33
Chapter2 Vector analysis Chapter2. Vector analysis

Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

  • Upload
    others

  • View
    44

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

Chapter2 Vector analysisChapter2. Vector analysis

Page 2: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 1 Introduction2-1 Introduction

1. vector algebraaddition, subtraction and multiplication, p

2. orthogonal coordinate systems

3. vector calculation differentiation, integration (line, surface and volumedifferentiation, integration (line, surface and volumeintegrals)

del( ) operator, gradient, divergence and curl operation∇

Radio Technology Laboratory 2

Page 3: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 2 Vector Addition and Subtraction2-2 Vector Addition and Subtraction

1 Addition1. Addition

, , AA Aa A A aA

= = =

Commutative law :

A B C

A B B A

+ =

+ = + 1

Associative law : ( ) ( )A B C A B C+ + = + +2

2. Subtraction

( )A B A B− = + −

Radio Technology Laboratory 3

Page 4: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 3 Products of Vectors2-3 Products of Vectors

1. Scalar or dot product1. Scalar or dot product

cosA B AB θ=i

ABθ

Commutative law :

Distributive law : ( )

A B B A

A B C A B A C

=

+ = +

i i

i i i

1

2Bθ

2 or A A A A A A= =i i

( ) ( )C C C A B A B= = + +i i

2 2

2 2

2 cos

2 cos

A B AB

A B AB

θ

α

= + +

= + −

BC

α θ

Radio Technology Laboratory 4

A

Page 5: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2. Vector or cross product2. Vector or cross product

sinnA B a AB θ× =

BA B×

A B B A× = − ×

Aθna

ωV

d

sinV d Rω ω θ= =

θ

d p•

R V Rω= ×

Radio Technology Laboratory 5

Page 6: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

3 Product of three vectors3. Product of three vectors

( ) ( ) ( ) A B C B C A C A B× = × = ×i i i

( ) ( ) ( ) A B C B A C C A B× × = −i i

Radio Technology Laboratory 6

Page 7: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 4 Orthogonal Coordinate Systems2.4 Orthogonal Coordinate Systems

1 2 3Base vector ( , , )u u u1 2 3

1 2 3 2 3 1 3 1 2

1 2 2 3 3 1

( )

, ,

0

u u u u u u u u u

u u u u u u

× = × = × =

= = =i i i1 2 2 3 3 1

1 1 2 2 3 3 1 u u u u u u= = =i i i

1 2 3 1 2 31 2 3 1 2 3 ,

( 1, 2,3) : const does not mean that the surface in plane. It can u u u u u u

i

A A u A u A u B B u B u B u

u i

= + + = + +

= be curved surfaces e.g) spherical coordinate system( ,r θ , )

h f f hφ

: const means the surface of a sphere

(it is not plane, but , , are perpendicular to each other)

r

r θ φ

Radio Technology Laboratory 7

Page 8: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

A B A B A B A B+ +1 1 2 2 3 3

1 2 3

u u u u u uA B A B A B A B

u u uA B A A A

= + +i

1 2 3

1 2 3

( ) ( ) ( )

u u u

u u u

A B A A A

B B B

A B A B A B A B A B A B

× =

2 3 3 2 1 3 3 1 1 2 2 11 2 3 ( ) ( ) ( )u u u u u u u u u u u uu A B A B u A B A B u A B A B= − − − + −

Radio Technology Laboratory 8

Page 9: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

1. Differential change in one of the coordinates Diffetential length change 와 의상관 관계

1 2 3 , ( : metric coefficient, may be a function of , , ) e.g) polar coordinate(the subset of c

i i i idl h du h u u u=

ylindrical coordinate)

( )=( ) in in directionu u r d dl rdφ φ φ φ φ→ =1 2 2 ( , )=( , ) in in direction

2. differential length change : vector

u u r d dl rd

l

φ φ φ φ φ→ =

임의의 방향의

1 1 2 2 3 3 1 1 1 2 2 2 3 3 3 ( ) ( ) ( )

3

dl dll u dl u dl u dl u h du u h du u h du= = + + = + +

Differential volume change : scalar3

1 2 3 1 2 3

. Differential volume change : scalar dv h h h du du du=

1 1

4. Differential area change : vector

(right hand rule)

