Chapter 8dehoff Thermo

Embed Size (px)

Citation preview

  • 7/26/2019 Chapter 8dehoff Thermo

    1/29

    Chapter 8

    Multicomponent Homogeneous

    Nonreacting Systems: Solutions

    Notes on

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-1

    by

    Robert T. DeHoff(McGraw-Hill, 1993).

  • 7/26/2019 Chapter 8dehoff Thermo

    2/29

    Extensive Quantities of the

    State Functions: F/

    , G/

    , H/

    , S/

    , U/

    , V/

    Using G/as example:

    G G T P n n n nk c( , , , ... ... )1 2

    /

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-2

    k

    c

    k nPTknTnP

    dnn

    GdP

    P

    GdT

    T

    GdG

    kjkk

    1 ,,

    /

    ,

    /

    ,

    //

    c

    k

    k

    nPTk

    P

    T dnn

    GdG

    kj1 ,,

    /

    ,

    /

    and at constant T & P:

  • 7/26/2019 Chapter 8dehoff Thermo

    3/29

    Partial Molal Quantities of theState Functions: .

    Using as example:

    kj nnPTk

    k

    n

    GG

    ,,

    /

    KG

    kkkkkk VUSHGF ,,,,,

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-3

    c

    k

    kk

    nTnP

    dnGdP

    P

    GdT

    T

    GdG

    kk 1,

    /

    ,

    //

    c

    k

    kkPT dnGdG

    1

    ,

    /

    and at constant T & P:

    A differential form of G (use definition of ):kG

  • 7/26/2019 Chapter 8dehoff Thermo

    4/29

    Gibbs-Duhem Equation

    The contributions of the components sum to thewhole:

    c

    k

    kknGG1

    /

    Differentiating the products on the right yields:

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-4

    k k

    kkkk GdndnGdG1 1

    /

    n dGk kk

    c

    1

    0

    1

    2

    12 Gd

    n

    nGd

    For a binary system:

    Inspection yields the Gibbs-Duhem equation:

  • 7/26/2019 Chapter 8dehoff Thermo

    5/29

    Reference States:

    F/O, G/O, H/O, S/O, U/O, V/O

    T, S, V, P have absolute values.

    F, G, H, U have relative values.

    The difference in values between states is unique.

    To com are values use the same reference state.

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-5

    Superscript O refers to the reference state.

    c

    kk

    O

    k

    O

    nGG 1

    /

    Preferably, for a solution use the pure components in

    the same phase as the solution as the reference state.

    Rule of

    mixtures.

  • 7/26/2019 Chapter 8dehoff Thermo

    6/29

    Rule of Mixtures2211

    2

    1

    / nGnGnGG OO

    k

    k

    O

    k

    O

    21

    22

    21

    11

    21

    /

    nn

    nGnn

    nGnn

    G OOO

    2211 XGXGG OOO

    O

    For binary

    For binary

    Extensive

    Molar

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-6

    OG1

    X

    2OG

    2X1 2

  • 7/26/2019 Chapter 8dehoff Thermo

    7/29

    Mixing Values for Solutions

    F/mix, G/

    mix, H/

    mix, S/

    mix, U/

    mix, V/

    mix

    For solution: Gibbs free energy of mixing.O

    somix GGG//

    ln

    /

    For component k: Change experienced when 1 mole

    of k is transferred from its reference state to the

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-7

    O

    kkk GGG

    k

    c

    k

    Okk

    c

    k

    kmix nGnGG 11/

    c

    k

    kkmix nGG1

    /and

    Contributions of the components add to the whole:

    given solution.

