47
Chapter 3 Chapter 3 Power Electronic Power Electronic Circuits Circuits

Chapter3 Circuits

Embed Size (px)

DESCRIPTION

Electric Drives, Mohommed El-Sharkawi, Fundamental of Electric Drives, Full PowerPoint Presentation, Including Examples.

Citation preview

  • Chapter 3

    Power Electronic Circuits

  • ConvertersAC/DCDC/DCDC/AC

  • aSingle-Phase, Half-Wave, AC-to-DC Conversion for Resistive Loads

    i

    R

    vt

    vs

    +

    -

  • Single-Phase, Half-Wave, AC-to-DC Conversion for Resistive Loads

    i

    R

    vt

    vs

    +

    -

    (t

    (

    vs

    vt

    i

    (t

    (

    u(

    1

  • a

  • pa

  • Example

    A single-phase, half wave SCR circuit is used to reduce the average voltage across a nonlinear resistance. The elements of the resistance change the resistive value according to the following equation:

    The voltage of the ac side is 110 V(rms). Calculate the average current of the resistance when the triggering angle is adjusted to 90o.

    Solution:

    _969016149.unknown

    _969016316.unknown

    _969016336.unknown

    _969015887.unknown

  • Root-Mean-Squares (RMS)

  • Root Mean Squares of f

  • tConcept of RMSAverageof v=0

  • Root-Mean-Squares (RMS)of a sinusoidal voltage

  • RMS of load voltage

    (t

    (

    vs

    vt

    i

  • Vrms

    EMBED Equation.3

    (

    (

    _968827849.unknown

    _983530603.unknown

    _968827621.unknown

  • Example.2:

    An ac source of 110V (rms) is connected to a resistive element of 2 ( through a single SCR. For ( = 45o and 90o, calculate the followings:

    a) rms voltage across the load resistance

    b) rms current of the resistance

    c) Average voltage drop across the SCR

    Solution:

    For ( = 45o

    a)

    b)

    c)

    _969017807.unknown

    _969439356.unknown

    _969017548.unknown

  • Electric Power: Method 1

  • Electric Power: Method 2

    p(t) = i(t) v(t)

    p(t) =

  • Power Factor (No Harmonics)Real PowerZero average

  • Effect of Harmonics

  • Single-Phase, Full-Wave, AC-to-DC Conversion for Resistive Loads

    S2

    vt

    vs

    C

    D

    R

    S3

    A

    B

    S4

    S1

  • When VAB > 0

    S2

    vt

    vs

    C

    D

    R

    i1

    S3

    A

    B

    S4

    S1

  • When VAB < 0

    S2

    vt

    vs

    C

    D

    R

    i2

    S3

    A

    B

    S4

    S1

  • (t

    (

    vs

    vt

    i1

    i2

    vt

    S2

    vt

    vs

    C

    D

    R

    i2

    i1

    S3

    A

    B

    S4

    S1

  • (t

    (

    vs

    vt

    i1

    i2

    vt

  • Half Wave Versus Full Wave

    Half WaveFull WaveAverage VoltageRMS VoltagePower

  • ExampleA full-wave, ac/dc converter is connected to a resistive load of 5 . The voltage of the ac source is 110 V(rms). It is required that the rms voltage across the load to be 55 V. Calculate the triggering angle, and the load power.

  • Solution

  • Purely inductive load

    v

    t

    Vmax

    iL

    90o

    i

    L

    vs

  • Power: Purely Inductive Load

    v

    t

    iL

    (

  • Inductive Load

    i

    L

    R

    vR

    vL

    vs

  • Switched Inductive Load

    i

    L

    R

    vR

    vL

    vs

  • Switched Inductive Load b a

    i

    L

    R

    vR

    vL

    vs

  • tv

    i

    L

    R

    vR

    vL

    vs

    vt

  • i

    L

    R

    vR

    vL

    vs

    V(S) = L vt =

    _1355736388.unknown

  • L-1 I(S)

