37
CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc. CHAPTER 9a DigitalAnalog and AnalogDigital Converters

CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

  • Upload
    lekiet

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

CHAPTER 9a

Digital–Analog and Analog–Digital Converters

Page 2: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-1 Digital–analog converter in signal-processing applications.

Page 3: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-2 (a) Digital–analog converter in signal-processing applications. (b) Clocked digital–analog converter for synchronous operation.

Page 4: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-3 Block diagram of a digital–analog converter.

Page 5: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-4 Ideal input–output characteristics of a 3-bit DAC.

Page 6: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-5 Quantization noise for the 3-bit DAC of Fig. 9.1-4.

Page 7: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-6 (a) Illustration of offset error in a 3-bit DAC. (b) Illustration of gain error in a 3-bit DAC.

Page 8: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-7 Illustration of INL, DNL, and nonmonotonicity in a 3-bit DAC.

Page 9: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-8 The 4-bit DAC characteristics for Example 9.1-1.

Page 10: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-9 Input–output test for a DAC.

Page 11: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.1-10 Spectral output test for a DAC.

Page 12: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-1 Classification of digital–analog converters.

Page 13: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-2 General current scaling DAC.

Page 14: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-3 Binary-weighted resistor DAC implementation.

Page 15: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-4 R–2R ladder implementation of the binary-weighted resistor DAC.

Page 16: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-5 Current scaling using matched MOSFETs.

Page 17: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-6 General voltage scaling DAC.

Page 18: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-7 (a) Implementation of a 3-bit voltage scaling DAC. (b) Input–output characteristics of (a).

Page 19: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-8 Alternate realization of Fig. 9.2-7(a).

Page 20: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-9 General charge scaling DAC.

Page 21: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-10 Charge scaling DAC. All switches are connected to ground during 1. Switch Si closes to VREF if bi = 1 or to ground if bi = 0 during 2.

Page 22: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-11 Equivalent circuit of Fig. 9.2-10.

Page 23: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.2-12 Binary-weighted, charge amplifier DAC implementation.

Page 24: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-1 Combining an M-bit and K-bit subDAC to form an M + K-bit DAC by dividing the output of the K-LSB DAC.

Page 25: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-2 Combining an M-bit and K-bit subDAC to form an M + K-bit DAC by dividing the VREF to the K-LSB DAC.

Page 26: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-3 Combination of current scaling subDACs using a current divider.

Page 27: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-4 Combination of two, 4-bit charge scaling subDACs to form an 8-bit charge scaling DAC.

Page 28: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-5 Simplified equivalent circuit of Fig. 9.3-4.

Page 29: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-6 Combination of two, 4-bit, binary-weighted, charge amplifier subDACs to form an 8-bit, binary-weighted, charge amplifier DAC.

Page 30: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-7 M + K-bit DAC using an M-bit voltage scaling subDAC for the MSBs and a K-bit charge scaling subDAC for the LSBs.

Page 31: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-8 (a) Equivalent circuit of Fig. 9.3-7 for the voltage scaling subDAC. (b) Equivalent circuit of the entire DAC of Fig. 9.3-7.

Page 32: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling subDAC for the MSBs and a K-bit voltage scaling subDAC for the LSBs.

Page 33: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.4-1 Simplified schematic of a serial charge-redistribution DAC.

Page 34: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.4-2 Waveforms of Fig. 9.4-1 for the conversion of the digital word 1101. (a) Voltage across C1. (b) Voltage across C2.

Page 35: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.4-3 Pipeline approach to implementing an algorithmic DAC.

Page 36: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.4-4 Equivalent realization of Fig. 9.4-3 using iterative techniques.

Page 37: CHAPTER 9a Digital Analog and Analog Digital Convertersweb.cecs.pdx.edu/~chiang/ECE_510_Spring_2012/Allen_3ed_ch9a.pdf · Figure 9.3-9 M + K-bit DAC using an M-bit charge scaling

CMOS Analog Circuit Design Allen/Holberg Copyright (c) 2012 Oxford University Press, Inc.

Figure 9.4-5 Output waveform for Fig. 9.4-4 for the conditions of Example 9.4-2.