) Differential area normal to the unit vector

ds dsn

cf ds u

=

Radio Technology Laboratory 9

1 1 ) Differential area normal to the unit vector

cf ds u

1 2 3 2 3 2 3 ds dl dl h h du du= =

Page 10: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 4 1 Cartesian Coordinates2-4.1 Cartesian Coordinates

di l 1h h h1 2 3( , , ) ( , , )u u u x y z= 1 2 3distance element. so 1h h h= = =

u x u y u z= = =1 2 3 , ,

position vector to the point ( , , )

u x u y u z

x y zx y z

= = =

× =

1 1 1

x x y y z z

OP x x y y z z

A B A B A B A B

= + +

= + +i

1 2 3 ( , , ) ( , , )u u u x y z=

x y z

x y z

x y zA B A A A

B B B× =

, ,

x y z

x y z

dl xdx ydy zdzds dydz ds dxdz ds d

= + += = = xdy

Radio Technology Laboratory 10

dv dxdydz=

Page 11: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 4 2 Cylindrical Coordinates2-4.2 Cylindrical Coordinates

( ) ( )u u u r zφ= 1h h h r= = =1 2 3( , , ) ( , , )u u u r zφ= 1 3 21, h h h r= = =

, , r z z r z rφ φ φ× = × = × =

r zA rA A zAφφ= + +

1 2 3 ( , , ) ( , , )u u u r zφ=

Radio Technology Laboratory 11

Page 12: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

dl d d dφ φ

dl rdr d zdzφ φ= + +

, ,

r z

dl rdr rd zdzds rd dz ds drdz ds rdrd

dv rdrd dzφ

φ φφ φ

φ

= + += = =

= , ,

r zds rd sz ds drdz ds rdrddv rdrd dz

φφ φ

φ

= = =

=

) r z x y zcf A rA A zA xA yA zAφφ= + + ⇒ + +

φ

cos sin

sin cos

y

x r r

y r r

A A x A r x A x A A

A A y A r y A y A A

φ

φ φ

φ φ

φ φ φ

φ φ φ

= = + = −

= = + = +

i i i

i i i

cos sin 0sin cos 0

0 0 1

x r

y

A AA AA A

φ

φ φφ φ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 대입0 0 1z zA A⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

cos , sin , x r y r z zφ φ= = =

대입

Radio Technology Laboratory 12

2 2 1, tan ( ), yr x y z zx

φ −= + = =

Page 13: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 4 3 Spherical Coordinate2-4.3 Spherical Coordinate

( ) ( )u u u R θ φ= 1 sinh h R h R θ= = =1 2 3( , , ) ( , , )u u u R θ φ= 1 2 31, , sinh h R h R θ= = =

, , R R Rθ φ θ φ φ θ× = × = × =

RA RA A Aθ φθ φ= + +

Radio Technology Laboratory 13

Page 14: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

sindl RdR Rd R dθ θ φ θ θ= + +2

2

sin , sin ,

sinRds R d d ds R dRd ds RdRd

dv R dRd dθ φθ θ φ θ φ θ

θ θ φ

= = =

=

) sin cos sin sin coscf x R y R z Rθ φ θ φ θ= = =2 2

2 2 2 1 1

) sin cos , sin sin , cos

, tan , tan

cf x R y R z R

x y yR x y zz x

θ φ θ φ θ

θ φ− −

= = =

+= + + = =

H.W1 : Find the conversion matrix from spherical into cartesian

Radio Technology Laboratory 14

Page 15: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 5 Integrals Containing Vector Functions2-5 Integrals Containing Vector Functions

Fdv vdl F dl A ds∫ ∫ ∫ ∫i i , , ,

1. (for cartesian)

2 ( )[ ] ( ) ( ) ( )

v c c s

v z y x

Fdv vdl F dl A ds

Fdv Fdxdydz

vdl v x y z xdx ydy zdz x v x y z dx y v x y z dy z v x y z dz

=

= + + = + +

∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫

1

2. ( , , )[ ] ( , , ) ( , , ) ( , , )

