80
1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) Chapter 7 - Models for Ships, Offshore Structures and Underwater Vehicles This chapter presents hydrodynamic models for ships, offshore structures and underwater vehicles. The founda9on for the models are the kinema9c equa9ons (Chapter 2), rigidbody kine9cs (Chapter 3), hydrosta9cs (Chapter 4), seakeeping theory (Chapter 5) and maneuvering theory (Chapter 6). The models are all expressed in a vectorial seHng for effec9ve computer simula9on and to simplify control design. Focus is made towards preserva9on of matrix proper9es such as symmetry, skewsymmetry, posi9ve definiteness and orthogonality which are key elements in nonlinear control and es9ma9on theory. 7.1 Maneuvering Models (3 DOF) 7.2 Autopilot Models for Heading Control (1 DOF) 7.3 DP Models (3 DOF) 7.4 Maneuvering Models including Roll (4 DOF) 7.5 Equa9ons of Mo9on (6 DOF)

Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Chapter 7 - Models for Ships, Offshore Structures and Underwater Vehicles

This  chapter  presents  hydrodynamic  models  for  ships,  offshore  structures  and  underwater  vehicles.      The  founda9on  for  the  models  are  the  kinema9c  equa9ons  (Chapter  2),  rigid-­‐body  kine9cs  (Chapter  3),  hydrosta9cs  (Chapter  4),  seakeeping  theory  (Chapter  5)  and  maneuvering  theory  (Chapter  6).      The  models  are  all  expressed  in  a  vectorial  seHng  for  effec9ve  computer  simula9on  and  to  simplify  control  design.  Focus  is  made  towards  preserva9on  of  matrix  proper9es  such  as  symmetry,  skew-­‐symmetry,  posi9ve  definiteness  and  orthogonality  which  are  key  elements  in  nonlinear  control  and  es9ma9on  theory.  

7.1  Maneuvering  Models  (3  DOF)  7.2  Autopilot  Models  for  Heading  Control  (1  DOF)  7.3  DP  Models  (3  DOF)  7.4  Maneuvering  Models  including  Roll  (4  DOF)  7.5  Equa9ons  of  Mo9on  (6  DOF)  

Page 2: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

2 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

The  horizontal  mo9ons  of  a  ship  or  semi-­‐submersible  are  described  by  the  mo9on  components  in  surge,  sway,  and  yaw.    

This  implies  that  the  dynamics  associated  with  the  mo9on  in  heave,  roll  and  pitch  are  neglected,  that  is  w  =  p  =  q  =  0.  

7.1 Maneuvering Models (3 DOF)

! ! !u, v, r"!

Rigid-­‐body  dynamics  –  horizontal  plane  models  for  maneuvering              

 

MRB!" ! CRB!!"! " #RB # !RB ! !hyd " !hs " !wind " !wave " ! #

! ! !N,E,!"!

!hyd ! !MA"# ! CA!"r""r ! D!"r""r #

N!!r"!r :! CA!!r"!r " D!!r"!r #

Page 3: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

3 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1 Maneuvering Models (3 DOF) Consider  the  6-­‐DOF  kinema9c  expressions:  

 

 

For  small  roll  and  pitch  angles  and  no  heave  this  reduces  to:  

Rbn!!" !

c!c" !s!c# " c!s"s# s!s# " c!c#s"s!c" c!c# " s#s"s! !c!s# " s"s!c#!s" c"s# c"c#

T!!!" "

1 s!t" c!t"0 c! !s!0 s!/c" c!/c"

J!!" !Rbn!"" 03!303!3 T"!""

J!!" 3 DOF! R!!! !

cos! ! sin! 0

sin! cos! 0

0 0 1

Copyright © Bjarne Stenberg/NTNU

Page 4: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

4 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

MRB !

m 0 0 0 mzg !myg

0 m 0 !mzg 0 mxg

0 0 m myg !mxg 0

0 !mzg myg Ix !Ixy !Ixz

mzg 0 !mxg !Iyx Iy !Iyz

!myg mxg 0 !I zx !Izy Iz

7.1 Maneuvering Models (3 DOF)

MA ! !

Xu" Xv" Xw" Xp" Xq" Xr"Yu" Yv" Yw" Yp" Yq" Yr"Zu" Zv" Zw" Zp" Zq" Zr"Ku" Kv" Kw" Kp" Kq" Kr"Mu" Mv" Mw" Mp" Mq" Mr"

Nu" Nv" Nw" Np" Nq" Nr"

MRB !

m 0 0

0 m mxg

0 mxg Iz

CRB!!" !

0 0 !m!xgr " v"

0 0 mu

m!xgr " v" !mu 0

MA !

!Xu" 0 0

0 !Yv" !Yr"

0 !Yr" !Nr"

CA!!" !

0 0 Yv" v # Yr" r

0 0 !Xu" u

!Yv" v ! Yr" r Xu" u 0

X

X

X

X X X

Assume  that  the  ship  has  homogeneous  mass  distribu9on,  xz-­‐plane  symmetry  and  yg=  0  

Page 5: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

5 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1 Maneuvering Models (3 DOF)

!" ! R!!"#M "# # CRB!#"# # N!#r"#r ! $ # $wind # $wave

# #

N!!r"!r :! CA!!r"!r " D!!r"!r # J!!" 3 DOF! R!!" !

cos! ! sin! 0

sin! cos! 0

0 0 1

MA !

!Xu" 0 00 !Yv" !Yr"0 !Yr" !Nr"

CA!!" !0 0 Yv" v # Yr"r0 0 !Xu" u

!Yv" v ! Yr"r Xu" u 0

Resul&ng  Model  

MRB !

m 0 0

0 m mxg

0 mxg Iz

CRB!!" !

0 0 !m!xgr " v"

0 0 mu

m!xgr " v" !mu 0

M !

m ! Xu" 0 0

0 m ! Yv" mxg!Yr"

0 mxg!Yr" Iz!Nr"

Page 6: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

6

7.1 Maneuvering Models (3 DOF)

Dynamic  Posi9oning  Models  •  3-­‐D  poten9al  theory  •  2-­‐D  poten9al  theory  (strip  theory)  

0   1.5  m/s  (3  knots)   ….    …..  

