16
CHAPTER 7 REFERENCES

CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

 

 

 

 

CHAPTER 7 

REFERENCES 

   

Page 2: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 196 of 210

CHAPTER 7

REFERENCES

1. Misra A., Ganesh S., Shahiwala A and Shah S P. Drug delivery to the central nervous system:

A review, J Pharm Pharmaceut Sci. 2003; 6:252- 273.

2. Bodar Nicholas and Buchwald Peter. Brain targeted Drug Delivery. Am J Drug Deliv. 2003;

1(1) :13-26

3. Martin-Villalba A, Okuducu AF, von Deimling A. The evolution of our understanding on

glioma. Brain Pathology. 2008;18(3):455–463

4. Singh B., Kapil R. Brain drug delivery: Problems and prospects. Chronicle Pharmabiz. 2011;

11(49): 26-37.

5. Patel MM, Goyal BR, Bhadada SV. Getting into the Brain Approaches to Enhance Brain Drug

Delivery.Cns Drugs. 2009;23(1):35–58

6. Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv.

2006; 3: 219-232

7. Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx.

2005; 2: 3-14

8. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs Int J

Pharm. 2009; 379: 146-157.

9. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of

Disease Study. Lancet. 1997: 339, 342-344.

10. Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition

and treatment of brain diseases. Prog. Neurobiol. 2005; 76(1): 22-76.

11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human brain and bind

human and porcine insulin with equal affinity. Diabet Med. 1997; 14, 1044- 1050

12. Hill JM, Ruff MR, Weber RJ, Pert CB. Transferrin receptors in rat brain: neuropeptide-like

pattern and relationship to iron distribution. Proc Natl Acad Sci USA, 1985, 82, 4553-4557.

13. Garcia-Garcia E, Andrieux K, Gilb S, Couvreur P. A Review Colloidal carriers and

blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int J

CHAPTER 7 REFERENCES

Page 3: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 197 of 210

Pharm. 2005; 298: 274-292.

14. Illum L. Nasal Drug Delivery: Possibilty, problem, solutions. J Control Release. 2003;87:187-

198.

15. Michael IU, Norbert V, Renaat K. The biopharmaceutical aspects of nasal muco adhesive

drug delivery. J Pharm Pharmacol. 2001; 53: 3-22.

16. Vyas TK, Shahiwala A, Marathe S, Misra A. Intranasal Drug Delivery for Brain Targeting.

Curr Drug Deliv. 2005. 2(2): 165-175.

17. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today.

2002; 7(18):967-75.

18. Behl C R. Effects of physicochemical properties and other factors on systemic nasal drug

delivery. Adv. Drug. Deli. Revi. 1998; 29: 89-116.

19. Bourdonnec, Carrupt, Scherrmann and Martel. Methodologies to Assess Drug Permeation

through the Blood– Brain Barrier for Pharmaceutical Research. Pharm Res. 2013; 30:2729–

2756.

20. Bagger MA, Bechgaard E. The potential of nasal application for delivery to the central

brain-a microdialysis study of fluorescein in rats. Eur J Pharm Sci. 2004; 21(2-3): 235-42.

21. Chien YW. Nasal drug delivery systems. In: Swacrbrick J, editor. Novel drug delivery

systems. New York: Marcel Dekker. 1992: 139–96.

22. Dorman DC, Brenneman KA, McElveen AM, Lynch SE, Roberts KC, Wong BA. Olfactory trans

port: A direct route of delivery of inhaled manganese phosphate to the rat brain. J Toxicol

Environ Health A, 2002; 65:1493–1511.

23. Dragphia R, Caillaud C, Manicom R, Pavirani A, Kahn A, Poenaru L. Gene delivery into the

central nervous system by nasal instillation in rats, Gene Ther Aug. 1995; 2:418–423.

24. Einer-Jensen N, Larsen L. Local transfer of diazepam, but not of cocaine, from the nasal

cavities to the brain arterial blood in rats. Pharmacol Toxicol. 2000; 87(6): 276-278.

25. Einer-Jensen N, Larsen L. Transfer of tritiated water, tyrosine, and propanol from the nasal

cavity to cranial arterial blood in rats. Exp Brain Res. 2000; 130(2): 216-20.

26. Frey WH. Intranasal delivery: Bypassing the blood brain barrier to deliver therapeutic

agents to the brain & spinal cord. Drug delivey technol. 2002; 2: 46-9.

CHAPTER 7 REFERENCES

Page 4: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 198 of 210

27. Graft C L and Pollack G M. Nasal drug administration: Potential for targeted CNS delivery. J.

Pharm. Sci. 2005; 94: 187-95.

28. Hyde RW, Tonndorf J, Chinn HE. Absorption from the nasal mucous membrane. Ann Otol

Rhinol Laryngol. 1953; 62: 957–68.

29. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J.

Pharm sci. 2000; 11:1-18.

30. Illum L. Nasal drug delivery. New development and stratagies. Drug deliv. Technologies.

2002; 7: 1184-89.

31. Illum L. Is nose to brain delivery of drugs in man a reality?J. Pharn. Pharmcol. 2004; 56(1):

3-17.

32. Jadhav KR, Gambhire MN, Shaikh IM, Kadam VJ, Pisal SS. Nasal Drug Delivery System-

Factors Affecting and Applications. Current Drug Therapy. 2007; 2: 27-38.

33. Kublik, H., Vidgren, M.T. Nasal delivery systems and their effect on deposition and

absorption. Adv Drug Del Rev. 1998; 29: 157-177.

34. Lewis JL, Nikula KJ, Novak R, Dahl AE. Comparative localization of carboxylesterase in F344

rat, beagle dog and human nasal tissue. Anat Rec. 1994; 239: 55-64.

35. Lu w, Zhang Y, Jan YZ, HU KL, Jiang XG, FU SK. Cationic albumin conjugated pegylated

nanoparticles as novel drug delivery for brain targeting. J. controlled release. 2005; 107 :

428-48.

36. Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH II. Intranasal administration of insulin-

like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral

ischemic damage. J Neurol Sci. 2001; 187(1-2): 91-97.

37. Mygind N, Dahl R, Anatomy, physiology and function of the nasal cavity in health and

disease, Adv Drug Del Rev. 29; 1998 : 3-12.

38. Marttin, E., Schipper, N.G.M., Verhoef, J.C., Merkus. Nasal mucociliary clearance as a factor

in nasal drug delivery. Adv Drug Del Rev. 1988a; 29:13-38

39. Paradridge WM. CNS drug design based on principles of blood brain barrier transport. J.

Neurocem. 1998; 70:1781-92.

CHAPTER 7 REFERENCES

Page 5: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 199 of 210

40. Sundaram S, Roy SK, Ambati BK, Kompella UB. Surface-functionalized nanoparticles for

targeted gene delivery across nasal respiratory epithelium. J. Neurocem.2009; 23: 3752-

3765.

41. Schipper NGM, Verhoef JC, Merkus. The nasal mucocilliary clearance: relevance to nasal

drug delivery. Pharm Res. 1991; 8: 807-814.

42. Talegaonkar S and Mishra P. Intra nasal delivery. Ind. J. Pharmaco. 2004; 36 :140-147.

43. Wermeling DP, Miller JL, Rudy AC. Systematic Intranasal Drug Delivery: Concepts and

Applications. Drug Delivery Technol. 2002; 2: 56-61.

44. Vajdy M, Hagan DT. Microparticles for intranasal immunization. Adv Drug Deliv Rev 2001;

51: 127-141.

45. Thornton-Manning JR, Dahl AR. Metabolic capacity of nasal tissue interspecies comparisons

of xenobiotic-metabolizing enzymes. Mut Res. 1997; 380: 43-59.

46. Gao X, Tao W, Lu W. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain

delivery after intranasal administration. Biomaterials. 2006; 27: 3482-34.

47. Lawrence J M. and Rees G D. Microemulsion based media as novel drug systems. Adv. Drug

Deliv. Rev. 2000; 45: 89-121.

48. Monzer Fanun. Microemulsions as delivery systems. Current Opinion in Colloid & Inter Sci.

2012; 17 : 306–313

49. Tenjarla SN, Lieberman HA, Rieger MM, Banker GS. Microemulsions: An overview and

pharmaceutical applications. Critical Reviews ™ in Therapeutic Drug Carrier Systems. 1999;

16: 461–521.

50. Pharmaceutical dosage forms: Disperse systems, second ed, Vol 1. New York: Marcel

Decker, 1996; 211–281, 315–70.

51. Gasco MR. Microemulsions in the pharmaceutical field: Perspective and applications in

industrial applications of microemulsions. New York, Marcel Dekker. 97-122.

52. Block LH. Pharmaceutical emulsions and microemulsions. In: Lieberman HA, Rieger MM,

Banker GS, editor. Revised and expanded, 2nd ed. Pharmaceutical dosage forms .2001. 1:

47–110.

CHAPTER 7 REFERENCES

Page 6: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 200 of 210

53. Osborne, D.W Ward, A.J Neill, K.J. Micro- emulsion as topical drug delivery vehicles.

Characterization of a model system. Drug Dev. Ind. Pharm. 1998; 14 (9): 1202–1219.

54. Lam, A.C., Schechter, R.S. The theory of diffusion in microemulsions. J. Colloid Interface

Sci. Tech. 1991; 12 (5–6):467–482.

