of 30 /30
Chapter 8 211 CHAPTER 8: EXPONENTS AND POLYNOMIALS Chapter Objectives By the end of this chapter, students should be able to: Simplify exponential expressions with positive and/or negative exponents Multiply or divide expressions in scientific notation Evaluate polynomials for specific values Apply arithmetic operations to polynomials Apply special-product formulas to multiply polynomials Divide a polynomial by a monomial or by applying long division CHAPTER 8: EXPONENTS AND POLYNOMIALS ........................................................................................ 211 SECTION 8.1: EXPONENTS RULES AND PROPERTIES ........................................................................... 212 A. PRODUCT RULE OF EXPONENTS .............................................................................................. 212 B. QUOTIENT RULE OF EXPONENTS ............................................................................................. 212 C. POWER RULE OF EXPONENTS .................................................................................................. 213 D. ZERO AS AN EXPONENT............................................................................................................ 214 E. NEGATIVE EXPONENTS............................................................................................................. 214 F. PROPERTIES OF EXPONENTS .................................................................................................... 215 EXERCISE ........................................................................................................................................... 216 SECTION 8.2 SCIENTIFIC NOTATION..................................................................................................... 217 A. INTRODUCTION TO SCIENTIFIC NOTATION ............................................................................. 217 B. CONVERT NUMBERS TO SCIENTIFIC NOTATION ..................................................................... 218 C. CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATION .................... 218 D. MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATION ................................................. 219 E. SCIENTIFIC NOTATION APPLICATIONS ..................................................................................... 220 EXERCISE ........................................................................................................................................... 222 SECTION 8.3: POLYNOMIALS................................................................................................................ 223 A. INTRODUCTION TO POLYNOMIALS ......................................................................................... 223 B. EVALUATING POLYNOMIAL EXPRESSIONS .............................................................................. 225 C. ADD AND SUBTRACT POLYNOMIALS ....................................................................................... 226 D. MULTIPLY POLYNOMIAL EXPRESSIONS ................................................................................... 228 E. SPECIAL PRODUCTS .................................................................................................................. 230 F. POLYNOMIAL DIVISION............................................................................................................ 231 EXERCISE ........................................................................................................................................... 237 CHAPTER REVIEW ................................................................................................................................. 239

CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Embed Size (px)

Citation preview

Page 1: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

211

CHAPTER 8: EXPONENTS AND POLYNOMIALS Chapter Objectives By the end of this chapter, students should be able to: Simplify exponential expressions with positive and/or negative exponents Multiply or divide expressions in scientific notation Evaluate polynomials for specific values Apply arithmetic operations to polynomials Apply special-product formulas to multiply polynomials Divide a polynomial by a monomial or by applying long division

CHAPTER 8: EXPONENTS AND POLYNOMIALS ........................................................................................ 211

SECTION 8.1: EXPONENTS RULES AND PROPERTIES ........................................................................... 212

A. PRODUCT RULE OF EXPONENTS .............................................................................................. 212

B. QUOTIENT RULE OF EXPONENTS ............................................................................................. 212

C. POWER RULE OF EXPONENTS .................................................................................................. 213

D. ZERO AS AN EXPONENT............................................................................................................ 214

E. NEGATIVE EXPONENTS ............................................................................................................. 214

F. PROPERTIES OF EXPONENTS .................................................................................................... 215

EXERCISE ........................................................................................................................................... 216

SECTION 8.2 SCIENTIFIC NOTATION ..................................................................................................... 217

A. INTRODUCTION TO SCIENTIFIC NOTATION ............................................................................. 217

B. CONVERT NUMBERS TO SCIENTIFIC NOTATION ..................................................................... 218

C. CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATION .................... 218

D. MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATION ................................................. 219

E. SCIENTIFIC NOTATION APPLICATIONS ..................................................................................... 220

EXERCISE ........................................................................................................................................... 222

SECTION 8.3: POLYNOMIALS ................................................................................................................ 223

A. INTRODUCTION TO POLYNOMIALS ......................................................................................... 223

B. EVALUATING POLYNOMIAL EXPRESSIONS .............................................................................. 225

C. ADD AND SUBTRACT POLYNOMIALS ....................................................................................... 226

D. MULTIPLY POLYNOMIAL EXPRESSIONS ................................................................................... 228

E. SPECIAL PRODUCTS .................................................................................................................. 230

F. POLYNOMIAL DIVISION ............................................................................................................ 231

EXERCISE ........................................................................................................................................... 237

CHAPTER REVIEW ................................................................................................................................. 239

Page 2: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

212

SECTION 8.1: EXPONENTS RULES AND PROPERTIES A. PRODUCT RULE OF EXPONENTS

MEDIA LESSON Product rule of exponents (Duration 2:57)

View the video lesson, take notes and complete the problems below

𝑎𝑎3 ∙ 𝑎𝑎2 = (𝑎𝑎 𝑎𝑎 𝑎𝑎)(𝑎𝑎 𝑎𝑎) = 𝑎𝑎5 Product rule: 𝒂𝒂𝒎𝒎 ⋅ 𝒂𝒂𝒏𝒏 = 𝒂𝒂𝒎𝒎+𝒏𝒏 ____________________________!

Example 1: (2x3)(4x2)(−3x) = ___________________________

Example 2: (5a3b7)(2a9b2c4) = ___________________________

Warning! The rule can only apply when you have the same base.

YOU TRY

Simplify: a) 53510

b) 𝑥𝑥1𝑥𝑥3𝑥𝑥2 c) (2𝑥𝑥3𝑦𝑦5𝑧𝑧)(5𝑥𝑥𝑦𝑦2𝑧𝑧3)

B. QUOTIENT RULE OF EXPONENTS

MEDIA LESSON Quotient rule of exponents (Duration 3:12)

View the video lesson, take notes and complete the problems below

𝑎𝑎5

𝑎𝑎3=𝑎𝑎 ∙ 𝑎𝑎 ∙ 𝑎𝑎 ∙ 𝑎𝑎 ∙ 𝑎𝑎

𝑎𝑎 ∙ 𝑎𝑎 ∙ 𝑎𝑎= 𝑎𝑎2

Quotient Rule: 𝒂𝒂𝒎𝒎

𝒂𝒂𝒏𝒏= 𝒂𝒂𝒎𝒎−𝒏𝒏

_________________________________

Example 1: 𝑎𝑎7𝑏𝑏2

𝑎𝑎3𝑏𝑏

= ___________________________

Example 2: 8𝑚𝑚7𝑛𝑛4

6𝑚𝑚5𝑛𝑛

= ___________________________

YOU TRY

Simplify

a) 713

75 b)

5𝑎𝑎3𝑏𝑏5𝑐𝑐2

2𝑎𝑎𝑏𝑏3𝑐𝑐 c)

3𝑥𝑥5

𝑥𝑥3𝑦𝑦

Page 3: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

213

C. POWER RULE OF EXPONENTS

MEDIA LESSON Power rule of exponents (Duration 5:00)

View the video lesson, take notes and complete the problems below

(ab)3=_____________________________ = ________

Power of a product: (𝒂𝒂𝒂𝒂)𝒎𝒎 = 𝒂𝒂𝒎𝒎𝒂𝒂𝒎𝒎

�𝑎𝑎𝑏𝑏�3

=____________________ =_____________

Power of a Quotient: �𝒂𝒂𝒂𝒂�𝒎𝒎

= 𝒂𝒂𝒎𝒎

𝒂𝒂𝒎𝒎 , if b is not 0.