    (

    _969394206.unknown

    _1009194797.unknown

    _968919443.unknown

    _968919533.unknown

    _968919426.unknown

  • - Relationship

    (

    (

  • tvKeep in Mind:

    Current extends beyond 180oLoad Voltage goes negative

    vs

    R

    L

  • Free-Wheeling Diode

    vs

    R

    L

  • Free-Wheeling DiodeWhen vs is positiveWhen vs is negative

    vS

    iS

    id

    R

    R

    L

    L

    vs

    R

    L

  • Free-Wheeling Diode id vS a b p From to From to

    Id

    is

    vs

    R

    L

    vS

    iS

    id

    R

    R

    L

    L

  • Free-Wheeling DiodeFrom to

    vS

    iS

    id

    R

    R

    L

    L

  • Free-Wheeling DiodeFrom to

    vS

    iS

    id

    R

    R

    L

    L

  • Load Voltage exists between and only id vS a b p

    Pdc = Vave Iave

  • 3-phase, AC/DC Conversion: Circuit

    van

    vbn

    vcn

    S1

    S3

    S5

    S4

    S6

    S2

    ZL

    c

    b

    a

    vL

    +

    -

  • 3-phase, AC/DC Conversion: Switching Sequence

    Time

    Triggering

    S1

    S2

    S3

    S6

    S5

    S4

    vbn

    vcn

    van

    Time

    Time

    vab

    vac

    vbc

    vba

    vca

    vcb

    vcb

  • 3-phase, AC/DC ConversionWhen S5 and S6 are closed

    Time

    Triggering

    S1

    S2

    S3

    S6

    S5

    S4

    vbn

    vcn

    van

    Time

    Time

    vab

    vac

    vbc

    vba

    vca

    vcb

    vcb

    van

    vbn

    vcn

    S1

    S3

    S5

    S4

    S6

    S2

    ZL

    c

    b

    a

    vL

    +

    -

  • Advanced Triggering

    Time

    Triggering

    S1

    S2

    S3

    S6

    S5

    S4

    vbn

    vcn

    van

    Time

    Time

    vab

    vac

    vbc

    vba

    vca

    (

    vcb

  • Time

    Triggering

    S1

    S2

    S3

    S6

    S5

    S4

    vbn

    vcn

    van

    Time

    Time

    vab

    vac

    vbc

    vba

    vca

    (

    vcb

  • DC-to-DC Conversion1.Step-down (Buck) converter: where the output voltage of the converter is lower than the input voltage. 2.Step-up (Boost) converter: where the output voltage is higher than the input voltage.3.Step-down/step-up (Buck-Boost) converter.

  • Step Down

  • ExampleSolution

  • v

    VS

    vd

    +

    -

    -

    +

    iL

    is

    id

    L

    C

    i

    Time

    (

    ton

    iL

    Time

    (

    ton

    vd

    VS

    v

    is

    id

  • DC/AC Conversion Single PhaseMM

  • DC/AC Conversion Three-phaseMM

  • - 1/3 Vdc

    - 2/3 Vdc

    van

    Q4

    Q5

    Q6

    vbn

    vcn

    Q1

    Q2

    Q3

  • El-Sharkawi@University of Washington*First Time Interval

    El-Sharkawi@University of Washington

    - 1/3 Vdc

    - 2/3 Vdc

    van

    Q4

    Q5

    Q6

    vbn

    vcn

    Q1

    Q2

    Q3

    a

    I

    c

    I/2

    Vs

    n

    I/2

    b

    I/2

    I/2

    I

    I

    Q6

    Q5

    Q1

    I/2

    I

  • El-Sharkawi@University of Washington*Second Time Interval

    El-Sharkawi@University of Washington

    - 1/3 Vdc

    - 2/3 Vdc

    van

    Q4

    Q5

    Q6

    vbn

    vcn

    Q1

    Q2

    Q3

    a

    I/2

    c

    I

    Vs

    n

    I/2

    b

    I

    I

    I

    Q6

    Q2

    Q1

    I/2

    I

  • Voltage Waveforms Across LoadWaveforms are symmetrical and equal in magnitudeWaveforms are shifted by 120 degrees