55. Zhong, G.G, Han, G.C, Hee. J.S. Kyung, M.P. Physicochemical characterization and

evaluation of a microemulsion system for oral delivery of cyclosporin A. Int. J. Pharm. 1998;

161 (1–2): 75– 86.

56. Gao ZG, Choi HG, Shin HJ, Park KM, Lim SJ and Hwang KJ. Physicochemical characterization

and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm.

1998; 161:75–86.

57. W. Zhu., A. Yu., W.Wang., R. Dong, J. Wu and G., Zhai. Formulation design of

microemulsion for dermal delivery of penciclovir. Int J. Pharm. 2008; 360: 184–190.

58. Barot B., Parejiya P., Patel H., Gohel M and Shelat P. Microemulsion based gel of

Terbinafine for the treatment of onychomycosis: Optimization of formulation using D-

optimal design. AAPS Pharmscitech. 2012; 13: 184-192.

59. M. Furlanetto, M. Cirri, G. Piepel, N. Mennini, P. Mura. Mixture experiment methods in the

development and optimization of microemulsion formulations. Journal of Pharmaceutical

and Biomedical Analysis. 2011; 55: 610–617.

60. Ramesh G, Chinna R.P, Vamshi V.Y, Shravan K.Y. & Madhusudan R, Y.Enhanced

bioavailability of lacidipine via microemulsion based transnasal formulation optimization:

Ex vivo & in vivo characterization. Int. J. Pharm. 2010; 388: 231-41.

61. Blume W, Lüders H, Mizrahi E, Tassinari C, van Emde Boas W and Engel J. "Glossary of

descriptive terminology for epilepsy: report of the ILAE task force on classification and

terminology". Epilepsia. 2001; 42: 1212–8.

62. D. Chadwick. Safety and efficacy of vigabatrin and carbamazepine in newly diagnosed

epilepsy: a multicentre ran- domised double-blind study, Lancet. 1999; 354: 13–19.

63. P. Kwan, M. Brodie. Early identification of refractory epilepsy, New Engl. J. Med. 2000;

342: 134–139.

CHAPTER 7 REFERENCES

Page 7: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 201 of 210

64. D. Tishler, K. Weinberg, D. Hinton, N. Barbaro, G. Annett, C. Raffel, Mdr1 gene-expression

in brain of patients with medically intractable epilepsy, Epilepsia.1995; 36 : 1–6.

65. Rambeck B, Jurgens UH, May TW. Comparison of brain extracellular fluid, brain tissue,

cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured

intraoperatively in patients with intractable epilepsy.Epilepsia. 2006; 47(4):681–694.

66. Prince DA, Parada I, Scalise K, et al. Epilepsy following cortical injury: Cellular and molecular

mechanisms as targets for potential prophylaxis. Epilepsia. 2009;50:30–40

67. Furanam RS and Mcnanara K. Seizure disorder in mutant mice: Relevance to human

epilepsies. Curr. Opin. Neurobiol. 1999; 9: 281-87.

68. Bromfield EB, Cavazos JE, Sirven JI, editors. An Introduction to Epilepsy . West Hartford

(CT): American Epilepsy Society; 2006. http://www.ncbi.nlm.nih.gov/books/NBK2510/,

dated, 20/01/2012.

69. Murthy RSR, Majithiya RJ, Ghosh PK. Thermoreversiblemucoadhesive gel for nasal delivery

of Sumatriptan. AAPS PharmSciTech . 7(3): 2006, E1- E7.

70. Khan S, Patil K, Bobade N, Yeole P, Gaikwad R., Formulation of intranasal mucoadhesive

temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting

efficiency in rats, J Drug Target. 2010 Apr;18(3):223-34.

71. Xiaomei Wang, Na Chi, Xing Tang. Preparation of estradiol chitosan nanoparticles for

improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm. 2008, 70: 735-

740.

72. U. Seju, A. Kumar, K.K. Sawant Development and evaluation of olanzapine-loaded PLGA

nanoparticles for nose-to-brain delivery: In vitro and in vivo studies. Acta Biomaterialia.

2011, 7: 4169-4176.

73. Hathout RM, Nasr M. Transdermal delivery of betahistine hydrochloride using

microemulsions: physical characterization, biophysical assessment, confocal imaging and

permeation studies. Colloidal suf B Biointerfaces. 2012. 1(100)-146-54.

74. Belgamvar VS, Patel HS, Joshi AS, Agrawal A, Suranas SJ, Tekade AR. Design and

development of nasal mucoadhesive microspheres of Tramadol HCl for brain targeting.

Drug Deli.2011. 18(5)-353-360.