(𝑎𝑎2)3 = _____________________ = ______ Power of a Power: (𝒂𝒂𝒎𝒎)𝒏𝒏 = 𝒂𝒂𝒎𝒎∙𝒏𝒏

Example 1: (5𝑎𝑎4𝑏𝑏)3 Example 2: �5𝑚𝑚

3

9𝑛𝑛4�2

Warning! It is important to be careful to only use the power of a product rule with multiplication inside parenthesis. This property is not allowed for addition or subtraction, i.e.,

(𝑎𝑎 + 𝑏𝑏)𝑚𝑚 ≠ 𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚 (𝑎𝑎 − 𝑏𝑏)𝑚𝑚 ≠ 𝑎𝑎𝑚𝑚 − 𝑏𝑏𝑚𝑚

YOU TRY

Simplify:

a) �𝑥𝑥3

𝑦𝑦2�5

b) �23

52�7

c) (𝑥𝑥3𝑦𝑦𝑧𝑧2)4

d) (4𝑥𝑥2𝑦𝑦5)3

e) � 𝑎𝑎3𝑏𝑏

𝑐𝑐8𝑑𝑑5�2

f) �4𝑥𝑥𝑦𝑦8𝑧𝑧�2

Page 4: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

214

D. ZERO AS AN EXPONENT

MEDIA LESSON Zero as Exponent (Duration 3:51)

View the video lesson, take notes and complete the problems below

𝑎𝑎3

𝑎𝑎3=_____________________________________________

Zero Power Rule: 𝒂𝒂𝟎𝟎 = 𝟏𝟏

Example 1: (5𝑥𝑥3𝑦𝑦𝑧𝑧5)0

Example 2: (3𝑥𝑥2𝑦𝑦0)(5𝑥𝑥0𝑦𝑦4)

YOU TRY

Simplify the expressions completely a) (3x2)0

b) 2𝑚𝑚0𝑛𝑛6

3𝑛𝑛5

E. NEGATIVE EXPONENTS

MEDIA LESSON Negative Exponents (Duration 4:44)

View the video lesson, take notes and complete the problems below

𝑎𝑎3

𝑎𝑎5 = __________________________________________

=___________________________________________

Negative Exponent Rule: 𝒂𝒂−𝒎𝒎 = 𝟏𝟏𝒂𝒂𝒎𝒎

When a and b are not 0.

1𝑎𝑎−𝑚𝑚

= 𝑎𝑎𝑚𝑚 �𝑎𝑎𝑏𝑏�−𝑚𝑚

= �𝑏𝑏𝑎𝑎�𝑚𝑚

=𝑏𝑏𝑚𝑚

𝑎𝑎𝑚𝑚

Example 1: 7𝑥𝑥−5

3−1𝑦𝑦𝑧𝑧−4

Example 2: 2

5𝑎𝑎−4

Warning! It is important to note a negative exponent does not imply the expression is negative, only the reciprocal of the base. Hence, negative exponents imply reciprocals. YOU TRY

a) 3

5−1𝑥𝑥 b)

𝑎𝑎3𝑏𝑏2𝑐𝑐2𝑑𝑑−1𝑒𝑒−4

Page 5: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

215

F. PROPERTIES OF EXPONENTS Putting all the rules together, we can simplify more complex expression containing exponents. Here we apply all the rules of exponents to simplify expressions.

Exponent Rules

Product

𝒂𝒂𝒎𝒎 ⋅ 𝒂𝒂𝒏𝒏 = 𝒂𝒂𝒎𝒎+𝒏𝒏

Quotient

𝒂𝒂𝒎𝒎

𝒂𝒂𝒏𝒏= 𝒂𝒂𝒎𝒎−𝒏𝒏

Power of Power

(𝒂𝒂𝒎𝒎)𝒏𝒏 = 𝒂𝒂𝒎𝒎∙𝒏𝒏

Power of a Product

(𝒂𝒂𝒂𝒂)𝒎𝒎 = 𝒂𝒂𝒎𝒎𝒂𝒂𝒎𝒎

Power of a Quotient

�𝒂𝒂𝒂𝒂�𝒎𝒎

=𝒂𝒂𝒎𝒎

𝒂𝒂𝒎𝒎

Zero Power

𝒂𝒂𝟎𝟎 = 𝟏𝟏

Negative Power

𝒂𝒂−𝒎𝒎 = 𝟏𝟏𝒂𝒂𝒎𝒎

Reciprocal of Negative Power

𝟏𝟏𝒂𝒂−𝒎𝒎

= 𝒂𝒂𝒎𝒎

Negative Power of a Quotient

�𝒂𝒂𝒂𝒂�−𝒎𝒎

= �𝒂𝒂𝒂𝒂�𝒎𝒎

=𝒂𝒂𝒎𝒎

𝒂𝒂𝒎𝒎

MEDIA LESSON Properties of Exponents (Duration 5:00)

View the video lesson, take notes and complete the problems below

Example 1: (4x5y2z)2(2𝑥𝑥4𝑦𝑦−2𝑧𝑧3)4 Example 2:

�2x2y3�4�x4y−6�−2

(x−6y4)2

YOU TRY

Simplify and write your final answers in positive exponents.

a) 4𝑥𝑥−5𝑦𝑦−3⋅3𝑥𝑥3𝑦𝑦−2

6𝑥𝑥−5𝑦𝑦3

b)

�3𝑎𝑎𝑏𝑏3�−2⋅𝑎𝑎𝑏𝑏−3

2𝑎𝑎−4𝑏𝑏0

Page 6: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

216

EXERCISE Simplify. Be sure to follow the simplifying rules and write answers with positive exponents.

1) 4 ∙ 44 ⋅ 44 2) 4 ⋅ 22 3) 3𝑚𝑚 ⋅ 4𝑚𝑚𝑚𝑚

4) 2𝑚𝑚4𝑚𝑚2 ⋅ 4𝑚𝑚𝑚𝑚2 5) (33)4 6) (44)2

7) (2𝑢𝑢3𝑣𝑣2)2 8) (2𝑎𝑎4)4 9) 45

43

10) 𝑥𝑥2𝑦𝑦4 ⋅ 𝑥𝑥𝑦𝑦2 11) (𝑥𝑥𝑦𝑦)3 12) 37

33

13) 32

3 14)

3𝑛𝑛𝑚𝑚2

3𝑛𝑛 15)