  • 7/26/2019 Chapter 8dehoff Thermo

    8/29

    Mixing Values

    O

    G2

    X X00

    O

    somix GGG//

    ln

    /

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-8

    OG1

    X

    lnsoG

    2X1 2

    mix

    2X1 2

  • 7/26/2019 Chapter 8dehoff Thermo

    9/29

    Mixing values for Solutions

    F/mix, G/

    mix, H/

    mix, S/

    mix, U/

    mix, V/

    mix

    Differential form:

    c

    /

    c

    k

    O

    kkk

    O

    kkkkkmix dGndnGGdndnGGd1

    /

    0 0Gibbs-Duhem

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-9

    km x

    1

    c

    kkkkkmix

    GdndnGGd1

    /

    n d Gk kk

    c

    01

    Gibbs-Duhem for mixing:

    Total derivative:

  • 7/26/2019 Chapter 8dehoff Thermo

    10/29

    Graphical Evaluation ofPartial Molal Values

    Consider a binary system (alloy): G G X G X mix 1 1 2 2

    121

    XX dX dX

    1 2

    d G G dX G dX mix 1 1 2 2

    Note:

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-10

    2

    22 1dX

    GdXGG mixmix

    1

    11 1dX

    GdXGG mixmix

    d G

    dX

    d G

    dX

    G Gmix mix 2 1

    2 1

    1

    G2

    and

    Substitute & rearrange:

    X2

    Gmix

    0 1

    X1 01

  • 7/26/2019 Chapter 8dehoff Thermo

    11/29

    Derivation: Graphical Evaluationof Partial Molal Values

    2211 XGXGGmix

    1

    d G G dX G dX mix 1 1 2 2 2

    121 XX dX dX 1 2 b3a3

    G

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-11

    2

    12dX

    earrange

    1

    22

    1

    1

    X

    XG

    X

    GG mix

    5Rearrange (1)

    211

    212

    dX

    Gd

    X

    G

    X

    XXG mixmix

    Insert

    (5) in (4)

    222

    1dX

    GdXGG mix

    mix

    Yielding

  • 7/26/2019 Chapter 8dehoff Thermo

    12/29

    Integration of theGibbs-Duhem Equation(s)

    For a binary system (alloy):X d G X d G1 1 2 2 0

    d GX

    X

    d G 12

    1

    2 and

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-12

    d G G X G X G X

    X

    X

    10 1 2 1 1 1 22

    2

    1

    0

    2

    2 0

    2

    2

    2

    1

    21

    X

    X

    dXdX

    Gd

    X

    XG

    Now integrate right side:

    Integrating the left side from X2 = 0 to X2:

  • 7/26/2019 Chapter 8dehoff Thermo

    13/29

    Molar Values of the State Functions

    Note:

    c

    kk

    kk

    n

    nX

    1

    dG G dX k k

    c

    d G G dX mix k k

    c

    Then,

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-13

    G G Xk kk

    c

    1

    X dGk kk

    c

    1

    0

    G G Xmix k k k

    c

    1

    X d Gk kk

    c

    1

    0

  • 7/26/2019 Chapter 8dehoff Thermo

    14/29

    Chemical Potential of (Open)Multicomponent Systems

    U U T P n n n nk c( , , , . . . . . . )1 2

    dU TdS PdV dnk kk

    c

    1

    c

    termc 2

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-14

    k k S V n nn j k

    , ,

    W dnk kk 1

    k k S V n k S P n k T V n k T P n

    U

    n

    H

    n

    F

    n

    G

    nj j j j

    , , , , , , , ,

  • 7/26/2019 Chapter 8dehoff Thermo

    15/29

    Chemical Potential of (Open)Multicomponent Systems

    kj nnPTk

    kknGG

    ,,

    kkk

    GS

    kkkkk TSTGH

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-15

    kk nPnP ,,

    kk nT

    k

    nT

    kk

    PP

    GV

    ,,

    knP,

    kk nP

    k

    nT

    kkkkk

    TT

    PPVPHU

    ,,

    knT

    kkkkk

    P

    PSTUF

    ,

  • 7/26/2019 Chapter 8dehoff Thermo

    16/29

    Activities and Activity Coefficients

    Definition of activity, ak (dimensionless):

    kk

    O

    kk aRTln Definition of activity coefficient,

    k (dimensionless):

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-16

    kkk

    O

    kk XRT lnkkk Xa

    If

    kXk k is more apparent than its mole

    fraction.

  • 7/26/2019 Chapter 8dehoff Thermo

    17/29

    Ideal SolutionNo heat of mixing. 0mixH0 kH

    0mixV0 kV

    0mixU0 kU

    c

    Entropy increases.

    No change in internal energy.No volume change.