CHAPTER 7 REFERENCES

Page 8: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 202 of 210

75. Shadabul Haque, Shadab Md, Mohammad Fazil, Manish Kumar, Jasjeet Kaur Sahni, Javed

Ali, Sanjula Baboota. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic

and pharmacodynamic evaluation . Carbohydrate Polymers. 2012, 89 (1)-72-79.

76. Jogani V, Jinturkar K., Vyas T. and Misra A N. Recent Patents Review on Intranasal

Administration for CNS Drug. Delivery Recent Patents on Drug Delivery & Formulation

2008, 2, 25-40.

77. Jan Born 1, Tanja L, Werner K, et al. Sniffing neuropeptides: a transnasal approach to the

human brain. Nat Neurosci 2002; 5(6): 514-516.

78. Christian B, Manfred H, Astrid H, et al. Intranasal insulin improves memory in humans.

Psychoneuroendocrinology 2004; 29: 1326-1334

79. Christian B, Manfred H, Katrin S, et al. Intranasal insulin improves memory in humans:

Superiority of insulin aspart. Neuropsychopharmacology 2007; 32: 239-243.

80. Frey II, W. H.: WO07947A1 (1991).

81. Frey II, W. H.: US20026342478 (2002)

82. Houdi, A.A.: US20006121289 (2000)

83. Hussain, A.A., Dittert, L.W., Traboulsi, A.: US20026369058 (2002)

84. Quay, S.C.: US20030225031A1 (2003)

85. Quay, S.C., Costantino, H.R., Houston, M.E. JR; Leoard, A.K.: US20060003989A1 (2006)

86. Heller, J., Frazer, N., Tsui Collins, A.L.: US20060141029A1(2006)

87. Hussain, A. A., Dittert, L.W., Qaisi, A. M., Traboulsi, A.: US20036380175 (2003)

88. Yee, K. K., Rawson, N.E.: US20036506801 (2003).

89. Frenkel, D., Maron, R., Burt, D., Weiner, H.L.: US20060229233A1 (2006).

90. Choi, Y.M., Kim, K.H.: US20050002987A1 (2005)

91. Ambikanandan, M., Tushar, K.V. 1124/MUM/2004 (2005).

92. Ambikanandan, M., Tushar, K.V. 1125/MUM/2004 (2005).

93. Cevc, G., Chopra, A., Stieber, J.: WO00044350A1 (2000).

94. Wermeling, D.P.: US20016610271 (2001)

95. Castile, J.D., Cheng, Y.-H., Jenkins, P.G., Smith, A., Watts, P.J.: US20070140981A1 (2007)

CHAPTER 7 REFERENCES

Page 9: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 203 of 210

96. Porecha S., Shah T., Jogani V., Naik S. and Misra A.Microemulsion based intranasal delivery

system for treatment of insomnia.Drug Delivery,16(2009): 128–134.

97. Ahmed H, Ehab R and Osama H. Intranasal microemulsion of silenafil citrate: Invitro

evaluation and in vivo pharmacokinetic study in rabbits. AAPS Pharm Sci Tech. 2009, 10(2):

361-67

98. Hong-Mei P, Prabagar B, Hyun-Jong C, Hyunjun K, You-Sun K, Suk-Jae C, Chang-Koo S, Dae-

Duk K. Preparation and evaluation of fexofenadine microemulsions for intranasal delivery.

Int J. Pharm. 395(2010): 309–16.

99. Zhang Q, Xinguo J, Wenming J, Wei L, Lina S and Zhenqi S. Preparation of nimodipine-

loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to

the brain. Int J Pharm. 275(2004): 85–96.

100. Mukesh Kumar, Ambikanandan Misra, A.K. Babbar, A.K. Mishra,Puspa Mishra and Kamla

Pathak Intranasal nanoemulsion based brain targeting drug delivery system of risperidone.

Int J. Pharm. 358 (2008) 285–291

101. Shah BM, Misra M, Shishoo CJ, Padh H. Nose to brain microemulsion-based drug delivery

system of rivastigmine: formulation and ex-vivo characterization. Drug Deliv. 2014 Jan 27.

(doi:10.3109/10717544.2013.878857).

102. Thakkar HP, Patel AA, Chauhan NP. Intranasal mucoadhesive microemulsion of

mirtazapine: Pharmacokinetic and pharmacodynamic studies. Asian J Pharm 2013;7:36-42

103. Hend Mohamed Abdel-Bar, Amal Youssef Abdel-Reheem, Gehanne Abdel Samie Awad,

Nahed Daoud Mortada. Evaluation of Brain Targeting and Mucosal Integrity of Nasally

Administrated Nanostructured Carriers of a CNS Active Drug : Clonazepam J Pharm Pharm

Sci. 16(3) 456 - 469, 2013

104. Vyas T K, Babbar A K., Sharma R K., Singh S and Misra A N. Intranasal mucoadhesive

microemulsions of Clonazepam: preliminary studies on brain targeting. Journal of

pharmaceutical sciences. 2005. 95: 1-11.