Speed  Sta9onkeeping  

Low-­‐speed    maneuvering  

Maneuvering  at  moderate  speed  (transit)  

Maneuvering  Models    •  2-­‐D  poten9al  theory  (strip  theory)  up  to  Froude  numbers  of  0-­‐3-­‐0.4  

•  2.5-­‐D  poten9al  theory  for  high-­‐speed  cra^  

LgU 3.0=

Maneuvering  at  high  speed  (high-­‐speed  cra^)  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Speed  Regimes  –  Hydrodynamic  Methods  (see  Chapters  5  and  6)  

Page 7: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

7

-8 -6 -4 -2 0 2 4 6 8 -8

-6

-4

-2

0

2

4

6

8 Linear and quadratic damping and their regimes

u (m/s)

linear damping: 0.5u*exp(-0.5u*u) quadratic damping: 0.05|u|u linear + quadratic damping

Dynamic positioning |u| < 2 m/s

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

The  figure  illustrates  the  significance  of  linear  and  quadra9c  damping  for  low-­‐speed  and  high-­‐speed  applica9ons.  

Dynamic  Posi9oning  (sta9onkeeping  and  low-­‐speed  maneuvering):      Linear  damping  dominates  

 Maneuvering  (high-­‐speed):  

 Nonlinear  damping  dominates  

7.1 Maneuvering Models (3 DOF) Speed  Regimes  –  Linear  and  Nonlinear  Damping  

Page 8: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

8 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.1 Nonlinear Maneuvering Models based on Surge Resistance and Cross-Flow Drag Expanding  the  3-­‐DOF  N-­‐matrix  into:  Added  mass  Coriolis-­‐centripetal  terms  +  linear  damping  +  nonlinear  damping                

N!!r"!r ! CA!!r"!r " D!!r"!r! CA!!r"!r " D!r " d!!r"

# #

CA!!r" !0 0 Yv" vr # Yr"r0 0 Xu" ur

!Yv" vr ! Yr"r !Xu" ur 0

D !

!Xu 0 00 !Yv !Yr0 !Nr !Nr

d!!r" !

12 !S!1 # k"Cfnew!ur"|ur|ur

12 ! "!Lpp /2

Lpp /2 T!x"Cd2D!x"|vr # xr|!vr # xr"dx

12 ! "!Lpp /2

Lpp /2 T!x"Cd2D!x"x|vr # xr|!vr # xr"dx

#

#

#

ITTC  surge  resistance  +  cross-­‐flow  drag  

Linear  damping  

Added  mass  Coriolis-­‐  centripetal  matrix  

Page 9: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

9

N!!r"!r ! CA!!r"!r " D!!r"!r

!

!Yv# vrr " Yr# r2

Xu# urr

!Yv# !Xu# "urvr"Yr#urr

alternatively:Xvrvrr " Xrrr2

Yururr

Nuvurvr"Nururr

"

!X |u|u|ur |ur!Y |v|v |vr|vr!Y |v|r|vr|r ! Yv|r|vr|r|!Y |r|r|r|r|

!N |v|v |vr|vr!N |v|r|vr|r ! Nv|r|vr|r|!N |r|r|r|r|

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.2 Nonlinear Maneuvering Models based on 2nd-order Modulus Functions The  idea  of  using  2nd-­‐order  modulus  func9ons  to  describe  the  nonlinear  terms  in  the  N-­‐matrix  dates  back  to  Fedyaevsky  and  Sobolev  (1963).    This  is  mo9vated  by  first  principles  (quadra9c  drag).    A  simplified  form  of  Norrbin's  (1970)  nonlinear  model  which  retains  the  most  important  terms  for  steering  and  propulsion  loss  assignment  has  been  proposed  by  Blanke  (1981).  This  model  corresponds  to  fiHng  the  cross-­‐flow  drag  to  2nd-­‐order  modulus  func9ons.              

Copyright © Bjarne Stenberg/NTNU

Page 10: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

10 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.2 Nonlinear Maneuvering Models based on 2nd-order Modulus Functions Maneuvering  model  in  matrix  form              

Recall  that  D(νr)  =  D  +  Dn(νr).  No9ce  that  linear  poten9al  damping  and  skin  fric9on  are  neglected  in  this  model  (D=0)  since  the  nonlinear  quadra9c  terms  Dn(νr)  dominate  at  higher  speeds  

N!!r"!r !!X |u|u|ur |ur!Yv" vrr # Yr" r2

Xu" urr ! Y |v|v |vr|vr!Y |v|r|vr|r ! Yv|r|vr|r|!Y |r|r|r|r|

!Yv" !Xu" "urvr#Yr"urr ! N |v|v |vr|vr!N |v|r|vr|r ! Nv|r|vr|r|!N |r|r|r|r|

CA!!r" !0 0 Yv" vr # Yr"r0 0 Xu" ur

!Yv" vr ! Yr"r !Xu" ur 0

D!!r" !!X |u|u|ur | 0 0

0 !Y |v|v |vr |!Y |r|v |r| !Y |v|r|vr |!Y |r|r|r|0 !N |v|v |vr |!N |r|v |r| !N |v|r|vr |!N |r|r|r|

#

#

Page 11: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

11

Experimental  data  can  be  curve  fihed  to  Taylor  series  of  1st  and  3rd  order  (odd  func9ons).    The  idea  dates  back  to  Abkowitch  (1964).        Consider  the  nonlinear  rigid-­‐body  kine9cs:            

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.3 Nonlinear Maneuvering Models based on Odd Functions

MRB!" ! CRB!!"! " #RB # !RB !

X!x"Y!x"N!x"

# x ! !u,v,r,u" ,v" ,r" ,!"! #

xo! !U,0,0,0,0,0,0"! #

X!x"!X!x0"!"i"1

n#X!x"#xi x0

#xi ! 12#2X!x"!#xi"2 x0

#xi2 ! 16#3X!x"!#xi"3 x0

#xi3

Y!x"!Y!x0"!"i"1

n#Y!x"#xi x0

#xi ! 12#2Y!x"!#xi"2 x0

#xi2 ! 16#3Y!x"!#xi"3 x0

#xi3

N!x"!Z!x0"!"i"1

n#N!x"#xi x0

#xi ! 12#2N!x"!#xi"2 x0

#xi2 ! 16#3N!x"!#xi"3 x0

#xi3

3rd-­‐order  truncated  Taylor-­‐series  expansion  about  

!x ! x ! x0 ! !"x1,"x2, . . ."xn"!