) from point Pc c c c cvdl v x y z xdx ydy zdz x v x y z dx y v x y z dy z v x y z dz

cf

= + + = + +∫ ∫ ∫ ∫ ∫

2

2to point P

around pathp

vdl C vdl⇒∫ ∫1

, around path p c

vdl C vdl⇒∫ ∫

y 2

0) evaluate

Pex r dr∫

2P(1,1)P

2 2 2 where from the original to the point (1,1) ) along the direct path

r x y Pa OP

= +

1

2

) along the path ) along the path

b OPPc OP P

Radio Technology Laboratory 15

x1Po

Page 16: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 222 2

0 0

-1

2 2) 3

where cos sin and . since tan tan

Pa r dr r r dr r

y yr x y π πφ φ φ φ φ

= =

= + = = ⇒ = =

∫ ∫

where cos sin and . since tan tan4 4

2 2 3 3

r x yx x

x y

φ φ φ φ φ+ ⇒

= +

1

1

1

2 2 2 2 2

0 0

) along O4 1 ( ) (0 ) ( 1)3 3

P P P

P

b PP

x y dr y dy y x dxx x y+ = + + + = +∫ ∫ ∫10 0

2 2

0

3 31 4) same way, ( )3

Pc x y dr x+ = +∫ 3

y

Radio Technology Laboratory 16

Page 17: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

3 ?F dl =∫ i3. ?

) Given 2 , evaluate

CB

A

F dl

ex F xxy y x F dl

=

= −

∫∫

i

i

) In cartesian coordinates ) In cylindrical coordinates

ab

) I t i

x=0,y=3 2 2

) In cartesian

( 2 ) ( ) 2

( 2 ) 9(1 ) using 9

a

F dl xxy y x xdx ydy xydx xdy

xydx xdy x yπ= − + = −

− = − + + =∫

i i

3, 0 ( 2 ) 9(1 ) using 9

2) In cylindrical

( cos 2 sin ) ( sin 2 cos )

x yxydx xdy x y

b

F r xy xy xy xφ φ φ φ φ

= == + + =

= − − +

where cos , sin , x r y r dl rφ φ φ= = = 3

3( sin 2 cos )

d d

F dl xy x dπ

φ φ φ

φ φ φ

π

=

= − +i

Radio Technology Laboratory 17

20

3( sin 2 cos ) 9(1 ), where 3cos and 3sin2

xy x d x yπφ φ φ φ φ− + = − + = =∫

Page 18: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

4 h i l h fl f hA d A d∫ ∫4. the integral measures the flux of the vector

field flowing through the area s sA ds A nds

A S

= ⇒∫ ∫i i

) the convention for the positive direction ofcf or a closed surface

ds n

an open surface depend on the direction in which the perimeter of the open

f i d⇒

surface is traversed disk

Radio Technology Laboratory 18

Page 19: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

1 2) Given , ( 3, 2)k kex F a a z r= + = ± =) Given , ( 3, 2)

evaluate .

r z

s

ex F a a z rr r

F ds

+ ±

∫ i

∫ ∫ ∫ ∫)

a)top face : , , 3 ( 0 2, 0 2 )

top bottom sideS face face wallsol F ds F nds F nds F nds

n z ds rdrd z rφ φ π

= + +

= = = = → = →

∫ ∫ ∫ ∫i i i i

2 2

2 20 0 3 12

b)bottom face : , , 3

topface

F nds k rdrd k

n z ds rdrd z

πφ π

φ

= =

= − = = −

∫ ∫ ∫i

) , ,

φ2 2

2 20 0 3 12

c)side wall : 2

bottomface

F nds k rdrd k

n r ds rdrd r

πφ π

φ

= =

= = =

∫ ∫ ∫i

2 3

1 10 3

c)side wall : , , 2

12sidewall

n r ds rdrd r

F nds k rdrd kπ

φ

φ π−

= = =

= =∫ ∫ ∫

i

Radio Technology Laboratory 19

1 2 12 ( 2 )SF ds k kπ∴ = +∫ i

Page 20: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 6 Gradient of a Scalar Field2-6 Gradient of a Scalar Field

scalar or vector fields : function of ( ; )t u u u1 2 3 scalar or vector fields : function of ( ; , , ) space rate of change of a scalar fields at a given time the gradient of the scalar : the vector that represents both the magnitude and

t u u u

g p g the direction of the maximum space rate of increase of a scalar

grad or (where, )dV dVV n V n dl dndn dn

∇ ≠

) cos ( )

( )

dn dndV dV dn dV dVcf n l V ldl dn dl dn dn

dV V dl

α= = = = ∇

i i

( )dV V dl= ∇ i∵

Radio Technology Laboratory 20

Page 21: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

V V VdV dl dl dl∂ ∂ ∂+ +1 2 3

1 2 3

1 1 2 2 3 3 1 1 1 2 2 2 3 3 3 where, ( ) ( ) ( )

dV dl dl dll l l

dl u dl u dl u dl u h du u h du u h du

V V V V V V

= + +∂ ∂ ∂

= + + = + +

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂( )1 2 3 1 1 2 2 3 3 1 2 31 2 3 1 2 3