105. Rajput A P, Patil V P, Chaudari P K, Chaudari S P and Baviskar D T. Nose to brain delivery of

Ziprasidone microemulsion: Design and characterization. Int. Res. J. Pharm. 2013. 4(7):

170-77.

CHAPTER 7 REFERENCES

Page 10: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 204 of 210

106. Rasal A., Mahajan H S., Shaikh H T and Surana S J. Development and Characterization of

Nasal Mucoadhesive Microemulsion of Sumatriptan Succinate. Indian Journal of Novel

Drug delivery 2(3), Jul-Sep, 2010, 103-108.

107. Evaluation of submicron emulsion as vehicles for rapid onset intransal delivery for

improvement in brain targeting of Zolmitriptan. Drug Deliv. 2011. 18(8), 578-85.

108. Lianli, Nandi and Iand Kim KH. Development of an ethyl laurate-based microemulsion for

rapid-onset intranasal delivery of diazepam. Int J Pharmaceutics. 2002; 237: 77-85.

109. Botner S, Friedman A, Sintoy AC. Direct delivery of intranasal insulin to the brain via

microemulsion as a putative treatment of CNS functioning disorders. J NAnomed

Nanotehol. 3(4) - 1-6.

110. Yao J, Hou L, Zhou JP, Zhang ZQ, Sun L. Preparation of lorazepam loaded microemulsion for

intransal delivery and its pharmacokinetics. Pharmazie 2009. 64(10).642-47.

111. Bhanushali RS and Bajaj AN. Design and development of thermoreversible mucoadhesive

microemulsion for intranasal delivery of sumatriptan succinate. Indian J. Pharm Sci. 2007.

69: 709-12.

112. Patel RB, Patel MR, Bhatt KK, Patel BG. Paliperidone loaded mucoadhesive microemulsion

in treatment of schizophrenia. Journal of pharmaceutical innovation. 2013. 8(3): 195-204.

113. Patel RB, Patel MR, Bhatt KK, Patel BG. Paliperidone loaded mucoadhesive microemulsion

for brain targeting. International journal of biomedical and pharmaceutical sciences. 2013.

7(1): 20-27.

114. Gitanjali Sharma, Anil Kumar Mishra, Pushpa Mishra, and Ambikanandan Misra

Intranasal Cabergoline: Pharmacokinetic and Pharmacodynamic Studies. AAPS

PharmSciTech. Dec 2009; 10(4): 1321–1330

115. Hamza Bshara, Rihab Osman, Samar Mansour, Abd El-Hameed A and El-Shamy. Chitosan

and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride

pharmacokinetics in rats. Carbohydrate Polymers. 99 (2014) 297– 305

116. Jain R, Patravale, V. B. Development and evaluation of nitrendipine nanoemulsion for

intranasal delivery. J. Biomed. Nanotechnol., 2009, 5 (1) : 62-68.

CHAPTER 7 REFERENCES

Page 11: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 205 of 210

117. Evaluation of Carbamazepine (CBZ) Supersaturatable Self-Microemulsifying (S-SMEDDS)

Formulation In-vitro and In-vivo Zhang Nan, Gao Lijun and Quan Dongqin. Iran J pharm Res,

2012, 11(1), 257-264

118. Kelmann R G, Kuminek G, Teixeria H, Koester L S. Carbamazeepine parenteral nanoemusion

prepared by spontaneous emulsification process. Int I Pharm. 2007; 342 : 231-9.

119. Design and Evaluation of Carbamazepine Controlled Release Drug Delivery System

R.Charulatha and R.Kumaravel Rajan. Int.J. PharmTech Res.2012,4(1), 25-33.

120. Nair Rahul, Ashok CK, Vishnu K, Yadav C M and Prasanna Y R. Formulation and evaluation

of chitosan solid lipid nanoparticles of carbamazepine. Lip. In Health and disease. 2012.

121. Mali P A, Bharate S D, Bari M M, Lohare G and Janjale M. Formulation development and

evaluation of fast dissolving tablet of carbamazepine. Int J Curr Pharm Res. 2012. 4 (3): 48-

51.

122. Patel D M, Patel N M, Pandya N N and Jogani P D. Formulation and optimization of

carbamazepine floating tablets. Indian journal of pharmaceutical sciences. 2007. 69(2):

763-767.

123. Parthasarathy Govindasamy, Reddy B K and Narasimha J K. Formulation of unidirectional

release buccal patches of carbamazepine and study of permeation through porcine buccal

mucosa. Asian Pac J Trop Biomed 2013; 3(12): 995-1002.