Page 12: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

12

Unfortunately,  a  3rd-­‐order  Taylor  series  expansion  results  in  a  large  number  of  terms.  By  applying  some  physical  insight,  the  complexity  of  these  expressions  can  be  reduced.  Assump&ons:  

 1.    Most  ship  maneuvers  can  be  described  with  a  3rd-­‐order  truncated  Taylor  expansion  about  the  steady  state  condi9on  u  =  u₀.    2.  Only  1st-­‐order  accelera9on  terms  are  considered.    3.    Standard  port/starboard  symmetry  simplifica9ons  except  terms  describing  the  constant  force  and  moment  arising  from  single-­‐screw  propellers.    4.    The  coupling  between  the  accelera9on  and  velocity  terms  is  negligible.    

       

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.3 Nonlinear Maneuvering Models based on Odd Functions

X ! X! " Xu#u# " Xu$u " Xuu$u2 " Xuuu$u3 " Xvvv2 " Xrrr2 " X!!!2

" Xrv!rv! " Xr!r! " Xv!v! " Xvvuv2$u " Xrrur2$u " X!!u!2$u" Xrvurvu " Xr!ur!$u " Xv!uv!$u

Y ! Y! " Yu$u " Yuu$u2 " Yrr " Yvv " Yr# r# " Yv# v# " Y!! " Yrrrr3 " Yvvvv3

" Y!!!!3 " Yrr!r2! " Y!!r!2r " Yrrvr2v " Yvvrv2r " Y!!v!2v " Yvv!v2! " Y!vr!vr" Yvuv$u " Yvuuv$u2 " Yrur$u " Yruur$u2 " Y!u!$u " Y!uu!$u2

N ! N! " Nu$u " Nuu$u2 " Nrr " Nvv " Nr# r# " Nv# v# " N!! " Nrrrr3 " Nvvvv3

" N!!!!3 " Nrr!r2! " N!!r!2r " Nrrvr2v " Nvvrv2r " N!!v!2v " Nvv!v2!

" N!vr!vr " Nvuv$u " Nvuuv$u2 " Nrur$u " Nruur$u2 " N!u!$u" N!uu!$u2 #

F! ! F!x0"

Fxi !!F!x"!xi x0

Fxixj ! 12

!2F!x"!xi!xj x0

Fxixjxk ! 16

!3F!x"!xi!xj!xk x0

F ! !X,Y,N"

Page 13: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

13 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Nonlinear  models  of  Clarke  (2003);  see  Clarke’s  lecture  notes  

3rrr

2vrr

2vvr

3vvvrv

3rrr

2vrr

2vvr

3vvvrv

rNrvN

rvNvNrNvNN

rYrvY

rvYvYrYvYY

′′+′′′+

′′′+′′+′′+′′=′

′′+′′′+

′′′+′′+′′+′′=′

Taylor  Series  Cubic  Curves  

For  a  symmetric  ship  hydrodynamic  force  Y'  and  moment  N'  can  be  modelled  by  1st  and  3rd  order  terms  using  an  odd  func9on    

2nd-­‐order  Modulus  Curves  

rrNrvN

rvNvvNrNvNN

rrYrvY

rvYvvYrYvYY

rrrv

rvvvrv

rrrv

rvvvrv

′′′+′′′+

′′′+′′′+′′+′′=′

′′′+′′′+

′′′+′′′+′′+′′=′

v′r′

Y ′

ODD FUNCTION TAYLOR SERIESFIT

v′r′

Y ′

SECOND ORDERMODULUSFIT

gives  a  smooth  surface  (physical)  

gives  a  flaher  facehed  surface  (nonphysical)

Taylor Series Cubic Curves or 2nd-order Modulus Curves

Page 14: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

14 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Taylor Series Cubic Curves or 2nd-order Modulus Curves

ODD FUNCTIONTAYLOR

SERIES FIT

SECOND ORDERMODULUS FIT

Y ′

( )TAYLORvY ′

( )MODvY ′

v′−

Nonlinear  models  of  Clarke  (2003);  see  Clarke’s  lecture  notes  

This  is  a  big  problem  when  comparing  deriva9ves  from  different  experimental  facili9es  

 

We  obtain  different  deriva9ve  values  from  cubic  and  2nd-­‐order  modulus  curve  fit.  

 

Page 15: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

15

Forward  speed  model  Starboard-­‐port  symmetry  implies  that  surge  is  decoupled  from  sway  and  yaw:        where  t₁  is  the  sum  of  control  forces  in  surge.  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.4 Linearized Maneuvering Models Linearized  Decoupled  Models  for  Forward  Speed  and  Maneuvering  

For  marine  cra^  moving  at  constant  (or  at  least  slowly  varying)  forward  speed  the  3-­‐DOF  maneuvering  model  can  be  decoupled  in  a:      ü Forward  speed  (surge  subsystem)    ü Sway-­‐yaw  subsystem  for  maneuvering  

2-­‐DOF  linear  maneuvering  model  (sway-­‐yaw  subsystem)  

!m ! Xu! "u! ! Xuur ! X |u|u|ur |ur " !1 #

U ! u2 " v2 ! u #

M!" ! N!uo"!r " b! #

δ  is  the  rudder  angle  is  based  on  the  assump9ons  that  the  cruise  speed.    The  current  forces  are  treated  as  a  linear  term:    

!r ! !vr,r"! u ! uo ! constant #

N!uo"#vc,0$!

Page 16: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

16 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.4 Linearized Maneuvering Models

! ! !v, r"!

! ! !!R

M !! " N!u0"! # b!

Model  representa9on  of  Fossen  (1994)  and  Clarke  and  Horn  (1996)  The  poten9al  theory  representa9on  is  obtained  by  extrac9ng  the  2nd  and  3rd  rows  in  CRB(ν)  and  CA(ν)  with  u  =  uo,  resul9ng  in:      

Resul9ng  model  

M !m ! Yv" mxg!Yr"

mxg!Yr" Iz!Nr"b!

!Y!

!N!