    - Vdc

    vca

    vbc

    vab

    Q6

    Q5

    Q4

    Q3

    Q2

    Q1

  • - 1/3 Vdc

    - 2/3 Vdc

    van

    Q4

    Q5

    Q6

    vbn

    vcn

    Q1

    Q2

    Q3

  • Control ParametersFrequencyVoltageSequenceVoltage/Frequency

  • Frequency ControlF = 1/ = t = 6 t

    - 1/3 Vdc

    - 2/3 Vdc

    van

    Q4

    Q5

    Q6

    vbn

    vcn

    Q1

    Q2

    Q3

  • RMS Voltage

  • Voltage control - Fixed Width Modulation

    Time

    Line-to-Line Voltage

    Time

  • Voltage Reduction VR

    Time

    Line-to-Line Voltage

  • Sequence ChangeReverse the terminal sequence abc to acb

  • Pulse-Width Modulation

    vref

    vcar

  • Switching of Phase a

    vref

    vcar

  • vbo

    vao

    Vdc

    Vdc

    vref of phase a

    vref of phase b

    vcar

  • Amplitude ModulationTextbook Correction

    Fundamental Frequency

    Vdc

    vab

  • Energy RecoveryVoltage drop across switch

    C

    B

    S1

    S3

    S4

    S6

    S2

    D

    A

    Vdc

    +

    -

    S5

    S8

    S7

    vs

    vs

    R

    Vdc

    ic

    id

    R

    vs

    (a)

    Vdc

    (b)

  • Charging

    vs

    R

    Vdc

    ic

    id

    R

    vs

    (a)

    Vdc

    (b)

    Vdc

    vAB

    Time

    vBA

    vBA

    Time

    Vdc

    vAB

    (

    S1 & S4

    S1 & S4

    S2 & S3

    S2 & S3

    S6 & S7

    (

    S5 & S8

    S5 & S8

    S6 & S7

    Vdc

    Time

    Time

    (a)

    (b)

    (c)

    (d)

    (

    (

  • Discharging

    Vdc

    vAB

    Time

    vBA

    vBA

    Time

    Vdc

    vAB

    (

    S1 & S4

    S1 & S4

    S2 & S3

    S2 & S3

    S6 & S7

    (

    S5 & S8

    S5 & S8

    S6 & S7

    Vdc

    Time

    Time

    (a)

    (b)

    (c)

    (d)

    (

    (

    C

    B

    S1

    S3

    S4

    S6

    S2

    D

    A

    Vdc

    +

    -

    S5

    S8

    S7

    vs

    vs

    R

    Vdc

    ic

    id

    R

    vs

    (a)

    Vdc

    (b)

  • Vdc

    vAB

    Time

    vBA

    vBA

    Time

    Vdc

    vAB

    (

    S1 & S4

    S1 & S4

    S2 & S3

    S2 & S3

    S6 & S7

    (

    S5 & S8

    S5 & S8

    S6 & S7

    Vdc

    Time

    Time

    (a)

    (b)

    (c)

    (d)

    (

    (

  • Three-Phase energy recovery system

    van

    vbn

    vcn

    S1

    S3

    S5

    S4

    S6

    S2

    c

    b

    a

    Vdc

    +

    -

    I

  • Current Source Inverter

    +

    i

    Q3

    Q2

    Q1

    i

    L

    Load

    D1

    D3

    D2

    D4

    vs

    -

    vl

    vd

    Q4

  • Function of the diodes

    +

    i

    Q3

    Q2

    Q1

    i

    L

    Load

    D1

    D3

    D2

    D4

    vs

    -

    vl

    vd

    Q4

    ******************************************************************************