124. Jelena Djuris, Nikolakakis Ioannis, Svetlana Ibric, Zorica Djuric, Kyriakos Kachrimanis.Effect

of composition in the development of carbamazepine hot-melt extruded solid dispersions

by application of mixture experimental design. Journal of Pharmacy and Pharmacology.

2000. 66 (2):232-43.

125. Mandal S. and Snigdha Mandal. Design and development of carbamazepine mucoadhesive

microemulsion for intranasal delivery: An ex vivo study. International Journal of

Pharmaceutical Sciences Review and Research 2010. 3(1): 56-60.

126. Omar Samia, Refai Hanan, and El Tahir Kamal Carbamazepine Mucoadhesive Nanoemulgel

(MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Delivery, 2012;

19(1): 58–67.

CHAPTER 7 REFERENCES

Page 12: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 206 of 210

127. Owen A, Tetty J N, Morgan P and Pirmohamed M. LC determination of carbamazepine in

murine brain. J Pharm Biomed Anal. 2001; 26: 573-77.

128. US 6245917 B1. Used as an anticonvulsant; can be administered intravenously; stable,

nonhygroscopic, and water soluble Phenytoin.

129. Bioavailability of phenytoin from oil suspension and emulsion in dogs Denji Shinkuma,

Tuneo Hamaguchi, Chikaaki Muro, Fukiko Ohto, You Yamanaka and Nobuyasu Mizuno. Int J

Pharm. 1981; 9:17- 28.

130. Dissolution rates of partially water-soluble drugs from solid dispersion systems. II.

Phenytoin. Renata Jachowicz. Int J Pharma. 1987; 35: 7-12.

131. M. Franco, G. Trapani, A. Latrofa, C. Tullio, M.R. Provenzano, M. Serra, M. Muggironi, G.

Biggio. Dissolution properties and anticonvulsant activity of phenytoin-polyethylene glycol

6000 and polyvinylpyrrolidone K-30 solid dispersions. Int J Pharma; 2001; 225: 63–73.

132. Improved dissolution and bioavailability of phenytoin by sulfobutylether-b-cyclodextrin

((SBE)7m-b-CD) and hydroxypropyl-b-cyclodextrin (HP-b-CD) complexation. J. Savolainen ,

K. Jarvinen , L. Matilainen , T. Jarvinen. Inter J Pharma. 1998; 165: 69–78.

133. Shrivastava M., Chaurasia D., Soni S., Patidar D.,Jadav R. Formulation & in vitro evaluation

of mouth dissolving tablet of phenytoin using different disintegrant. Int. j.Nov Drug Deliv

Tech. 2012; 2(1):249-55.

134. Kwon KI andBourne D W. Gastrointestinal absorption of phenytoin from an oil-in-water

microemulsion. Arch Pharm Res. 1997; 20(5): 480-5.

135. The United State of Pharmacopeia, USP 25, Chapter (1225), Validation of compendial

method.

136. John FW. Primary standardization of assays for Anticonvulsant drugs: comparison of

accuracy and precision. Clin chem. 2002; 48: 1963-9.

137. ICH, Q2B Validation of analytical procedure, Methodology International Conference on

Harmonization, Geneva, March 1996.

138. O’Neil MJ. Merck Index, An Encyclopedia of Chemicals,Drugs, and Biologicals. 13th ed.

Whitehouse Station, NJ; Merck & Co., Inc. 2001.

CHAPTER 7 REFERENCES

Page 13: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 207 of 210

139. D. Bentrop, F.V. Warren, S. Schmitz, B.A. Bidlingmeyer, Analysis of carbamazepine in serum

by liquid chromatography with direct sample injection and surfactant-contain- ing eluents,

J. Chromatogr. 535 (1990) 293–304.

140. D. Chollet, E. Castella, P. Combe, V. Arnera, High-speed liquid chromatographic method for

the monitoring of carbamazepine and its active metabolite, carbamazepine- 10,11-

epoxide, in human plasma, J. Chromatogr. B Biomed. Appl. 683 (1996) 237–243.

141. M. House, D.J. Berry, Analysis of carbamazepine in plasma by high pressure liquid

chromatography, in: P.F. Dixon, et al. (Eds.), High pressure liquid chromatography in clinical

chemistry, Academic Press, London, 1976, pp. 155–162.

142. K. Van Belle, V. de Koster, S. Sarre, G. Ebinger, Y. Michotte, Narrow-bore liquid-

chromatographic assay for oxcarbamazepine and its major metabolite in rat brain, liver and

microdialysates, J. Chromatogr. B Biomed. Appl. 657 (1994) 149–154.

143. U. Juergens, B. Rambeck, Sensitive analysis of anti- epileptic drugs in very small portions of

human-brain by microbore HPLC, J. Liq. Chromatogr. 10 (1987) 1847– 1863.

144. Miyamoto. K.. Recent progress and further aspects of the determination of antiepileptic

drugs. Nou to Hattatu (Brain and Development). 6 (1974) 444-455.

145. Neuvonen, P.J. Pentikainen, P.J. and Elfving. S.M. Factors affecting the bioavailability of

phenytoin. Int. J. Clin. Pharmacol. I5 (1977) 84- 89.

146. Nishihara. K. Kohda, Y. Saitoh. Y. Nakagawa. F. and Tamura, Z., Application of insolubilizec

antibody-enzyme immunoassay technique to determination of antiepileptic drugs in body

fluids. Byoin Yakugaku (J. NHPA. Sci. Ed.). 6 (1980) 29-35.

147. Alaa Khedr, Mohamed Moustafa, Ashraf B. Abdel-Naim, Abdulrahman Alahdal, and Hisham

Mosli. High-Performance Liquid Chromatographic Method for Determination of Phenytoin

in Rabbits. Anal Chem Insights. 3(2008): 61–67

148. R. Soto-Otero, E. Mendez-Alvarez, G. Sierra-Marcuno, Simultaneous determination of

ethosuximide, Phenobar- bital, phenytoin and carbamazepine in brain-tissue by HPLC, J.

Liq. Chromatogr. 8 (1985) 753–763.

149. Leo A, Hansch C, and Elkins D. Partition coefficients and their uses. Chem Rev. 1971. 71 (6):

525–616.

CHAPTER 7 REFERENCES

Page 14: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 208 of 210

150. Sangster, James. Octanol-Water Partition Coefficients: Fundamentals and Physical

Chemistry, Vol. 2 of Wiley Series in Solution Chemistry. Chichester: John Wiley & Sons Ltd.

1997:177- 178.

151. Rania M, Timothy H, Woodman J, Samar M, Nahed D and Ahmed S. Microemulsion

formulations for transdermal delivery of testosterone. Eur J Pharm Sci. 2010; 40 : 188-96.

152. Bagwe RP. Kamicky JR., PallaBJ., Patanjali PK., Shah DO. Improved drug delivery using

microemulsions: Rationale, recent progress & new horizons. Crit. Rev. Ther. Drug carrier

syst. 2001; 18:77-140.

153. Grzesiak AL, Lang M, Kim K, Matzger AJ. Comparison of the four anhydrous polymorphs of

carbamazepine and the crystal structure of form I. J Pharm Sci. 2003; 92: 2260–2271.

154. 6. Rustichelli C, Gamberini G, Ferioli V, Gamberinig MC, Ficarra R, Tomasini S. Solid-state

study of polymorphic drugs: carbamazepine. J Pharm Biomed Anal. 2000; 23:41–54.

155. Kobayashi Y, Ito S, Itai S, Yamamoto K. Physicochemical properties and bioavailability of

carbamazepine polymorphs and dihydrate. Int J Pharm. 2000; 193:137–146.

156. Joost V., Jonas E., Stina S., Labots M., Elizabeth C.,Windhost A. [11

C]phenytoin revisited:

synthesis by [11

C]CO carbonylation and first evaluation as a P-gp tracer in rats. EJNMMI

Res. 2012; 2: 36-39.

157. Wadell C, Bjork E, Camber O. Nasal drug delivery-evaluation of an in vitro

model using porcine nasal mucosa. Eur J Pharm Sci.1999. 7:197–206

158. Woodbury JW, Woodbury DM. Vagal stimulation reduces the seventy of maximal

electroshock seizures in intact rats: use of a cuff electrode for stimulating and recording.

Pacing Clin Electrophysiol. 1991; 14: 94–107.

159. Rosano HL., Lan T., Weiss A., Whittman JH., Gerbacia W. Unstable microemusions. J. Phys.

Chem. 1981; 85(5): 468-473.

160. http://en.wikipedia.org/wiki/Brain-derived_neurotrophic_factor, assessed on 5/7/10

161. Wang HS, Kuo MF. Chang Gung Vitamin B6 related epilepsy during childhood. Med J.

30(2007) : 396-401.

CHAPTER 7 REFERENCES

Page 15: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 209 of 210

162. Bruni, J., Wilder, B. J., Willmore, L. J., Perchalski, R. J. and Villarreal, H. J., Pharmacokinetics

of steady state valproic acid in epileptic patients, Clin. Pharmacol. Ther., 24 (1978) 324-

332.

163. Goodman, L. S. and Gilman, A. (Eds.), The Pharmacolo- gic Basis of Therapeutics,

Macmillan, New York, 1975, pp. 19-21.

164. Belgamwar V S, Patel H S, Joshi A S, Agrawal A, Surana S J and Tekade A R. Design and

development of nasal mucoadhesive microspheres containing tramadol HCl for CNS

targeting. Drug Deli. 2011; 18(5): 353–360

165. Adwoa O Noornoo and Diana S L. Cremophor free intravenous microemulsions for

Paclitexal II-stability, invitro release and pharmacokinetics. Int J Pharma.2008; 349 : 117-

123.

166. Meerum JM., Nuijen B., Bookel WW. Alternate formulations of paclitexal. Cancer Treat.

Rev. 1997;23: 87-95.

167. He L, Wang GJ., Zhang Q. An alternative paclitexal microemulsion formulations:

Hypersensitivity evaluation & pharmacokinetic profile. Int. J. Pharm. 2003; 25: 45-50.

168. Jumma M., Kleinbudde P., Muller BW. Mixture experiments with the oil phase of

0parenteral emulsions. Eur. J. pharm. Biopharm. 1998. 46: 161-67.

169. Vankamp HV., Bolhuis GK., Lerk CF. Optimization of a formulation for direct compression

using a simplex lattice design. Pharm. Weekbl. Sci. 1987. 9; 265-73.

170. Patil, S., Babbar, A., Mathur, R., Mishra, A., Sawant, K. (2010). Mucoadhesive chitosan

microspheres of carvedilol for nasal administration. J Drug Targeting. 18:321–31.

171. Saha, G.B. Methods of radiolabeling. In: Saha, G.B. (ed) Physics and radiobiology of nuclear

medicine. New York: Springer- Verlag. 1993.100-106.

172. Capala J, Barth RF, Bailey MQ, Fenstermarker RA, Marek MJ, Rhodes BA. 1997.

Radiolabeling of epidermal growth factor with 99mTc and in vivo localization following

intracerebral injection in to normal and glioma bearing rats. Bioconjug Chem 8:289–295.

173. James O, McNamara. Pharmacotherapy of the epilepsies. In: Brunton LL, Lazo JS, Parker KL,

ed. Goodman & Gilman’s, The pharmacological basis of therapeutics. New York: McGraw-

Hill, 12th ed, 2006. 501–525.

CHAPTER 7 REFERENCES

Page 16: CHAPTER 7 REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/77955/13/13_chapter 7.pdf11. Hopkins DFC, Williams G. Insulin receptors are widely distributed in human

Porecha S K

K.B.I.P.E.R Kadi Sarva Vishwavidyalaya Page 210 of 210

174. Aggarwal A, Kumar M, Faridi MM. Effect of carbamazepine on serum lipids and liver

function tests. Indian Pediatr.2005; 42(9):913–918.

175. Staines AG, Coughtrie MW, Burchell B. N-glucuronidation of carbamazepine in human

tissues is mediated by UGT2B7. J Pharmacol Exp Ther. 2004. 311(3):1131-7.

176. Ambrosio AF, Soares-Da-Silva P, Carvalho CM, Carvalho AP.Mechanisms of action of

carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem

Res. 2002.27(1-2):121-30.

177. Sisodiya SM, Goldstein DB. Drug resistance in epilepsy: more twists in the tale. Epilepsia.

2007. 48(12):2369-70

178. Chakrabarti, S. and Belpaire, F.M., Bioavailability of phenytoin in lipid containing dosage

forms in rats. J. Pharm. Pharmacol., 30 (1978) 330-331.

179. Glazko, A.J. and Cbang, T.. Absorption, distribution, and excretion. In D.M. Woodbury, J.K.

Penry and R.P. Schmidt (Eds.), Antiepileptic Drugs. Raven Press, New York, 1972, pp. 127-

136.

180. Sansom. L.N., O’Reilly. W.J.. Wiseman. C.W., Stern, L.M. and Derhetm. J., Plasma phenytoin

levels produced by various phenytoin preparations. Med. J. Au&., 2 (1975)# 593-595.

181. T. Suzuki, Y. Saitoh, K. Nishihara, Kinetics of diphenylhydantoin disposition in man, Chem.

Pharm. Bull. 18, 1970: 405-411.

182. Arnold, N. Gerber, G. Levy, Absorption and dissolution studies on diphenylhydantoin

capsules, Can. J. Pharm. Sci. 5, 1970: 89-92.

183. Gattefosse, S.A. Microemulsion: Formulation Guide, Publication No. PF9225A; Saint-Priest

Cedex: France, 1994. 19.

184. Hsiu, O.H.; Chih, C.H.; Ming, T.S. Preparation of microemulsion using polyglycerol fatty acid

esters as surfactant for the delivery of protein drugs. J. Pharm. Sci. 1996, 85 (2), 138–143.

CHAPTER 7 REFERENCES