N!uo" !!Yv !m ! Xu" "uo!Yr

!Xu" !Yv" "uo!Nv !mxg!Yr" "uo!Nr

#

#

C!!"! !!m " Xu! "uor

!m " Yv! "uov " !mxg"Yr! "uor " !m " Xu! "uov

#0 !m " Xu! "uo

!Xu! "Yv! "uo !mxg"Yr! "uo

v

r #

D !!Yv !Yr!Nv !Nr

#

! ! b! !!Y!

!N!! #

No&ce:  C(n)  includes  the  famous  destabilizing    Munk  moment  (from  aerodynamics)  and  some  other  CA-­‐terms  

Page 17: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

17 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.1.4 Linearized Maneuvering Models

MRB!" ! CRB!u0"! " #RB

! ! !v, r"!

! ! !!R

M !! " N!u0"! # b! M !m ! Yv" mxg ! Yr"mxg ! Nv" Iz ! Nr"

, b !!Y!!N!

N!u0" ! C!u0" # D !!Yv mu0 ! Yr!Nv mxgu0 ! Nr

#

#

Resul9ng  model  

Comment:  Model  representa9on  of  Davidson  and  Schiff  (1946)  This  model  assumes  that  the  hydrodynamic  forces  τRB  are  linear  in                and          (linear  strip  theory)  such  that:      

NB!  This  representa9on  miss  the  CA-­‐terms  (see  red  circles  on  previous  slide)      

!RB ! !Y!N!

b

! "Yv# Yr#Nv# Nr#

MA

"# "Yv YrNv Nr

D

"r #

!,!" !

Page 18: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

18 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.2 Autopilot Models for Heading Control (1 DOF) 1-­‐DOF  autopilot  model  (yaw  subsystem)  

M!" ! N!uo"!r " b! #

yaw  rate  as  output  r ! c!!r, c! ! !0,1" #

Applica9on  of  the  Laplace  transforma9on  yields  (Nomoto,  1957)    

r!!s" ! K!1 " T3s"

!1 " T1s"!1 " T2s" # Nomoto's  2nd-­‐order  model  

r!!s" ! K

!1 " Ts" # Nomoto's  1st-­‐order  model  T ! T1 " T2 ! T3

!"!s" ! K

s!1 " Ts" # !! " r

Equivalent  9me  constant  

The  “celebrated”  autopilot  model  

v! !s" ! Kv!1"Tvs"

!1"T1s"!1"T2s"

Page 19: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

19

L (m) u0 (m/s) ! (dwt) K (1/s) T1 (s) T2 (s) T3 (s)cargo ship 161 7.7 16622 0.185 118.0 7.8 18.5

Oil tanker 350 8.1 389100 "0.019 "124.1 16.4 46.0

Matlab  MSS  toolbox    T1=118;  T2=7.8;  T3=18.5;  K=0.185;    nomoto(T1,T2,T3,K)    T1=-­‐124.1;  T2=16.4;  T3=46.0;  K=-­‐0.019;  nomoto(T1,T2,T3,K)  

Bode  plots  of  the  Nomoto  1st-­‐  and  2nd-­‐order  models  

10-4 10-3 10-2 10-1 100 101-100

0

100

Gai

n[d

B]

1st-order2nd-order

10-4 10-3 10-2 10-1 100 101-200

-150

-100

-50

Phas

e[d

eg]

10-4 10-3 10-2 10-1 100 101-200

-100

0

100

Gai

n[d

B]

10-4 10-3 10-2 10-1 100 101-300

-250

-200

-150

Phas

e[d

eg]

Frequency [rad/s]

Mariner class cargo ship course stable ship

course unstable ship Oil tanker

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.2.1-7.2.2 Autopilot Models for Heading Control (1 DOF)

Page 20: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

20

7.2.3 Nonlinear Extensions of Nomoto’s Model

The  linear  Nomoto  models  can  be  extended  to  include  nonlinear  effects  by  adding  sta9c  nonlineari9es  referred  to  as  maneuvering  characteris9cs.    

Nonlinear  Extension  of  Nomoto's  1st-­‐Order  Model  (Norrbin,  1963)  

Tr! " HN!r" # K!

HN!r" ! n3r3 " n2r2 " n1r " n0

where  HN(r)  is  a  nonlinear  func9on  describing  the  maneuvering  characteris9cs.    For  HN(r)  =  r,  the  linear  model  is  obtained.  

Nonlinear  Extension  of  Nomoto's  2nd-­‐order  Model  (Bech  &  Wagner-­‐Smith,  1969)  

T1T2r! " !T1 " T2"r# " KHB!r" $ K!! " T3!# "

HB!r" ! b3r3 " b2r2 " b1r " b0

where  HB(r)  can  be  found  from  Bech's  reverse  spiral  maneuver.  The  linear  equivalent  is  obtained  for  HB(r)  =  r  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 21: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

21

7.2.3 Nonlinear Extensions of Nomoto’s Model

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2course stable ship

linear (K>0)nonlinear

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2course unstable ship

linear (K<0)nonlinear

r (deg/s)

r (deg/s)

δ (deg)

δ (deg)

Bech spiral

Dieudonne spiral (hysteresis)

Bech and Dieudonne spirals

Linear  and  nonlinear  maneuvering  characteris&cs    

The  maneuvering  characteris9cs  are  found  by  solving  for  r  as  a  func9on  of  δ,  using  the  steady-­‐state  solu9ons  of  the  nonlinear  Nomoto  models:  

HN!r" ! K!HB!r" ! !

# #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 22: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

22

7.2.4 Pivot Point (Yaw Rotation Point)

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Defini&on  7.1  (Pivot  Point)  A  ship's  pivot  point  xp  is  a  point  on  the  centerline  measured  from  the  CG  about  which  the  ship  turns.  Consequently,  it  has  no  sideways  movement  (Tzeng  1998)  

xp!t" ! !vg/n!t"r!t" , r!t" " 0 #

When  turning  a  ship  it  is  important  to  know  which  point  the  ship  turns  about.    This  rota9on  point  in  yaw  is  referred  to  as  the  pivot  point.    

The  pivot  point  for  a  turning  ship  can  be  computed  by  measuring  the  velocity  vg/n(t)  in  CG  and  the  turning  rate  r(t):  

vp/n ! vg/n " xpr ! 0 #

This  expression  is  not  defined  for  a  zero  yaw  rate  corresponding  to  a  straight-­‐line  mo9on.  This  means  that  the  pivot  point  is  located  at  infinity  when  moving  on  straight  line  or  in  a  pure  sway  mo9on.            It  is  well  known  to  the  pilots  that  the  pivot  point  of  a  turning  ship  is  located  at  about  1/5∼1/4  ship  length  a^  of  bow   X

Copyright © Bjarne Stenberg/NTNU

Page 23: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

23

Yv! " !1160 ! 10!5 Nv! " !264 ! 10!5

Yr! ! m! " !499 ! 10!5 Nr! " !166 ! 10!5

Y!! " 278 ! 10!5 N!! " !139 ! 10!5

7.2.4 Pivot Point (Yaw Rotation Point)

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

xp!t" ! !vg/n!t"r!t" , r!t" " 0 #

Linearized maneuvering equation (steady-state Nomoto model):

AP FP BowCG CO

Lpp

Loa

xp=0.4923Lpp0.023Lpp 0.5Lpp 0.03Lpp

Pivotpoint

vr !

Kv!1 " Tvs"K!1 " T3s"

s!0! KvK # r

!!s" ! K!1 " T3s"

!1 " T1s"!1 " T2s" #

v! !s" ! Kv!1"Tvs"

!1"T1s"!1"T2s"

xp!s,s" ! ! KvK #

xp!s,s" ! ! NrY! ! !Yr ! mu0"N!

YvN! ! NvY! #

Location of the pivot point: Example: The Mariner Class vessel where the nondimensional linear maneuvering coefficients are given as:

xp!s,s" ! 0.4923Lpp #

Page 24: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

24

When  designing  course  autopilots  it  is  o^en  convenient  to  normalize  the  ship  steering  equa9ons  of  mo9on  such  that  the  model  parameters  can  be  treated  as  constants  with  respect  to  the  instantaneous  speed  U  defined  by:  

 The  most  commonly  used  normaliza9on  forms  for  marine  cra^  are:    

§  Prime-­‐system  (SNAME  1950)  This  system  uses  the  ship's  instantaneous  speed  U,  the  length  L  =  Lpp  (the  length  between  the  fore  and  a^  perpendiculars),  the  9me  unit  L/U,  and  the  mass  unit    ½  rL³ or    ½  rL²T  as  normaliza9on  variables.  The  prime  system  cannot  be  used  for  low-­‐speed  applica9ons  such  as  DP,  since  normaliza9on  of  the  speeds  u,v,w  implies  dividing  by  the  cruise  speed  U,  which  can  be  zero.    

§  Bis-­‐system  (Norrbin  1970)    This  system  can  be  used  for  zero  speed  since  division  of  speed  U  is  avoided.  The  Bis-­‐system  is  based  on  the  use  of  the  length  L  =  Lpp,  the  9me  unit  √(L/g)  such  that  speed  becomes  √(Lg)  >  0.  It  also  uses  the  body  mass  density  ra9o  m=m/r,  where  m  is  the  mass  unit  and                is  the  displacement.  

7.2.5 Nondimensional Maneuvering and Autopilot Models

U ! u2 " v2

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 25: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

25

Unit Prime-system I Prime-system II Bis-systemLength L L LMass 1

2 !L3 1

2 !L2T "!!

Inertia moment 12 !L

5 12 !L

4T "!!L2

Time LU

LU L/g

Reference area L2 LT " 2!L

Position L L LAngle 1 1 1Linear velocity U U Lg

Angular velocity UL

UL g/L

Linear acceleration U2L

U2L g

Angular acceleration U2L2

U2L2

gL

Force 12 !U

2L2 12 !U

2LT "!g!

Moment 12 !U

2L3 12 !U

2L2T "!g!L

Body  mass  density  ra9o:  

 

 

 

m  <  1  :  ROVs,  AUVs,  submarines,  etc.  

m   =  1  :  Floa9ng  ships/rigs  and  neutrally  buoyant  underwater  vehicles,  that  is:  

m  >  1  :  Heavy  torpedoes  (typically  m  =  1.3-­‐1.5)  

∇=ρ

µ m

Nota9on:                                x  ʹ′                                                x  ʹ′                                                xʹ′ʹ′    

       Normaliza&on  Table  

7.2.5 Nondimensional Maneuvering and Autopilot Models

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

m ! !!

Page 26: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

26

Example  7.3(Normaliza&on  of  Parameters)  The  hydrodynamic  coefficient  Yr  can  be  made  nondimensional  by  using  the  Prime-­‐  and  Bis-­‐systems.    

First,  let  us  determine  the  dimension  of  Yr.  Consider:  

Y ! Yr r

N=kgm/s²  

Sway  force  (N):  

rad/s  ?  

Hence,  the  unknown  dimension  must  be  kgm/s  since  rad  is  a  nondimensional  unit.    

The  nondimensional  values  Yrʹ′  and  Yrʹ′ʹ′  are  found  by  using  kg,  m  and  s  in  the  Conversion  Table.  Consequently:  

Yr! " Yr! 12 !L

3"!L"

!L/U"

" 112 !L

3UYr

Yr!! " Yr!!"!"!L"L/g

" 1!"! Lg

Yr

Prime      Bis   ! ! 1 and m ! "! Yr!! " 1

m LgYr

floa9ng  ship  

7.2.5 Nondimensional Maneuvering and Autopilot Models

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 27: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

27

7.2.5 Nondimensional Maneuvering and Autopilot Models Example  7.4  (Normaliza&on  of  States  and  Parameters)    Consider  a  linearized  maneuvering  model.  Prime-­‐Normaliza9on  gives:  

M! "!! # N!!u0! "! ! $ b!!!

!! " !v !, r!"!

M! "m ! ! Yv#! m !xg! ! Yr#!

m!xg! ! Nv#! Iz! ! Nr#!, b! "

!Y!!

!N!!

N!!u0! " "!Yv! m!u0! ! Yr!

!Nv! m !xg! u0! ! Nr!

u0! " u0U ! 1, for #u ! 0 and #v ! 0

v ! Uv ", r ! UL r

", ! ! ! "

where  

The  nondimensional  veloci9es  and  control  input  can  be  transformed  to  its  dimensional  values  by  using  the  Conversion  Table:  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 28: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

28

6-­‐DOF  normaliza&on  procedure  A  systema9c  procedure  for  6-­‐DOF  normaliza9on  is  found  by  defining  the  transforma9on  matrix:  

T!diag!1,1, 1, 1L ,1L ,

1L ", T!1 ! diag!1, 1,1,L,L,L"

Prime-system Bis-systemacceleration !" ! U2

L T!" " !" ! gT!" ""

velocity ! ! U T!" ! ! Lg T!""

position/attitude # $LT#" # $LT# ""

control forces/moments % ! 12 !U

2L2 T!1% " % ! "!g" T!1% ""

Generalized  accelera9on,  velocity,  posi9on  and  force  are  then  found  from:  

7.2.5 Nondimensional Maneuvering and Autopilot Models

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 29: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

29

12 !L

3T!2!TM !T!1" !" " 12 !L

3! UL "T!2!TD !T!1! ! " 12 !L

3! UL "2T!2!TG!T!1" # # $

7.2.5 Nondimensional Maneuvering and Autopilot Models Again  consider  the  nondimensional  MIMO  model:  

M!!" ! " D !! ! " G!# ! # $!

When  designing  vessel  simulators  and  gain-­‐scheduled  controllers  it  is  convenient  to  perform  the  numerical  integra9on  in  real  9me  using  dimensional  9me.    

It  is  convenient  to  use  the  nondimensional  hydrodynamic  coefficients  as  input  to  the  simulator/controller,  while  the  states  and  inputs  have  their  physical  dimensions.    

M! LU2T!1!" " D! 1

U T!1! " G!! 1L T

!1#" # 112 !U

2L2T$

!TM!T!1"!" " ! UL " !TD!T!1"! " ! UL "2!TG!T!1"# # 1

12!L

3 T2$

M   D   G  

6-­‐DOF  normaliza9on  procedure  

 

!" ! !! ! ! ! !

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 30: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

30

!"!T"2!TM!!T"1" !" " !"! gL T

"2!TD !!T"1" ! " !"! gL T

"2!TG !!T"1" # # $

7.2.5 Nondimensional Maneuvering Autopilot Models 6-­‐DOF  bis-­‐scaling  

M!!!" !! " D !!! !! " G!!# !! # $!!

!TM!!T!1"!" " gL !TD !!T!1"! " g

L !TG!!T!1"# # 1!"" T

2$

nondimensional  states/inputs  nondimensional  parameters  

dimensional  states/inputs  nondimensional  parameters  

Transforming  nondimensional  states/inputs  to  dimension:  

Resul9ng  model:  

M   D   G  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 31: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

31

7.2.5 Nondimensional Maneuvering and Autopilot Models Example  7.5  (Normaliza&on  of  Parameters  while  keeping  the  Actual  States)    Consider  the  autopilot  model:  

M! "!! # N!!u0! "! ! $ b!!!

!TM!T!1" "! # UL !TN

!!u0! "T!1"! $ U2L Tb

!!

T ! diag!1,1/L"

m11! Lm12!1L m21

! m22!v"r"

# UL

n11! Ln12!1L n21

! n22!vr

$ U2L

b1!1L b2

!!

! ! !"

Transforming  the  states  and  control  input  to  dimensional  quan99es,  yields:  

Component  form:  

!! " !v !, r!"!

actual  states  (dimension)  Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 32: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

32

7.2.5 Nondimensional Maneuvering and Autopilot Models Example  7.6  (Normaliza&on  Procedure  for  the  Nomoto  Time  and  Gain  Constants)      The  gain  and  9me  constants  in  Nomoto's  1st-­‐  and  2nd-­‐order  models  can  be  made  invariant  with  respect  to  L  and  U  by  defining:  

K! " !L/U"K, T ! " !U/L"T

!L/U"T! r" # r $ !U/L"K ! ! r! " !! UL "1T#r $ ! UL "

2 K#

T#!

!L/U"2 T1! T2! !!3" " !L/U"!T1! " T2! "!# " !$ % !U/L"K! " " K! T3! "$

This  representa9on  is  quite  useful  since  the  nondimensional  gain  and  9me  constants  will  typically  be  in  the  range:  0.5  <  Kʹ′  <  2  and  0.5  <  Tʹ′  <  2  for  most  ships.  An  extension  to  Nomoto's  2nd-­‐order  model  is  obtained  by  wri9ng:  

where  the  nondimensional  9me  and  gain  constants  are  defined  as:    

 Tiʹ′  =  Ti  (U/L)                      (i=1,2,3)    

 Kʹ′  =  (L/U)K  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 33: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

33 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.3.1 Nonlinear DP Model using Current Coefficients

For  low-­‐speed  applica9ons  such  as  DP,  current  forces  and  damping  can  be  described  by  three  area-­‐based  current  coefficients  CX,CY  and  CN.  These  can  be  experimentally  obtained  using  scale  models  in  wind  tunnels.      The  resul9ng  forces  are  measured  on  the  model  which  is  restrained  from  moving  (U = 0).  The  current  coefficients  can  also  be  related  to  the  surge  resistance,  cross-­‐flow  drag  and  the  Munk  moment.      For  a  ship  moving  at  forward  speed  U > 0,  quadra9c  damping  will  be  included  in  the  current  coefficients  if  rela9ve  speed  is  used.    

Xcurrent ! 12 !AFcCX!"c"Vc2

Ycurrent ! 12 !ALcCY!"c"Vc2

Ncurrent ! 12 !ALcLoaCN!"c"Vc2

#

#

#

Zero-­‐speed  representa9on  

Current  direc9on  (counter  clock-­‐wise  rota9on)    Frontal  projected  current  area  Lateral  projected  current  area  Length  over  all    

!cAFcALcLoa

!c ! " ! #c ! $ #

uc ! !Vc cos!!c"vc ! Vc sin!!c"

# #

Page 34: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

34 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.3.1 Nonlinear DP Model using Current Coefficients Forward  speed  representa9on  

The  forward  speed  representa9on  introduces  quadra9c  damping  using  the  concept  of  rela9ve  velocity.    This  is  NOT  the  case  for  the  zero-­‐speed  representa9on.  