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-17

    kk XRS ln kk

    kmix XXRS ln1

    kk XRTF ln kc

    k

    kmix XXRTF ln1

    kk XRTG ln kc

    k

    kmix XXRTG ln1

    Gibbs free energy decreases.

    Helmholtz free energy decreases.

  • 7/26/2019 Chapter 8dehoff Thermo

    18/29

    Ideal Solution

    mixG

    mixS

    mixH

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-18

    T2X

    2X00

  • 7/26/2019 Chapter 8dehoff Thermo

    19/29

    Ideal Solution

    All plots (e.g. Gmix vs. Xk) are symmetricalwith composition.

    Slopes of plots of Smix, Fmix, Gmix are= =

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-19

    k k .

    Entropy of mixing is independent of

    temperature.

  • 7/26/2019 Chapter 8dehoff Thermo

    20/29

    Ideal SolutionActivity is the same as mole fraction.

    Activity coefficient is one.1

    kk Xa

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-20

    a2 a1

    X20

    1k

    0 1

    Slope = 1

  • 7/26/2019 Chapter 8dehoff Thermo

    21/29

    Dilute Solutions:Raoult & Henrys Laws

    Raoults Law for the solvent in dilute solutions:

    1111

    lim XaX

    O

    Henrys Law for the solute in dilute solutions:

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-21

    2202

    m aX

    20 XsmallforO

    Oslope 2

    2a

    2X

    1a

    2X

    Oslope 1

    ope s ope

    R l S l ti R l ti f A ti it

  • 7/26/2019 Chapter 8dehoff Thermo

    22/29

    Real Solutions: Relation of ActivityCoefficient to Free Energy

    kkk Xa kkkkkk XRTRTXRTG lnlnln

    IDXS GGG

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-22

    Ideal partial molal free energy of mixing:

    k

    ID

    k

    XRTG ln

    k

    XS

    k RTG lnExcess partial molal free energy of mixing:

    R l S l i

  • 7/26/2019 Chapter 8dehoff Thermo

    23/29

    Regular SolutionHeat of mixing is a function of composition, only.

    ckmixmix XXXXHH ,...,...,

    21

    XRS ln

    c

    XXRS ln

    PTHH mixmix ,

    Entropy is the same as for ideal solution.

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-23

    k 1

    kkk XRTUF ln k

    c

    k

    kmixmix XXRTUF ln1

    kkk XRTHG ln k

    c

    k

    kmixmix XXRTHG ln1

    Gibbs free energy decreases.

    Helmholtz free energy decreases.

  • 7/26/2019 Chapter 8dehoff Thermo

    24/29

    Regular SolutionmixS

    G 00

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-24

    mixH

    2 2

    T

  • 7/26/2019 Chapter 8dehoff Thermo

    25/29

    Regular Solution

    mixSmix

    H

    G 00

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-25

    2 2

    T

  • 7/26/2019 Chapter 8dehoff Thermo

    26/29

    Regular Solution

    mixSmixH

    G 00

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-26

    2 2

  • 7/26/2019 Chapter 8dehoff Thermo

    27/29

    Regular Solution

    mixSmixH

    G 00

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-27

    2 2

    T

  • 7/26/2019 Chapter 8dehoff Thermo

    28/29

    Regular Solution

    mixSmixH

    G 00

    09/19/2001 Notes from R.T. DeHoff, Thermodynamics in Materials Science (McGraw-Hill, 1993) 8-28

    2 2

    T

  • 7/26/2019 Chapter 8dehoff Thermo

    29/29

    Problem 8.6 DeHoffmoleJXXH CnPnPn

    2500,12)(XfHmix

    1

    2

    22 XaXH

    Find: Given:

    Rewrite in general form:

    2211

    2

    22 2 dXXaXdXaXHd

    22Hd

    Differentiate:

    8 29

    212

    2dX

    12122

    2

    2 312 XaXXXaXdX

    Hd

    1

    2

    Substitute X1+X2=1:

    20

    2

    2

    1

    21

    2

    2

    dXdX

    Hd

    X

    XH

    X

    X

    20

    12

    1

    21

    2

    2

    31( dXXaX

    X

    XH

    X

    X

    Gibbs-Duhem: