23
Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Embed Size (px)

Citation preview

Page 1: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Chapter 8 Fuzzy Associative Memories

Li Lin2004-11-24

Page 2: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

CONTENTS Review Fuzzy Systems as between-cube mapping Fuzzy and Neural Function Estimators Fuzzy Hebb FAMs Adaptive FAMs

Page 3: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Review In Chapter 2, we have mentioned BAM

theorem Chapter 7 discussed fuzzy sets as points

in the unit hypercube What is associative memories?

Page 4: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Fuzzy systems

Koskos: fuzzy systems as between-cube mapping

nI pIFig.1 A fuzzy system

Output universe

of discourse

Input universe

of discourse

The continuous fuzzy system behave as associative memories, or fuzzy associative memories.

Page 5: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Fuzzy and neural function estimators Fuzzy and neural systems estimates sampled

function and behave as associative memories

Similarities: 1. They are model-free estimator 2. Learn from samples 3. Numerical, unlike AI

Differences: They differ in how to estimate the sampled

function 1. During the system construction 2. The kind of samples used

Page 6: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Fig.2 Function f maps domains X to range Y

3. Application

4. How they represent and store those samples

5. How they associatively inference

Differences:

Page 7: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Neural vs. fuzzy representation of structured knowledge

Neural network problems: 1. computational burden of training

2. system inscrutability There is no natural inferential audit

tail, like an computational black box.

3. sample generation

Page 8: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Neural vs. fuzzy representation of structured knowledge

Fuzzy systems 1. directly encode the linguistic sample (HEAVY,LONGER) in a matrix 2. combine the numerical approaches with the symbolic one

Fuzzy approach does not abandon neural-network, it limits them to unstructured parameter and state estimate, pattern recognition and cluster formation.

Page 9: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

FAMs as mapping Fuzzy associative memories are transforma

tions FAM map fuzzy sets to fuzzy sets, units cube to units cube. Access the associative matrices in parallel a

nd store them separately Numerical point inputs permit this simplification binary input-out FAMs, or BIOFAMs

Page 10: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

FAMs as mapping

200nx1 5 01 0 05 00

1L ig h t M ed iu m Heav y

Tra f f ic de n s ity

40ny3 02 01 00

1M ed iu mS h o r t L o n g

G re e n lig h t du ra t io n

Fig.3 Three possible fuzzy subsets of traffic-density and green light duration, space X and

Y.

Page 11: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Fuzzy vector-matrix multiplication: max-min composition

Max-min composition “ ”

BMA

),...(),,...( 11 pn bbBaaA Where, , M is a fuzzy

n-by-p matrix (a point in )pnI

),min(max ,1

jiini

j mab

Page 12: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Fuzzy vector-matrix multiplication: max-min composition

ExampleSuppose A=(.3 .4 .8 1),

Max-product composition

3.2.0

5.1.8.

6.6.7.

7.8.2.

M

5.4.8. MAB

ijniij mab

1

max

Page 13: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Fuzzy Hebb FAMs Classical Hebbian learning law:

Correlation minimum coding:

Example

),min( jiij bam mTT

n

T bAbA

Ba

Ba

BAM

1

1

5.4.8.

5.4.8.

4.4.4.

3.3.3.

5.4.8.

1

8.

4.

3.

BAM

)()( jjiiijij ySxSmm

Page 14: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

The bidirectional FAM theorem for correlation-minimum encoding

The height and normality of fuzzy set A

fuzzy set A is normal, if H(A)=1 Correlation-minimum bidirectional

theorem

iniaAH

1max)(

BMA AMB T BMA AMB T

)()( BHAH )()( AHBH

AB

(i)

(ii)

(iii)

(iv)

iffifffor any

for any

Page 15: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

The bidirectional FAM theorem for correlation-minimum encoding

Proof)(maxmax

11AHaAaAA i

nii

ni

T

Then )( MAAMA T BAA T )(

BAH )(BAH )(

)()()( BHAHiffBBAH So

Page 16: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Correlation-product encoding

Correlation-product encoding provides an alternative fuzzy Hebbian encoding scheme

Example

Correlation-product encoding preserves more information than correlation-minimum

jiijT bamandBAM

5.4.8.

4.32.64.

2.16.32.

15.12.24.

5.4.8.

1

8.

4.

3.

BAM T

Page 17: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Correlation-product encoding

Correlation-product bidirectional FAM theorem

if and A and B are nonnull fit vector then

BAM T

BMA AMB T BMA AMB T

1)( BH1)( AH

AB

(i)

(ii)

(iii)

(iv)

iffifffor any

for any

Page 18: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

FAM system architecture

jy

FAM Rule m

FAM Rule 1

FAM SYSTEM

),( 11 BA

),( 22 BAFAM Rule 2

),( mm BA

1B

2B

mB

1

2

m

A B Defuzzifier

Page 19: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Superimposing FAM rules

Suppose there are m FAM rules or associations The natural neural-network maximum or add the m

associative matrices in a single matrix M:

This superimposition scheme fails for fuzzy Hebbian encoding

The fuzzy approach to the superimposition problem additively superimposes the m recalled vectors instead of the fuzzy Hebb matrices

kkk

mkMMorMM

1max

kkTkk BBAAMA )(

kBkM

Page 20: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Superimposing FAM rules

Disadvantages: Separate storage of FAM associations consumes

space Advantages: 1 provides an “audit trail” of the FAM inference

procedure 2 avoids crosstalk 3 provides knowledge-base modularity 4 a fit-vector input A activates all the FAM rules

in parallel but to different degrees.

Back

Page 21: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Recalled outputs and “defuzzification” The recalled output B equals a weighted sum

of the individual recalled vectors

How to defuzzify? 1. maximum-membership defuzzification

simple, but has two fundamental problems: ① the mode of the B distribution is not unique ② ignores the information in the waveform B

kBkkB'B

m

1k

)(max)(1

max jBpj

B ymym

Page 22: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Recalled outputs and “defuzzification”

2. Fuzzy centroid defuzzification

The fuzzy centroid is unique and uses all the information in the output distribution B

p

jjB

jB

ym

ym

1

p

1jj

)(

)(y

B

Page 23: Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

Thank you!