4𝑥𝑥3𝑦𝑦4

3𝑥𝑥𝑦𝑦3

16) 𝑥𝑥2𝑦𝑦4

4𝑥𝑥𝑦𝑦 17) 3𝑥𝑥 ⋅ 4𝑥𝑥2 18) (𝑢𝑢2𝑣𝑣2 ⋅ 2𝑢𝑢4)3

19) (𝑥𝑥3𝑦𝑦4 ⋅ 2𝑥𝑥2𝑦𝑦3)2 20) 2𝑥𝑥(𝑥𝑥4𝑦𝑦4)4 21) 2𝑥𝑥7𝑦𝑦5

3𝑥𝑥3𝑦𝑦⋅4𝑥𝑥2𝑦𝑦3

22) �(2𝑥𝑥)3

𝑥𝑥3�2

23) � 2𝑦𝑦17

(2𝑥𝑥2𝑦𝑦4)4�3 24) �2𝑚𝑚𝑛𝑛4⋅2𝑚𝑚4𝑛𝑛4

𝑚𝑚𝑛𝑛4�3

25) 2𝑥𝑥𝑦𝑦5⋅2𝑥𝑥2𝑦𝑦3

2𝑥𝑥𝑦𝑦4⋅𝑦𝑦3 26)

2𝑥𝑥2𝑦𝑦2𝑧𝑧6⋅2𝑧𝑧𝑥𝑥2𝑦𝑦2

(𝑥𝑥2𝑧𝑧3)2 27) 2𝑦𝑦

(𝑥𝑥0𝑦𝑦2)4

28) 2𝑏𝑏𝑎𝑎7⋅2𝑏𝑏4

𝑏𝑏𝑎𝑎2⋅3𝑎𝑎3𝑏𝑏4 29)

2𝑎𝑎2𝑏𝑏2𝑎𝑎7

(𝑏𝑏𝑎𝑎4)2 30) 𝑦𝑦𝑥𝑥2⋅�𝑦𝑦4�2

2𝑦𝑦4

31) 2𝑎𝑎2𝑏𝑏2𝑎𝑎7

(𝑏𝑏𝑎𝑎4)2 32) 𝑛𝑛3�𝑛𝑛4�2

2𝑚𝑚𝑛𝑛 33)

�2𝑦𝑦3𝑥𝑥2�2

2𝑥𝑥2𝑦𝑦4𝑥𝑥2

34) 2𝑞𝑞3𝑝𝑝3𝑟𝑟4⋅2𝑝𝑝3

(𝑞𝑞𝑟𝑟𝑝𝑝3)2 35) 2𝑥𝑥4𝑦𝑦−2 ⋅ (2𝑥𝑥𝑦𝑦3)4 36) 2𝑥𝑥−3𝑦𝑦2

3𝑥𝑥−3𝑦𝑦3⋅3𝑥𝑥0

37) 𝑢𝑢𝑣𝑣−1

2𝑢𝑢0𝑣𝑣4⋅2𝑢𝑢𝑣𝑣 38) �2𝑎𝑎

2𝑏𝑏3

𝑎𝑎−1�4

39) 2𝑥𝑥𝑦𝑦2⋅4𝑥𝑥3𝑦𝑦−4

4𝑥𝑥−4𝑦𝑦−4⋅4𝑥𝑥

40) 2𝑏𝑏4𝑐𝑐−2⋅�2𝑏𝑏3𝑐𝑐2�−4

𝑎𝑎−2𝑏𝑏4

Page 7: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

217

SECTION 8.2 SCIENTIFIC NOTATION A. INTRODUCTION TO SCIENTIFIC NOTATION One application of exponent properties is scientific notation. Scientific notation is used to represent really large or really small numbers, like the numbers that are too large or small to display on the calculator.

For example, the distance light travels per year in miles is a very large number (5,879,000,000,000) and the mass of a single hydrogen atom in grams is a very small number (0.00000000000000000000000167). Basic operations, such as multiplication and division, with these numbers, would be quite cumbersome. However, the exponent properties allow us for simpler calculations.

MEDIA LESSON Introduction of scientific notation (Watch from 0:00 – 9:00)

View the video lesson, take notes and complete the problems below

100 =___________

101 =____________

102 =_____________

103 = _____________

10100 = _________________________

Avogadro number: 602,200,000,000,000,000,000,000 = ______________________________

MEDIA LESSON Definition of scientific notation (Duration 4:59)

View the video lesson, take notes and complete the problems below

Standard Form (Standard Notation): _______________________________________________________

Scientific Notation: ____________________________________________________________________

b: _________________________________________

b positive: __________________________________

b negative: _________________________________

Example: Convert to Scientific Notation

a) 48,100,000,000 = _________________ b) 0.0000235 = ________________

Page 8: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

218

Definition Scientific notation is a notation for representing extremely large or small numbers in form of

𝑎𝑎 𝑥𝑥 10𝑏𝑏 where 1 < a < 10 and b is number of decimal places from the right or left we moved to obtain a.

A few notes regarding scientific notation:

• b is the way we convert between scientific and standard notation. • b represents the number of times we multiply by 10. (Recall, multiplying by 10 moves the decimal

point of a number one place value.) • We decide which direction to move the decimal (left or right) by remembering that in standard

notation, positive exponents are numbers greater than ten and negative exponents are numbers less than one (but larger than zero).

Case 1. If we move the decimal to the left with a number in standard notation, then b will be positive. Case 2. If we move the decimal to the right with a number in standard notation, then b will be negative.

B. CONVERT NUMBERS TO SCIENTIFIC NOTATION

MEDIA LESSON Convert standard notation to scientific notation (Duration 1:40)

View the video lesson, take notes and complete the problems below

Example: Convert to scientific notation

8150000 =

0.00000245 =

YOU TRY

Convert the following number to scientific notation a) 14,200

b) 0.0042

c) How long is a Light-Year? The light-year is a measure of distance, not time. It is the total distance that a beam of light, moving in a straight line, travels in one year is almost 6 trillion (6,000,000,000,000) miles. Express a light year in scientific notation. (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)

C. CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATION

To convert a number from scientific notation of the form 𝑎𝑎 𝑥𝑥 10𝑏𝑏

to standard notation, we can follow these rules of thumb. • If b is positive, this means the original number was greater than 10, we move the decimal to

the right b times. • If b is negative, this means the original number was less than 1 (but greater than zero), we move

the decimal to the left b times.

Page 9: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

219

MEDIA LESSON Convert scientific notation to standard notation (Duration 2:22)

View the video lesson, take notes and complete the problems below

Example: Rewrite in standard notation (decimal notation)

a) 7.85 × 106

b) 1.6 × 10−4

YOU TRY

Covert the following scientific notation to standard notation

a) 3.21 × 105 b) 7.4 × 10−3

D. MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATION Converting numbers between standard notation and scientific notation is important in understanding scientific notation and its purpose. Next, we multiply and divide numbers in scientific notation using the exponent properties. If the immediate result is not written in scientific notation, we will complete an additional step in writing the answer in scientific notation.

Steps for multiplying and dividing numbers in scientific notation

Step 1. Rewrite the factors as multiplying or dividing a-values and then multiplying or dividing 10b values.

Step 2. Multiply or divide the a values and apply the product or quotient rule of exponents to add or subtract the exponents, b, on the base 10s, respectively.

Step 3. Be sure the result is in scientific notation. If not, then rewrite in scientific notation.