Rela9ve  speed  and  direc9on  Xcurrent ! 12 !AFcCX!"rc"Vrc2

Ycurrent ! 12 !ALcCY!"rc"Vrc2

Ncurrent ! 12 !ALcLoaCN!"rc"Vrc2

#

#

#

Vrc ! urc2 " vrc2 ! !u ! uc"2 " !v ! vc"2

!rc ! !atan2!vrc,urc"

#

#

uc ! Vc cos!!c ! ""

vc ! Vc sin!!c ! ""

# #

Page 35: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

35 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.3.1 Nonlinear DP Model using Current Coefficients Rela9onship  between  current  coefficients  and  surge  resistance/cross-­‐flow  drag  

The  current  coefficients  can  be  related  to  the  surge  resistance  and  cross-­‐flow  drag  coefficients  by  assuming  low  speed  such  that  u ≈ 0 and  v ≈ 0.  This  is  a  good  assump9on  for  DP.    

ur|ur | ! "uc|uc |! Vc2 cos!!c"|cos!!c"|

vr|vr | ! "vc|vc |! "Vc2 sin!!c"|sin!!c"|

urvr ! ucvc! " 1

2 Vc2 sin!2!c"

#

#

#

Xcurrent ! 12 !AFcCX!"c"Vc2 :! X |u|u|ur |ur

Ycurrent ! 12 !ALcCY!"c"Vc2 :! Y|v|v |vr|vr

Ncurrent ! 12 !ALcLoaCN!"c"Vc2 :! N |v|v |vr|vr|"!Yv# ! Xu# "urvr

Munk moment

#

#

#

u ! v ! r ! 0

This  gives  the  following  analy9cal  expressions  for  the  area  based  current  coefficients  similar  to  Fal9nsen  (1990),  pp.  187-­‐188.  

CX!!c" ! !2 !X |u|u"AFc

cos!!c"|cos!!c"|

CY!!c" ! 2 !Y|v|v |"ALc

sin!!c"|sin!!c"|

CN!!c" ! 2"ALcLoa

!!N |v|v sin!!c"|sin!!c"|" 12 !Xu# ! Yv# "

A22!A11

sin!2!c""

#

#

#

Page 36: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

36

0 20 40 60 80 100 120 140 160 180 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Angle of attack g c relative bow - counter-clockwise rotation (deg)

C X C X = -C X,max *cos( g )*abs(cos( g )) C Y C Y = C Y,max *sin( g )*abs(sin( g )) C N C N = C N,max *sin(2* g )

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.3.1 Nonlinear DP Model using Current Coefficients Current  coefficients  

Experimental  current  coefficients  for  a  tanker  compared  with  analy9cal  formulae  

Page 37: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

37 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.3.1 Nonlinear DP Model using Current Coefficients Nonlinear  DP  model  based  on  current  coefficients  

Op9onal  quadra9c  damping  coefficient  used  to  counteract  the  destabilizing  Munk  moment  since  the  current  coefficients  do  not  include  damping  in  yaw  

!" ! R!!"#M#" " CRB!#"# " Dexp!!"Vrc"#r " d!Vrc,#rc" ! $ " $wind " $waves

# #

D !

!Xu 0 0

0 !Yv !Yr

0 !Nv !Nr

#

The  model  includes  an  op9onal  linear  damping  matrix  to  ensure  exponen9al  convergence  at  low  rela9ve  speed  

d!Vrc,!cr" !

! 12 "AFcCX!!rc"Vrc

2

! 12 "ALcCY!!rc"Vrc

2

! 12 "ALcLoaCN!!rc"Vrc

2 ! N |r|rr|r #

Page 38: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

38 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.3.2 Linearized DP Model Vessel-­‐parallel  coordinates  

This  defini9on  removes  the  rota9on  matrix  in  yaw  under  the  assump9on  that  the  yaw  rate  r  is  small  

!p ! R!!!"! #

!" p ! #

M#" " D# ! R!!!"b " $ " $wind " $wavesb" ! 0

#

# #

!" p ! R"!!!"! " R!!!"!" ! R!!!"!"

!" ! R!!"#

Note  that:    ü   The  kinema9cs  is  linear  ü GPS-­‐posi9on  measurements  h  must  be  transformed  to  vessel-­‐parallel  coordinates  using  

Linearized  DP  model  for  controller-­‐observer  design  

!p ! R!!!"! #

Page 39: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

39

7.4 Maneuvering Models including Roll (4 DOF) 4-­‐DOF  models  in  surge,  sway,  roll  and  yaw  The  speed  equa9on  can  be  decoupled  from  the  sway,  roll,  and  yaw  modes:        The  resul9ng  linear  model  takes  the  form:  

M !! " N!uo!! "G" # #

M !

m ! Yv" !mzg ! Yp" mxg ! Yr"!mzg ! Kv" Ix ! Kp" !Ixz ! Np"mxg ! Nv" !Ixz ! Np" Iz ! Nr"

N!uo! !

!Yv !Yp mu0 ! Yr!Kv !Kp !mzgu0 ! Kr!Nv !Np mxgu0 ! Nr

! ! !v,p, r"!

uo !constant

G !diag!0, WGMT, 0"

!! " p"! " cos! r ! r

# #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

! ! !E,!,""!

Page 40: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

40

7.4 Maneuvering Models including Roll (4 DOF)

3-­‐  and  4-­‐DOF  maneuvering  models    The  maneuvering  models  presented  in  Sec9on  7.3  only  describe  the  horizontal  mo9ons  (surge,  sway  and  yaw)  under  a  zero-­‐frequency  assump9on.  These  models  are  intended  for  the  design  and  simula9on  of  DP  systems,  heading  autopilots,  trajectory-­‐tracking  and  path-­‐following  control  systems.      Many  vessels,  however,  are  equipped  with  actuators  that  can  reduce  the  rolling  mo9on.  This  could  be  an9-­‐rolling  tanks,  rudders  and  fin  stabilizers.  In  order  to  design  a  control  system  for  roll  damping,  it  is  necessary  to  augment  the  roll  equa9on  to  the  horizontal  plane  model.  Inclusion  of  roll  means  that  the  restoring  moment  due  to  buoyancy  and  gravity  must  be  included.      The  resul9ng  model  is  a  4-­‐DOF  maneuvering  model  (surge,  sway,  roll  and  yaw)  that  includes  the  rolling  mo9on  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 41: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

41

7.4 Maneuvering Models including Roll (4 DOF) State-­‐space  model  The  linear  model  can  be  wrihen  in  state-­‐space  model  according  to:  

x! !

a11 a12 a13 a14 0

a21 a22 a23 a24 0

a31 a32 a33 a34 0

0 1 0 0 0

0 0 1 0 0

x "

b11 b12 ! b1r

b21 b22 ! b2r

b31 b32 ! b3r

0 0 ! 0

0 0 ! 0

u

a11 a12 a13

a21 a22 a23

a31 a32 a33

! !M!1N!uo!