1

V V V V V VdV u u u u dl u dl u dl u u u dll l l l l l

VV u

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + + + + = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂∇ =∴

i i

2 3 1 2 3V V V V Vu u u u u∂ ∂ ∂ ∂ ∂

+ + = + +1V ul

∇∴∂ 2 3 1 2 3

1 2 3 1 1 2 2 3 3

1 2 31 1 2 2 3 3

u u u u ul l h u h u h u

u u u Vh u h u h u

+ + + +∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂⎝ ⎠1 1 2 2 3 3

1 2 31 1 2 2 3 3

u u uh u h u h u

⎝ ⎠∂ ∂ ∂

⇒∇ ≡ + +∂ ∂ ∂

) divergence operationcurl opetation

cf ∇ ⇒∇× ⇒i

Vector differential operator

Radio Technology Laboratory 21

curl opetation∇× ⇒

Page 22: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 7 Divergence of a Vector Field2-7 Divergence of a Vector Field

Divergence of a vector field at a point ( )

Net outward flux of per unit volume as the volume about the

A div A

A⇒ point tends to zero

A d∫0

lim S

v

A dsdiv A

vΔ →=

Δ∫ i

(two d→ imensional surface/three dimensional volume) spatial derivatives as the volume approaches zeropp

Radio Technology Laboratory 22

Page 23: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

. ) In cartesian coordinates

s

e g

A ds

⎡ ⎤

∫ i

front back right left top bottomface face face face face face

A ds⎡ ⎤= + + + + +⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫ i

0 0 0

front face

( ) ( , , )2

front frontfront xfrontface

xA ds A s A x y z A x y z y zΔ= Δ = Δ Δ = + Δ Δ∫ i i i

0, 0 0

0 0 0 0 0 0( , )

( , , ) ( , , ) 2 2

back face

xx x

x y z

Ax xA x y z A x y z high order termx

∂Δ Δ∴ + = + +

bac A dsi 0 0 0( ) ( , , )2

( ) ( )

back backback xkface

x

xA s A x y z A x y z y z

Ax xA A hi h d t

Δ= Δ = − Δ Δ = − − Δ Δ

∂Δ Δ+

∫ i i

Radio Technology Laboratory 23

0, 0 0

0 0 0 0 0 0( , )

( , , ) ( , , ) 2 2

xx x

x y z

A x y z A x y z high order termx

∴ − = − +∂

Page 24: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

⎛ ⎞

( , )0, 0 0

[ ] . . .x y z

xfront backface face

AA ds H OT x y zx

AA A

∂⎛ ⎞∴ + = + Δ Δ Δ⎜ ⎟∂⎝ ⎠

∂⎛ ⎞∂ ∂

∫ ∫ i

( , )0, 0 0

. . . in , ,x y z

yx zs

AA AA ds x y z H O T x y zx y z

∂⎛ ⎞∂ ∂∴ = + + Δ Δ Δ + Δ Δ Δ⎜ ⎟∂ ∂ ∂⎝ ⎠∫ i

2 3 1 11 2 3 1 2

1 ( ) (yx zAA Adiv A A h h A h h

x y z h h h u u∂∂ ∂ ∂ ∂

≡ ∇ = + + = +∂ ∂ ∂ ∂

∴∂

i 3 2 1 2 33

) ( )A h h Au

⎡ ⎤∂+⎢ ⎥∂⎣ ⎦

depend on the position of the point on which it is evaluated⎣ ⎦

∂ ∂ ∂1 2 3

1 1 2 2 3 3

)cf u u uh u h u h u∂ ∂ ∂

∇ ≡ + +∂ ∂ ∂

Radio Technology Laboratory 24

Page 25: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

( )ˆ ˆ ˆ ˆ ˆ ˆA A A A⎛ ⎞∂ ∂ ∂

∇ + + + +⎜ ⎟ ( )

( ) ( ) ( )

1 2 3 1 1 2 2 3 31 1 2 2 3 3

1 1 1 2 2 2 3 3 3ˆ ˆ ˆ ˆ ˆ ˆ

A u u u u A u A u Ah u h u h u

u u A u u A u u Ah u h u h u

∇ = + + + +⎜ ⎟∂ ∂ ∂⎝ ⎠∂ ∂ ∂

= + +∂ ∂ ∂

i i

i i i1 1 2 2 3 3h u h u h u∂ ∂ ∂

cos sin , sin cosr x y x y

r

φ φ φ φ φ

φ

= + = − +

∂ ∂

y

, r rφφφ φ∂ ∂

= =∂ ∂

) cylindrical coordinateeg

x

φφ ( ) ( ) ( )

1 2 3 1 2 3

) y , , and 1, , 1

r z

gu r u u z h h r h

r rA r A r zAr r rφ

φ

φ

= = = = = =

∂ ∂ ∂+ +

∂ ∂ ∂i i i

x

r r z zzr r A r r A r A r A r A r z A

r r r r r rφ φφ φ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + + + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠i i i i i i

( )1

rAr

A∂ ∂

Radio Technology Laboratory 25

( )1 ) rr r

Acf rA Ar r r r∂ ∂

= +∂ ∂

Page 26: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 8 Divergence Theorem2-8 Divergence Theorem

Adv A ds∇ =∫ ∫i i

from definition of divergence, ( A)j

V s

j j s

Adv A ds

v A ds

∇ Δ =

∫ ∫∫i i

0 01 1

lim ( ) limjj j

N N

j j sv vj jA v A ds

Δ → Δ →= =

⎡ ⎤ ⎡ ⎤∇ Δ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦∑ ∑ ∫i i

Volume integral

0 1lim

jj

N

s sv jA ds A ds

Δ →

⎡ ⎤=⎢ ⎥

⎣ ⎦∑∫ ∫i i( )

VA dv∇∫ i

1 jj j=⎣ ⎦V∫( )A dv A ds∇ =∴∫ ∫i i

Radio Technology Laboratory 26

( )V s∫ ∫

Page 27: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 9 Curl of a Vector Field2-9 Curl of a Vector Field

Flow source outward flux divergence

Vortex source

C

cause a circulation of a vector around it

circulation of around contour C A A dl∫ i

. ) a force acting on ane g object circulation will be the work done by the force in moving the object once around the contour

electric field e.m.f water whi l r

→ing down a sink drain vortex sink→

( ) ( ) ( )0 max

1 lim

1

n Cscurl A A a A dl

sΔ →⎡ ⎤≡ ∇× ⎣ ⎦Δ ∫

i

Radio Technology Laboratory 27

( ) ( ) ( )0

1 ) limuu

u Csuu

cf A a A A dlsΔ →

∇× = ∇× =Δ ∫i i

Page 28: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

( )ˆ ˆ u , , : , , ,

1u ux s x y C= Δ = Δ Δ

⎛ ⎞∫( ) sides0 1,2,3,4

1 limy zx

A A dly zΔ Δ →

⎛ ⎞∇× = ⎜ ⎟Δ Δ ⎝ ⎠

∫ i

0 0 0

side1

, ( , , )2zydl z z A dl A x y z zΔ

= Δ = + Δi

0 0 0

0 0 0 0 0 0( , , )

where, ( , , ) ( , , ) . . .2 2

( )

zz z

x y z

Ay yA x y z A x y z H OTy

AyA dl A H OT

∂Δ Δ+ = + +

⎧ ⎫∂Δ⎪ ⎪Δ⎨ ⎬∫0 0 0

0 0 0side1( , , )

( , , ) . . .2

side3

zz

x y z

AyA dl A x y z H OT zy

∂Δ⎪ ⎪∴ = + + Δ⎨ ⎬∂⎪ ⎪⎩ ⎭∫ i

Ay y⎧ ⎫∂Δ Δ⎪ ⎪∫

Radio Technology Laboratory 28

dl0 0 0

0 0 0 0 0 0side3( , , )

, ( , , ) ( , , ) . . . ( )2 2

zz z

x y z

Ay yz z A dl A x y z z A dl A x y z H OT zy

⎧ ⎫∂Δ Δ⎪ ⎪= − Δ = − Δ ∴ = − + −Δ⎨ ⎬∂⎪ ⎪⎩ ⎭

∫i i

Page 29: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

side1 side3+

0 0 0( , , )

. .

