Preconditioning matrix à Stored as a sparse matrix (MatAIJ)

Block n-diagonal matrices •  Block tri-diagonal (1D) •  Block penta-diagonal (2D) •  Block septa-diagonal (3D)

Page 8: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Example: 1D Density Wave Advection

8  

Initial solution ⇢ = ⇢1 + ⇢ sin (2⇡x) , u = u1, p = p1; 0 x 1

-100

-50

0

50

100

-100 -80 -60 -40 -20 0

Imaginary

Real

F(u) FF(u) FS(u)

-800

-600

-400

-200

0

200

400

600

800

-1000-900-800-700-600-500-400-300-200-100 0 100

Imaginary

Real

F(u) FF(u) FS(u)

Explicit Implicit

C R W E N O 5 , 320 grid points

-800

-600

-400

-200

0

200

400

600

800

-1000 -800 -600 -400 -200 0

Imaginary

Real

F(u) FF(u) FS(u)

-100

-50

0

50

100

-100 -80 -60 -40 -20 0

Imaginary

Real

F(u) FF(u) FS(u)

Explicit Implicit

10−4 10−3 10−2 10−110−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

dt

Erro

r

arkimex(2c )arkimex(2e )arkimex(3 )rk (2a )rk (3 )

≈10x Explicit limit

Semi-implicit limit

10−4 10−3 10−2 10−1 10010−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

dt

Erro

r

arkimex(2c )arkimex(2e )arkimex(3 )rk (2a )rk (3 )

≈100x

Explicit limit

Semi-implicit limit S e m i - i m p l i c i t

time step size limit determined b y t h e f l o w velocity

Eigenvalues

Page 9: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Example: 1D Density Wave Advection (Computational Cost)

9  

Number of function calls

Wall time

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e+03 1e+04 1e+05

Error (L2)

Number of RHS function calls

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈ 5x

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-01 1e+00 1e+01

Error (L2)

Wall time (seconds)

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈ 4x

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e+03 1e+04 1e+05 1e+06

Error (L2)

Number of RHS function calls

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈ 60x

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-01 1e+00 1e+01 1e+02

Error (L2)

Wall time (seconds)

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈ 45x

Page 10: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Example: Low Mach Isentropic Vortex Convection

10  

Freestream flow

Vortex (Strength b = 0.5)

Eigenvalues of the right-hand-side operators

-15

-10

-5

0

5

10

15

-20-18-16-14-12-10 -8 -6 -4 -2 0 2

ImaginaryReal

F(u) FF(u) FS(u)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Imaginary

Real

F(u) FF(u) FS(u)Grid:322 points, CRWENO5  

10−3 10−2 10−1 100 10110−14

10−12

10−10

10−8

10−6

10−4

10−2

dt

Erro

r

arkimex(2e )arkimex(2c )arkimex(3 )arkimex(4 )rk (2a )rk (3 )rk (4 )

≈10x

Semi-implicit limit

Explicit limit

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re(λ) ∆ t

Im(λ

) ∆ t

ARK2e (IMEX)ARK2e (Expl)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5−3

−2

−1

0

1

2

3

Re(λ) ∆ t

Im(λ

) ∆ t

ARK3 (IMEX)ARK3 (Expl)

§  O p t i m a l o r d e r s o f convergence observed for all methods

§  Time step size limited by the “slow” eigenvalues.

Page 11: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Example: Vortex Convection (Computational Cost)

11  

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+03 1e+04 1e+05

Error (L2)

Number of RHS function calls

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)ARK2c - LU

RK2a

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+01 1e+02 1e+03 1e+04

Error (L2)

Wall time (seconds)

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)ARK2c - LU

RK2a

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+03 1e+04 1e+05 1e+06

Error (L2)

Number of RHS function calls

ARK3 - No preconditionerARK3 - Block Jacobi

ARK3 - ILU(0)ARK3 - LU

RK3

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+01 1e+02 1e+03 1e+04

Error (L2)

Wall time (seconds)

ARK3 - No preconditionerARK3 - Block Jacobi

ARK3 - ILU(0)ARK3 - LU

RK3

ARK 2c ARK 3

Number of function calls

Wall time

Page 12: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Example: Inertia – Gravity Wave

12  

−  Periodic channel – 300 km x 10 km −  No-flux boundary conditions at top and bottom

boundaries −  Mean horizontal velocity of 20 m/s in a uniformly

stratified atmosphere (M∞≈ 0.06) −  Initial solution – Potential temperature

perturbation

x

y

0 0.5 1 1.5 2 2.5 3x 105

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5x 10−3

Potential temperature perturbations at 3000 seconds (Solution obtained with WENO5 and ARKIMEX 2e, 1200x50 grid points)

Cross-sect ional potential temperature perturbations at 3000 seconds (y = 5 km) at various CFL numbers (0.2 – 13.6)

Eigenvalues of the right-hand-side operators

Grid: 300x10 points, CRWENO5  

CFL Wall time (s) Function counts

8.5 6149 24800

13.6 4118 17457

17.0 3492 14820

20.4 2934 12895

RK4 CFL ~ 1.0 Wall time: 5400 s Function counts: 24000

Page 13: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Conclusions

13  

Characteristic-based flux splitting (Work in progress): §  Partitioning of flux separates the acoustic and entropy modes à Allows larger

time step sizes (determined by flow velocity, not speed of sound). §  Comparison to alternatives

–  Vs. explicit time integration: Larger time steps à More efficient algorithm

–  Vs. implicit time integration: Semi-implicit solves a linear system without any approximations to the overall governing equations (as opposed to: solve non-linear system of equations or linearize governing equations in a time step).

To do: §  Improve efficiency of the linear solve

–  Better preconditioning of the linear system

§  Extend to 3D flow problems

Page 14: Characteristic-Based Flux Splitting for ... - Debojyoti Ghosh · Debojyoti Ghosh Emil M. Constantinescu 13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego,

Acknowledgements U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research

14

Thank you!