MEDIA LESSON Multiply and divide scientific notation (Duration 2:47)

View the video lesson, take notes and complete the problems below

• Multiply/ Divide the ______________________________________ • Use ______________________________________________________on the 10s

Example:

a) (3.4 × 105)(2 ⋅ 7 × 10−2) b)

5.32×104

1.9×10−3

MEDIA LESSON Multiply scientific notations with simplifying final answer step (Duration 3:47)

View the video lesson, take notes and complete the problems below

Example: a) (1.2 × 104)(5.3 × 103) b) (9 × 101)(7 × 109)

Page 10: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

220

MEDIA LESSON Divide scientific notations with simplifying final answer step (Duration 3:44)

View the video lesson, take notes and complete the problems below

a) 7×1012

2×107

b) 2.4×107

4.8×102

YOU TRY

Multiply or divide

a) (2.1 𝑥𝑥 10−7)(3.7 𝑥𝑥 105)

b) 4.96 𝑥𝑥 104

3.1 𝑥𝑥 10−3

c) (4.7 𝑥𝑥 10−3)(6.1 𝑥𝑥 109)

d) (2 × 106)(8.8 × 105)

e) 8.4×105

7×102

f) 2.014 𝑥𝑥 10−3

3.8 𝑥𝑥 10−7

E. SCIENTIFIC NOTATION APPLICATIONS

MEDIA LESSON Scientific notation application example 1 (Duration 2:36)

View the video lesson, take notes and complete the problems below Example 1: There were approximately 50,000 finishers of the 2015 New York City Marathon. Each finisher ran a distance of 26.1 miles. If you add together the total number miles ran by all the runners, how many times around the earth would the marathon runners have ran? Assume the circumference of the earth to be approximately 2.5 x 104 miles. Total distance = _______________________________________________________________________ _____________________________________________________________________________________

Page 11: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

221

MEDIA LESSON Scientific notation application example 2 (Duration 3:24)

View the video lesson, take notes and complete the problems below

Example 2: If a computer can conduct 400 trillion operations per second, how long would it take the computer to perform 500 million operations? 400 trillion = __________________________________________________________________________

500 million = __________________________________________________________________________

Number of Operations: __________________________________________________________________

Rate of Operations: _____________________________________________________________________

_____________________________________________________________________________________

YOU TRY

a) It takes approximately 3.7 x 104 hours for the light on Proxima Centauri, the next closet star to our sun, to reach us from there. The speed of light is 6.71 x 108 miles per hours. What is the distance from there to earth? Given distance = rate x time. Express your answer in scientific notation

By ESO/Pale Red Dot - http://www.eso.org/public/images/ann16002a/, CC BY 4.0,

https://commons.wikimedia.org/w/index.php?curid=46463949

a) If the North Pole and the South Pole ice were to melt, the north polar ice would make essentially no contribution since it is float ice. However, the south polar ice would make a considerable contribution since it overlays the Antarctic land mass and is not float ice. If Antarctic ice melted, it would become approximately 1.5 x 109 gallons of water. If it takes roughly, 6 x 106 gallons of water to fill 1 foot of the earth, estimate how many feet the earth’s oceans would rise? Express your answer in the standard form. (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)

Page 12: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

222

EXERCISE Write each number in scientific notation

1) 885 2) 0.081 3) 0.000039

4) 0.000744 5) 1.09 6) 15,000

Write each number in standard notation.

7) 8.7 × 105 8) 9 × 10−4 9) 2 × 100

10) 2.56 × 102 11) 5 × 104 12) 6 × 10−5

Simplify. Write each answer in scientific notation.

13) (7 × 101)(2 × 103) 14) (5.26 × 105)(3.16 × 102) 15) (2.6 × 10−2)(6 × 10−2)

16) (3.6 × 100)(6.1 × 10−3) 17) (6.66 × 10−4)(4.23 × 101) 18) (3.15 × 103)(8.8 × 10−5)

19) 4.81 × 106

9.62 × 102 20)

5.33×106

2×103 21)

4.08×10−6

5.1×10−4

22) 9×104

3×10−2 23)

3.22×10−3

7×10−6 24)

1.3×10−6

6.5×100

25) 5.8×103

5.8×10−3 26)

5×106

2.5×102 27)

8.4×105

7×10−2

Scientific Notation Applications (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)

28) The mass of the sun is 1.98 x 1,033 grams. If a single proton has a mass of 1.6 x 10-24 grams, how many protons are in the sun?

29) Pluto is located at a distance of 5.9 x 1014 centimeters from Earth. At the speed of light (2.99 x 1010

cm/sec), approximately how many hours does it take a light signal (or radio message) to travel to Pluto and return? Write your answer standard form.

30) The planet Osiris was discovered by astronomers in 1999 and is at a distance of 150 light-years (1

light-year = 9.2 x 1012 kilometers). a) How many kilometers is Osiris from earth? Express your answer in scientific notation. b) If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed

of 700 km/sec or 7 x 102 km/sec, how many seconds would it take to reach Osiris? c) There is about 3.15 x 106 seconds in a year. How many years would it take to reach Osiris?

Page 13: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

223

SECTION 8.3: POLYNOMIALS A. INTRODUCTION TO POLYNOMIALS

MEDIA LESSON Algebraic Expression Vocabulary (Duration 5:52)

View the video lesson, take notes and complete the problems below

Definitions

Terms: Parts of an algebraic expression separated by addition or subtraction (+ or −) symbols. Constant Term: A number with no variable factors. A term whose value never changes. Factors: Numbers or variable that are multiplied together Coefficient: The number that multiplies the variable.

Example 1: Consider the algebraic expression 4𝑥𝑥5 + 3𝑥𝑥4 − 22𝑥𝑥2 − 𝑥𝑥 + 17

a. List the terms: __________________________________________________________________

b. Identify the constant term. ________________________________________________________

Example 2: Complete the table below

−4𝑚𝑚 −𝑥𝑥 12𝑏𝑏ℎ

2𝑟𝑟5

List of Factors

Identify the Coefficient

Example 3: Consider the algebraic expression 5𝑦𝑦4 − 8𝑦𝑦3 + 𝑦𝑦2 − 𝑦𝑦4− 7

a. How many terms are there? ______________________

b. Identify the constant term. ______________________

c. What is the coefficient of the first term? ______________________

d. What is the coefficient of the second term ______________________

e. What is the coefficient of the third term? ______________________

f. List the factors of the fourth term. ______________________

YOU TRY

Example 3: Consider the algebraic expression 3𝑥𝑥5 + 4𝑥𝑥4 − 2𝑥𝑥 + 8

a. How many terms are there? ______________________

b. Identify the constant term. ______________________

c. What is the coefficient of the first term? ______________________

d. What is the coefficient of the second term ______________________

e. What is the coefficient of the third term? ______________________

f. List the factors of the third term. ______________________

Page 14: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

224

MEDIA LESSON Introduction to polynomials (Duration 7:12)

View the video lesson, take notes and complete the problems below

Definitions

Polynomial: An algebraic expression composed of the sum of terms containing a single variable raised to a non-negative integer exponent.

Monomial: A polynomial consisting of one term, example: _________________

Binomial: A polynomial consisting of two terms, example: _________________

Trinomial: A polynomial consisting of three terms, example: _________________

Leading Term: The term that contains the highest power of the variable in a polynomial,

example: _________________

Leading Coefficient: The coefficient of the leading term, example: _________________

Constant Term: A number with no variable factors. A term whose value never changes.

Example: _________________

Degree: The highest exponent in a polynomial , example: _________________

Example 1: Complete the table below

Polynomial Name

Leading Coefficient Constant Term Degree

24𝑎𝑎6 + 𝑎𝑎2 + 5

2𝑚𝑚3 + 𝑚𝑚2 − 2𝑚𝑚 − 8

5𝑥𝑥2 + 𝑥𝑥3 − 7

−2𝑥𝑥 + 4

4𝑥𝑥3

YOU TRY

Complete the table below

Polynomial Name

Leading Coefficient Constant Term Degree

𝑚𝑚2 − 2𝑚𝑚 + 8

7𝑦𝑦2

6𝑥𝑥 − 7

Page 15: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

225

MEDIA LESSON Introduction to polynomials 2 (Duration 2:58)

View the video lesson, take notes and complete the problems below Given: 9𝑦𝑦 + 7𝑦𝑦3 − 5 − 4𝑦𝑦2

1st term: _______________ Degree:_________________ Coefficient:______________ 2nd term: _______________ Degree:_________________ Coefficient:______________ 3rd term: _______________ Degree:_________________ Coefficient:______________ 4th term: _______________ Degree:_________________ Coefficient:______________

Leading coefficient: ________________ Degree of leading term: _____________ Degree of polynomial: _______________ Write the polynomial in descending order: ________________________________________________ (Or write the polynomial in the standard form)

Standard form of a polynomial The standard form of a polynomial is where the polynomial is written with descending exponents. For example: Rewrite the polynomial in standard form and identify the coefficients, variable terms, and degree of the polynomial

−12𝑥𝑥2 + 𝑥𝑥3 − 𝑥𝑥 + 2

The standard form of the above polynomial is 𝑥𝑥3 − 12𝑥𝑥2 − 𝑥𝑥 + 2.

The coefficients are 1; −12; −1, and 2; the variable terms are 𝑥𝑥3,−12𝑥𝑥2,−𝑥𝑥. The degree of the polynomial is 3 because that is the highest degree of all terms. YOU TRY

Write the following polynomials in the descending order or in standard form: a) 3𝑥𝑥 − 9𝑥𝑥3 + 2𝑥𝑥6 + 7𝑥𝑥2 − 3 + 𝑥𝑥4

b) 5𝑚𝑚2 − 5𝑚𝑚4 + 3 − 4𝑚𝑚3 − 2𝑚𝑚7

B. EVALUATING POLYNOMIAL EXPRESSIONS

MEDIA LESSON Evaluating algebraic expressions (Duration 7:48)

View the video lesson, take notes and complete the problems below

To evaluate an algebraic or variable expression, ________________ the value of the variables into the expression. Then evaluate using the order of operations.

Example 1: If we are given 5𝑥𝑥 − 12 and 𝑥𝑥 = 17 we can evaluate.

5𝑥𝑥 − 12

= 5 ( ___ ) – 12

= ___________________

Example 2: Let 𝑥𝑥 = −3,𝑦𝑦 = 7, 𝑧𝑧 = −2 Evaluate 𝑥𝑥 − 3𝑦𝑦 + 7 Evaluate 2𝑥𝑥2 + 5𝑦𝑦 − 𝑧𝑧3

Page 16: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

226

Example 3: Let = 3 . Evaluate 9𝑦𝑦

−8𝑦𝑦 + 2

Example 4: Let 𝑥𝑥 = 3,𝑦𝑦 = −5. Evaluate 4𝑥𝑥 − 3𝑦𝑦2

Example 5: Let = −2 . Evaluate 3𝑥𝑥2 − 𝑥𝑥2 + 2𝑥𝑥 + 9

Example 6: Let 𝑥𝑥 = 2,𝑦𝑦 = −3. Evaluate 𝑥𝑥2𝑦𝑦2

𝑥𝑥2−2𝑦𝑦3

YOU TRY

a) Evaluate 2𝑥𝑥2 − 4𝑥𝑥 + 6 when 𝑥𝑥 = −4

b) Evaluate −𝑥𝑥2 + 2𝑥𝑥 + 6 when 𝑥𝑥 = 3

C. ADD AND SUBTRACT POLYNOMIALS

Combining like terms review

MEDIA LESSON Combine like terms 1 (Duration 4:36)

View the video lesson, take notes and complete the problems below

Definition Like terms: Two or more terms are like terms if they have the same variable or variables with the same exponents. Which of these terms are like terms? −2𝑥𝑥3, 2𝑥𝑥, 2𝑦𝑦, 7𝑥𝑥3, 49, 0𝑥𝑥2, 𝑦𝑦2

Like terms: __________________________________________________________

Like terms: __________________________________________________________

To combine like terms, we __________________________________________. The variable factors __________________.

Example: Simplify each polynomials, if possible.

a) 4𝑥𝑥3 − 7𝑥𝑥3

b) 2𝑦𝑦2 + 4𝑦𝑦 − 𝑦𝑦2 + 2 − 9𝑦𝑦 − 5 + 2𝑦𝑦

Page 17: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

227

MEDIA LESSON Combine like terms 2 (Duration 2:15)

View the video lesson, take notes and complete the problems below

Combine like terms

a) 𝑥𝑥2𝑦𝑦 + 3𝑥𝑥𝑦𝑦2 + 4𝑥𝑥2𝑦𝑦

b) −7𝑚𝑚− 4 + 2𝑚𝑚 + 9

YOU TRY

Combine like terms

a) 5𝑥𝑥2 + 2𝑥𝑥 − 5𝑥𝑥2 − 3𝑥𝑥 + 1

b) 3𝑥𝑥𝑦𝑦2 − 2𝑥𝑥2 + 6 + 3𝑦𝑦 − 5𝑥𝑥𝑦𝑦2 − 3

c) 3𝑥𝑥2𝑦𝑦𝑧𝑧 + 9𝑥𝑥2 − 5𝑥𝑥𝑦𝑦2𝑧𝑧 − 3𝑦𝑦2 + 5𝑥𝑥2

d) 3𝑥𝑥2 − 3𝑥𝑥 + 5𝑦𝑦2 − 𝑎𝑎𝑥𝑥2 + 7 − 𝑥𝑥 − 10𝑦𝑦2

Add and subtract polynomials

MEDIA LESSON Add and subtract polynomials (Duration 3:53)

View the video lesson, take notes and complete the problems below

To add polynomials: ____________________________________________________________________

To subtract polynomials: ________________________________________________________________

a) (5𝑥𝑥2 − 7𝑥𝑥 + 𝑞𝑞) + (2𝑥𝑥2 + 5𝑥𝑥 − 14) b) (3𝑥𝑥3 − 4𝑥𝑥 + 7) − (8𝑥𝑥3 + 9𝑥𝑥 − 2)

MEDIA LESSON Add and subtract polynomials (Duration 5:04)

View the video lesson, take notes and complete the problems below

c) (2𝑥𝑥5 − 6𝑥𝑥3 − 12𝑥𝑥2 − 4) − (11𝑥𝑥5 + 8𝑥𝑥 + 2𝑥𝑥2 + 6)

d) (−9𝑦𝑦3 − 6𝑦𝑦2 − 11𝑥𝑥 + 2) − (−9𝑦𝑦4 − 8𝑦𝑦3 + 4𝑥𝑥2 + 2𝑥𝑥)

Page 18: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

228

YOU TRY

Perform the operation below. a) (4𝑥𝑥3 − 2𝑥𝑥 + 8) + (3𝑥𝑥3 − 9𝑥𝑥2 − 11)

b) (5𝑥𝑥2 − 2𝑥𝑥 + 7) − (3𝑥𝑥2 + 6𝑥𝑥 − 4)

c) (2𝑥𝑥2 − 4𝑥𝑥 + 3) + (5𝑥𝑥2 − 6𝑥𝑥 + 1) − (𝑥𝑥2 − 9𝑥𝑥 + 8)

D. MULTIPLY POLYNOMIAL EXPRESSIONS 1. Distributive property review

MEDIA LESSON Distribute property review (Duration 6:08)

View the video lesson, take notes and complete the problems below

Distributive Property 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐

𝑎𝑎 = 2 𝑏𝑏 = 3 𝑐𝑐 = 4

Example: Use the distributive property to expand each of the following expressions a) 5(2𝑥𝑥 + 4)

b) −3(𝑥𝑥2 − 2𝑥𝑥 + 7)

c) −(5𝑥𝑥4 − 8) d)

25�𝑥𝑥4− 1

3�

YOU TRY

Use the distributive property to expand each of the following expressions. a) 4(−5𝑥𝑥2 + 9𝑥𝑥 − 3) b) −7(−2𝑚𝑚2 + 𝑚𝑚− 2)

2. Multiply a polynomial by a monomial

MEDIA LESSON Multiply a polynomial by a monomial (Duration 2:46)

View the video lesson, take notes and complete the problems below

To multiply a monomial by a polynomial: ___________________________________________________

Example 1: 5𝑥𝑥2(6𝑥𝑥2 − 2𝑥𝑥 + 5) Example 2: −3𝑥𝑥4(6𝑥𝑥3 + 2𝑥𝑥 − 7)

Page 19: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

229

YOU TRY

Multiply

a) 4𝑥𝑥3(5𝑥𝑥2 − 2𝑥𝑥 + 5)

b) 2𝑎𝑎3𝑏𝑏(3𝑎𝑎𝑏𝑏2 − 4𝑎𝑎)

3. Multiplying with binomials

MEDIA LESSON Multiply binomials (Duration 4:27)

View the video lesson, take notes and complete the problems below

To multiply a binomial by a binomial: ___________________________________________________

_____________________________________________________________________________________

This process is often called ____________, which stands for ____________________________________

Example:

a) (4𝑥𝑥 − 2)(5𝑥𝑥 + 1) b) (3𝑥𝑥 − 7)(2𝑥𝑥 − 8)

YOU TRY

Multiply

a) (3𝑥𝑥 + 5)(𝑥𝑥 + 13)

b) (4𝑥𝑥 + 7𝑦𝑦)(3𝑥𝑥 − 2𝑦𝑦)

4. Multiply with trinomials

MEDIA LESSON Multiply with trinomials (Duration 5:00)

View the video lesson, take notes and complete the problems below

Multiplying trinomials is just like _______________, we just have to _____________________________.

Example: a) (2𝑥𝑥 − 4)(3𝑥𝑥2 − 5𝑥𝑥 + 1) b) (2𝑥𝑥2 − 6𝑥𝑥 + 1)(4𝑥𝑥2 − 2𝑥𝑥 − 6)

Page 20: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

230

YOU TRY

Multiply a) (2𝑥𝑥 − 5)(4𝑥𝑥2 − 7𝑥𝑥 + 3)

b) (5𝑥𝑥2 + 𝑥𝑥 − 10)(3𝑥𝑥2 − 10𝑥𝑥 − 6)

E. SPECIAL PRODUCTS There are a few shortcuts that we can take when multiplying polynomials. If we can recognize when to use them, we should so that we can obtain the results even quicker. In future chapters, we will need to be efficient in these techniques since multiplying polynomials will only be one of the steps in the problem. These two formulas are important to commit to memory. The more familiar we are with them, the next two chapters will be so much easier.

1. Difference of two squares

MEDIA LESSON Difference of two squares (Duration 2:33)

View the video lesson, take notes and complete the problems below

Sum and difference

(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) = _______________________________

= _______________________________

Sum and difference shortcut:

(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) = ______________________

Example:

a) (𝑥𝑥 + 5)(𝑥𝑥 − 5)

b) (6𝑥𝑥 − 2)(6𝑥𝑥 + 2)

YOU TRY

Simplify: a) (3𝑥𝑥 + 7)(3𝑥𝑥 − 7)

b) (8 − 𝑥𝑥2)(8 + 𝑥𝑥2)

Page 21: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

231

2. Perfect square trinomials Another shortcut used to multiply binomials is called perfect square trinomials. These are easy to recognize because this product is the square of a binomial. Let’s take a look at an example.

MEDIA LESSON Perfect Square (Duration 3:40)

View the video lesson, take notes and complete the problems below

Perfect square

(𝑎𝑎 + 𝑏𝑏)2 = ____________________________________________________________________________

Perfect square shortcut:

(𝑎𝑎 + 𝑏𝑏)2 = _____________________________

Example: a) (𝑥𝑥 − 4)2

b) (2𝑥𝑥 + 7)2

YOU TRY

Simplify: a) (𝑥𝑥 − 5)2

b) (2𝑥𝑥 + 9)2

c) (3𝑥𝑥 − 7𝑦𝑦)2

d) (6 − 2𝑚𝑚)2

F. POLYNOMIAL DIVISION Dividing polynomials is a process very similar to long division of whole numbers. Before we look at long division with polynomials, we will first master dividing a polynomial by a monomial.

1. Polynomial division with monomials

MEDIA LESSON Dividing polynomials by monomials - Separated fractions method (Duration 8:14)

View the video lesson, take notes and complete the problems below We divide a polynomial by a monomial by rewriting the expression as separated fractions rather than one

fraction. We use the fact: 𝑎𝑎+𝑏𝑏𝑐𝑐

= 𝑎𝑎𝑐𝑐

+ 𝑏𝑏𝑐𝑐

Example:

a) −6w8

30ω3

b) 3𝑥𝑥−62

Page 22: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

232

c) 6𝑥𝑥3+2𝑥𝑥2−4

4𝑥𝑥

d) 20𝑎𝑎2+35𝑎𝑎−4

−5𝑎𝑎2

YOU TRY

Simplify

a) 9𝑥𝑥5+6𝑥𝑥4−18𝑥𝑥3−24𝑥𝑥2

3𝑥𝑥2

b) 8𝑥𝑥3+4𝑥𝑥2−2𝑥𝑥+6

4𝑥𝑥2

MEDIA LESSON Long division review (Duration 3:55)

View the video lesson, take notes and complete the problems below

Long division review

5 2632 Long division steps: 1. ___________________________________________________

2. ___________________________________________________

3. ___________________________________________________

4. ___________________________________________________

5. ___________________________________________________

This method may seem elementary, but it isn’t the arithmetic we want to review, it is the method. We use the same method as we did in arithmetic, but now with polynomials.

MEDIA LESSON Dividing polynomials by monomials – Long division method (Duration 5:00)

View the video lesson, take notes and complete the problems below

Example:

a) 5𝑥𝑥5+18𝑥𝑥−9𝑥𝑥3

3𝑥𝑥2

Page 23: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

233

b) 15𝑎𝑎6−25𝑎𝑎5+5𝑎𝑎4

5𝑎𝑎4

YOU TRY

Divide using the long division method

a) 8𝑥𝑥6+ 20𝑥𝑥4+ 4𝑥𝑥3

4𝑥𝑥3

b) 𝑛𝑛4− 𝑛𝑛3+ 𝑛𝑛2

𝑛𝑛

c) 12𝑥𝑥4− 24𝑥𝑥3 + 3𝑥𝑥2

6𝑥𝑥

Page 24: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

234

2. Polynomial division with polynomials

MEDIA LESSON Divide a polynomial by a polynomial (Duration 5:00)

View the video lesson, take notes and complete the problems below Polynomial division with polynomials On division step, only focus on the _______________________

Example 1: Divide 𝑥𝑥3−2𝑥𝑥2−15𝑥𝑥+30

𝑥𝑥+4

Example 2: Divide 4𝑥𝑥3−6𝑥𝑥+12+8

2𝑥𝑥+1

YOU TRY

a) 𝑥𝑥2+8𝑥𝑥+12

𝑥𝑥+1 =

b) 3𝑥𝑥3−5𝑥𝑥2−32𝑥𝑥+7

𝑥𝑥−4 =

Page 25: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

235

c) 6𝑥𝑥3−8𝑥𝑥2+10𝑥𝑥+103

2𝑥𝑥+4 =

MEDIA LESSON Divide a polynomial by a polynomial - rewriting the remainder as an expression (Duration 5:10)

View the video lesson, take notes and complete the problems below

Example: Divide 𝑥𝑥3+8𝑥𝑥2−17𝑥𝑥−15

𝑥𝑥+3

YOU TRY

Divide the polynomials and write the remainder as an expression

a) 𝑥𝑥2−5𝑥𝑥+7𝑥𝑥−2

=

b) 𝑥𝑥3−4𝑥𝑥2−6𝑥𝑥+4

𝑥𝑥−1 =

Page 26: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

236

3. Polynomial division with missing terms Sometimes when dividing with polynomials, there may be a missing term in the dividend. We do not ignore the term, we just write in 0 as the coefficient.

MEDIA LESSON Polynomial division with missing terms (Duration 5:00)

View the video lesson, take notes and complete the problems below

Divide polynomials – Missing terms The exponents must ___________________________________.

If one is missing, we will add ___________________________________________.

Example 1: 3𝑥𝑥3−50𝑥𝑥+4

𝑥𝑥−4

Example 2: 2𝑥𝑥3+4𝑥𝑥2+9

𝑥𝑥+3

YOU TRY

a) 2𝑥𝑥3−4𝑥𝑥+42

𝑥𝑥+3=

b) 3𝑥𝑥3−3𝑥𝑥2+4

𝑥𝑥−3 =

Page 27: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

237

EXERCISE Evaluate the expression for the given value. Show your work.

1. −𝑎𝑎3 − 𝑎𝑎2 + 6𝑎𝑎 − 21 when 𝑎𝑎 = −4 2. 𝑚𝑚2 − 3𝑚𝑚 − 11 when 𝑚𝑚 = −6

3. 𝑚𝑚3 − 7𝑚𝑚2 + 15𝑚𝑚 − 20 when 𝑚𝑚 = 2 4. 𝑚𝑚3 − 9𝑚𝑚2 + 23𝑚𝑚 − 21 when 𝑚𝑚 = 5

5. −5𝑚𝑚4 − 11𝑚𝑚3 − 9𝑚𝑚2 − 𝑚𝑚 − 5 when 𝑚𝑚 = 2 6. 𝑥𝑥4 − 5𝑥𝑥3 − 𝑥𝑥 + 13 when 𝑥𝑥 = 1

7. 𝑥𝑥2 + 9𝑥𝑥 + 23 when 𝑥𝑥 = −3 8. −𝑥𝑥3 + 𝑥𝑥2 − 𝑥𝑥 + 11 when 𝑥𝑥 = 6

9. −𝑥𝑥4 − 6𝑥𝑥3 + 𝑥𝑥2 − 24 when 𝑥𝑥 = −1 10. 𝑚𝑚4 + 𝑚𝑚3 + 2𝑚𝑚2 + 13𝑚𝑚 + 5 when 𝑚𝑚 = 3

Simplify. Write the answer in standard form. Show your work.

11. (5𝑝𝑝 − 5𝑝𝑝4) − (8𝑝𝑝 − 8𝑝𝑝4) 12. (3𝑚𝑚2 − 𝑚𝑚3) − (2𝑚𝑚3 − 7𝑚𝑚2)

13. (8𝑚𝑚 + 𝑚𝑚4)− (3𝑚𝑚 − 4𝑚𝑚4) 14. (1 + 5𝑝𝑝3) − (1 − 8𝑝𝑝3)

15. (5𝑚𝑚4 + 6𝑚𝑚3) + (8 − 3𝑚𝑚3 − 5𝑚𝑚4) 16. (3 + 𝑏𝑏4) + (7 + 2𝑏𝑏 + 𝑏𝑏4)

17. (8𝑥𝑥3 + 1) − (5𝑥𝑥4 − 6𝑥𝑥3 + 2) 18. (2𝑎𝑎 + 2𝑎𝑎4) − (3𝑎𝑎2 − 6𝑎𝑎 + 3)

19. (4𝑝𝑝2 − 3 − 2𝑝𝑝) − (3𝑝𝑝2 − 6𝑝𝑝 + 3) 20. (4𝑏𝑏3 + 7𝑏𝑏2 − 3) + (8 + 5𝑏𝑏2 + 𝑏𝑏3)

21. (3 + 2𝑚𝑚2 + 4𝑚𝑚4) + (𝑚𝑚3 − 7𝑚𝑚2 − 4𝑚𝑚4) 22. (𝑚𝑚 − 5𝑚𝑚4 + 7) + (𝑚𝑚2 − 7𝑚𝑚4 − 𝑚𝑚)

23. (8𝑟𝑟4 − 5𝑟𝑟3 + 5𝑟𝑟2) + (2𝑟𝑟2 + 2𝑟𝑟3 − 7𝑟𝑟4 + 1)

24. (6𝑥𝑥 − 5𝑥𝑥4 − 4𝑥𝑥2)− (2𝑥𝑥 − 7𝑥𝑥2 − 4𝑥𝑥4 − 8) − (8 − 6𝑥𝑥2 − 4𝑥𝑥4)

Multiply and simplify. Show your work

25. 6(𝑝𝑝 − 7) 26. 5𝑚𝑚4(4𝑚𝑚 + 4)

27. (8𝑏𝑏 + 3)(7𝑏𝑏 − 5) 28. (3𝑣𝑣 − 4)(5𝑣𝑣 − 2)

29. (5𝑥𝑥 + 𝑦𝑦)(6𝑥𝑥 − 4𝑦𝑦) 30. (7𝑥𝑥 + 5𝑦𝑦)(8𝑥𝑥 + 3𝑦𝑦)

31. (6𝑚𝑚 − 4)(2𝑚𝑚2 − 2𝑚𝑚 + 5) 32. (8𝑚𝑚2 + 4𝑚𝑚 + 6)(6𝑚𝑚2 − 5𝑚𝑚 + 6)

33. 3(3𝑥𝑥 − 4)(2𝑥𝑥 + 1) 34. 7(𝑥𝑥 − 5)(𝑥𝑥 − 2)

35. (6𝑥𝑥 + 3)(6𝑥𝑥2 − 7𝑥𝑥 + 4) 36. (5𝑘𝑘2 + 3𝑘𝑘 + 3)(3𝑘𝑘2 + 3𝑘𝑘 + 6)

37. (2𝑎𝑎2 + 6𝑎𝑎 + 3)(7𝑎𝑎2 − 6𝑎𝑎 + 1) 38. 3𝑚𝑚2(6𝑚𝑚 + 7)

39. (7𝑢𝑢2 + 2𝑢𝑢 − 3)(𝑢𝑢2 + 4) 40. 3𝑥𝑥2(2𝑥𝑥 + 3)(6𝑥𝑥 + 9)

Find each product by applying the special products formulas. Show your work

41. (𝑥𝑥 + 8)(𝑥𝑥 − 8) 42. (1 + 3𝑝𝑝)(1 − 3𝑝𝑝) 43. (1 − 7𝑚𝑚)(1 + 7𝑚𝑚)

44. (5𝑚𝑚 − 8)(5𝑚𝑚 + 8) 45. (4𝑥𝑥 + 8)(4𝑥𝑥 − 8) 46. (4𝑦𝑦 − 𝑥𝑥)(4𝑦𝑦 + 𝑥𝑥)

47. (4𝑚𝑚 − 2𝑚𝑚)(4𝑚𝑚 + 2𝑚𝑚) 48. (6𝑥𝑥 − 2𝑦𝑦)(6𝑥𝑥 + 2𝑦𝑦) 49. (𝑎𝑎 + 5)2

Page 28: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

238

50. (𝑥𝑥 − 8)2 51. (𝑝𝑝 + 7)2 52. (7 − 5𝑚𝑚)2

53. (5𝑚𝑚 − 3)2 54. (5𝑥𝑥 + 7𝑦𝑦)2 55. (2𝑥𝑥 + 2𝑦𝑦)2

56. (5 + 2𝑟𝑟)2 57. (2 + 5𝑥𝑥)2 58. (4𝑣𝑣 − 7)(4𝑣𝑣 + 7)

59. (𝑚𝑚 − 5)(𝑚𝑚 + 5) 60. (4𝑘𝑘 + 2)2 61. (𝑎𝑎 − 4)(𝑎𝑎 + 4)

62. (𝑥𝑥 − 3)(𝑥𝑥 + 3) 63. (8𝑚𝑚 + 5)(8𝑚𝑚 − 5) 64. (2𝑟𝑟 + 3)(2𝑟𝑟 − 3)

65. (𝑏𝑏 − 7)(𝑏𝑏 + 7) 66. (7𝑎𝑎 + 7𝑏𝑏)(7𝑎𝑎 − 7𝑏𝑏) 67. (3𝑦𝑦 − 3𝑥𝑥)(3𝑦𝑦 + 3𝑥𝑥)

68. (1 + 5𝑚𝑚)2 69. (𝑣𝑣 + 4)2 70. (1 − 6𝑚𝑚)2

71. (7𝑘𝑘 − 7)2 72. (4𝑥𝑥 − 5)2 73. (3𝑎𝑎 + 3𝑏𝑏)2

74. (4𝑚𝑚 − 𝑚𝑚)2 75. (8𝑥𝑥 + 5𝑦𝑦)2 76. (𝑚𝑚 − 7)2

77. (8𝑚𝑚 + 7)(8𝑚𝑚 − 7) 78. (𝑏𝑏 + 4)(𝑏𝑏 − 4) 79. (7𝑥𝑥 + 7)2 Divide: Show your work

80. 20𝑥𝑥4+𝑥𝑥3+2𝑥𝑥2

4𝑥𝑥3 81.

5𝑛𝑛4+𝑛𝑛3+40𝑛𝑛2

5𝑛𝑛 82.

12𝑥𝑥4+24𝑥𝑥3+3𝑥𝑥2

6𝑥𝑥

83. 5𝑥𝑥5+18𝑥𝑥3+4𝑥𝑥 + 9

9𝑥𝑥 84.

3𝑘𝑘4+4𝑘𝑘2+28𝑘𝑘2

85. 10𝑛𝑛4+5𝑛𝑛3+2𝑛𝑛2

𝑛𝑛2

Divide and write your remainder as an expression. Show your work

86. 𝑣𝑣2−2𝑣𝑣−89𝑣𝑣−10

87. 𝑥𝑥2−2𝑥𝑥−71

𝑥𝑥+8

88.

𝑛𝑛2+13𝑛𝑛+32𝑛𝑛+5

89. 10𝑥𝑥2−19𝑥𝑥+9

10𝑥𝑥−9

90.

𝑎𝑎2−4𝑎𝑎−38𝑎𝑎−8

91. 45𝑝𝑝2−56𝑝𝑝+19

9𝑝𝑝−4

92. 27𝑏𝑏2+87𝑏𝑏+35

3𝑏𝑏+8

93.

4𝑟𝑟2−𝑟𝑟−14𝑟𝑟+3

94. 𝑛𝑛2−4𝑛𝑛−2

95. 𝑥𝑥3−26𝑥𝑥−41

𝑥𝑥+4

96.

4𝑥𝑥2−4𝑥𝑥+22𝑥𝑥−5

97. 𝑎𝑎3+5𝑎𝑎2−4𝑎𝑎−5

𝑎𝑎+7

98. 𝑝𝑝3+5𝑝𝑝2+3𝑝𝑝−5

𝑝𝑝+1

99. 𝑥𝑥3−46𝑥𝑥+22

𝑥𝑥+7

100.

2𝑥𝑥3+12𝑥𝑥2−202𝑥𝑥+6

101. 4𝑣𝑣3+4𝑣𝑣+194𝑣𝑣+12

102. 𝑟𝑟3−𝑟𝑟2−16𝑟𝑟+8

𝑟𝑟−4

103.

12𝑛𝑛3+12𝑛𝑛2−15𝑛𝑛−42𝑛𝑛+3

Page 29: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

239

CHAPTER REVIEW KEY TERMS AND CONCEPTS

Look for the following terms and concepts as you work through the workbook. In the space below, explain the meaning of each of these concepts and terms in your own words. Provide examples that are not identical to those in the text or in the media lesson.

Product rule of exponents

Quotient rule of exponents

Power rule of a product

Power rule of a quotient

Power rule of a Power

Zero power rule

Negative exponent rule

Reciprocal of negative rule

Negative power of a quotient rule

Scientific notation

Standard notation (Decimal notation)

Polynomial

Monomial

Page 30: CHAPTER 8: EXPONENTS AND POLYNOMIALS · PDF fileDivide a polynomial by a monomial or by applying long division : CHAPTER 8: EXPONENTS AND POLYNOMIALS ... Putting all the rules together,

Chapter 8

240

Binomial

Trinomial

Leading Term

Leading Coefficient

Degree of a Polynomial

Constant Term