side2 side4

z

x y z

A H O T y zy

⎛ ⎞∂= + Δ Δ⎜ ⎟∂⎝ ⎠

+

. . 0 , when 0 and z 0H O T y→ Δ → Δ →

0 0 0( , , )

side2 side4

. . ( )

y yzx

x y z

A AAH OT y z Ay y z

+

∂ ∂⎛ ⎞ ∂= − + Δ Δ ∇× = −⎜ ⎟∂ ∂ ∂⎝ ⎠

General expression in cartesian

yzAAA x y∂⎛ ⎞ ∂∂

∇× = − +⎜ ⎟yx xz

x y zAA AA z∂⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞− + − =⎜ ⎟⎜ ⎟ A x y

y z∇× = − +⎜ ⎟∂ ∂⎝ ⎠

General expression for orthogonal curvilinear systemsx y z

zz x x y x y z

A A A

− + − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

1 1 2 2 3 3

1 2 3 1 2 3

ˆ ˆ ˆ1

u h u h u h

Ah h h u u u

∂ ∂ ∂∇× =

∂ ∂ ∂

Radio Technology Laboratory 29

1 2 3 1 2 3

1 1 2 2 3 3h A h A h A

Page 30: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 10 Stokes’s Theorem2-10 Stokes s Theorem

( )A ds A dl∇× =∫ ∫i ifrom definition of curl, ( ) ( )

jj j C

A s A dl∇× Δ = ∫i i

( )S C

A ds A dl∇× =∫ ∫i i

0 1 lim ( ) ( ) ( )

j

j

N

j j Ss jA s A ds

Δ →=

⇒ ∇× Δ = ∇×∑ ∫i i

N

∑ ∫ ∫0 1

limjj C Cs j

A dl A dlΔ →

=

=∑ ∫ ∫i i

) ( ) 0, S

cf A ds∇× =∫ i

closed surface no boundary contourS

⇒∫

Radio Technology Laboratory 30

Page 31: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 11 Two Null Identities2-11 Two Null Identities

1 ( ) 0V∇× ∇ ≡the curl of the gradient of any scalar field is identically zero

1. ( ) 0

[ ] ( ) 0

V

V ds V dl dV

∇× ∇ ≡→

∇×∇ = ∇ = =∫ ∫ ∫i i [ ] ( ) 0

cos ( )

S C C

V ds V dl dV

dV dV dn dV dV n l V ldl dn dl dn dn

α

∇×∇ = ∇ = =

= = = = ∇

∫ ∫ ∫i i

∵ i i

( )dl dn dl dn dn

dV V d= ∇∵ i l참 고

the divergence of the curl of any vector field is identically zer2. ( ) 0

oA∇ ∇× =

→i

참 고

the divergence of the curl of any vector field is identically zer

( ) ) 0

o

(V S

A dv A ds

∇ ∇× = ∇× =∫ ∫i i

Radio Technology Laboratory 31

Page 32: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

ˆ) of should be outward, ncf a ds

1 2ˆ ˆ so , also outwardn

n na a

∫ ∫ ∫1 2

1 2ˆ ˆ. ) ( ) ( ) ( )

0

n nS S Si e A ds A a ds A a ds

A dl A dl

∇× = ∇× + ∇×

= + =

∫ ∫ ∫∫ ∫

i i i

i i1 2

1 2 ( and are same, but opposite in direction)C C

C C∫ ∫

Radio Technology Laboratory 32

Page 33: Chapter2 Vector analysisChapter2. Vector analysisocw.snu.ac.kr/sites/default/files/NOTE/3275.pdf · 2018. 1. 30. · Chapter2 Vector analysisChapter2. Vector analysis. 2-1Introduction1

2 12 Helmholtz’s Theorem2-12 Helmholtz s Theorem

1. solenoidal and irrotational if 0 and 0

2 solenoidal but not irrotational if 0 and 0

F F

F F

∇ = ∇× =

∇ = ∇× ≠

i

i2. solenoidal but not irrotational if 0 and 0

3. irrotational but not solenoidal if 0 and 0

4. neither solenoidal nor irro

F F

F F

∇ = ∇× ≠

∇× = ∇ ≠

i

i

tational if 0 and 0F F∇× ≠ ∇ ≠i4. neither solenoidal nor irrotational if 0 and 0F F∇× ≠ ∇ ≠

Helmholtz's theorem : A vector field is determined to within an additive constant if

b th it di d it l ifi d h both its divergence and its curl are specified everywhere

Radio Technology Laboratory 33