" a14 "

" a24 "

" a34 "

! !M!1G

#

#

A B where  the  matrix  elements  are:  

x ! !v,p, r,!,""!

bij are given by B ! M!1TK

! ! TKu

Roll  and  yaw  outputs:  

! ! !0, 0, 0, 1,0"x" ! !0, 0, 0, 0,1"x

# #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 42: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

42

7.4 Maneuvering Models including Roll (4 DOF) Decomposi9ons  in  roll  and  sway-­‐yaw  subsystems  The  state  variables  associated  with  steering  and  roll  can  be  separated:  

v!r!!!

p!

"!

"

a11 a13 0 a12 a14a31 a33 0 a32 a340 1 0 0 0a21 a23 0 a22 a240 0 0 1 0

vr!

p"

#

b11 b12 ! b1rb31 b32 ! b3r0 0 ! 0b21 b22 ! b2r0 0 ! 0

u

!x!!x"

"A!! A!"

A"! A""

x!x"

#B!

B"u

p!

!!"

a22 a24

1 0

p

!#

b21 b22 ! b2r

0 0 ! 0u

v!

r!

!!

"

a11 a13 0

a31 a33 0

0 1 0

v

r

!

#

b11 b12 ! b1r

b31 b32 ! b3r

0 0 ! 0

u

x! ! !v, r,!"!

x! ! !p,!"!

If  the  coupling  matrices  are  small,  we  get:  

decoupled  steering  model  (sway-­‐yaw)  

decoupled  roll  model  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 43: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

43

7.4 Maneuvering Models including Roll (4 DOF) Transfer  func9ons  for  steering  and  rudder-­‐roll  damping  The  transfer  func9ons  for  the  decoupled  models  are:  

Plot  showing  decoupled  models  and  total  model  

!" !s" !

b2s2"b1s"b0s4"a3s3"a2s2"a1s"a0

! Kroll #roll2 !1"T5s"

!1"T4s"!s2"2$#rolls"#roll

2 "

!" !s" !

c3s3"c2s2"c1s"c0s!s4"a3s3"a2s2"a1s"a0"

! Kyaw !1"T3s"s!1"T1s"!1"T2s"

This  is  a  rough  approxima9on  since  all  interac9ons  are  neglected.      In  par9cular,  the  roll  mode  is  inaccurate  as  seen  from  the  plots.  

Matlab  MSS  toolbox:    ExRRD1.m      Lcontainer.m  

Container  ship:  Son  and  Nomoto  (1981)  Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 44: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

44

7.4 Maneuvering Models including Roll (4 DOF)

!"!s" ! 0. 0032!s ! 0. 036"!s " 0. 077"

!s " 0. 026"!s " 0. 116"!s2"0. 136s " 0. 036"

" 0. 083!1 " 49. 1s"!1 " 31. 5s"!s2"0. 134s " 0. 033"

#

!"!s" ! 0. 0024!s " 0. 0436"!s2"0. 162s " 0. 035"

s!s " 0. 0261"!s " 0. 116"!s2"0. 136s " 0. 036"

! 0. 032!1 " 16. 9s"s!1 " 24. 0s"!1 " 9. 2s" #

Length:  L  =  175  (m)    Displacement:  21,222  (m³)  Service  speed  u0  =  7.0  (m/s)  

!roll ! 0.189 (rad/s)

! ! 0. 36

right-­‐half-­‐plane  zero:   z ! 0. 036 (rad/s)

non-­‐minimum  phase  property  

Matlab  MSS  toolbox:  ExRRD3.m  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 45: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

45

7.4.1 The Nonlinear Model of Son and Nomoto High-­‐speed  container  ship  given  by:  

!m ! mx"u" ! !m ! my"vr # X ! !x!m ! my"v" ! !m ! mx"ur ! my"yr" ! myl yp" # Y ! !y

!Ix ! Jx"p" ! mylyv" ! mxl xur # K ! WGMT# ! !k!Iz ! Jz"r" ! my" yv" # N ! xgY ! !n

# # # #

X ! X!u" " !1 ! t"T " Xvrvr " Xvvv2 " Xrrr2 " X!!!2

" X" sin" " Xext

Y ! Yvv " Yrr " Y!! " Ypp " Yvvvv3 " Yrrrr3 " Yvvrv2r " Yvrrvr2

" Yvv!v2! " Yv!!v!2 " Yrr!r2! " Yr!!r!2 " Y" cos" " Yext

K ! Kvv " Krr " K!! " Kpp " Kvvvv3 " Krrrr3 " Kvvrv2r " Kvrrvr2

" Kvv!v2! " Kv!!v!2 " Krr!r2! " Kr!!r!2 " K" cos" " Kext

N ! Nvv " Nrr " N!! " Npp " Nvvvv3 " Nrrrr3 " Nvvrv2r " Nvrrvr2

" Nvv!v2! " Nv!!v!2 " Nrr!r2! " Nr!!r!2 " N" cos" " Next

#

#

#

#

Matlab  MSS  toolbox:  container.m    (nonlinear  model)  Lcontainer.m  (linear  model)  

[xdot,U]  =  container(x,ui)  [xdot,U]  =  Lcontainer(x,ui,U0)  

3rd-­‐order  Taylor-­‐series  expansion  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 46: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

46

7.4.2 The Nonlinear Model of Blanke and Christensen An  alterna9ve  model  formula9on  describing  the  steering  and  roll  mo9ons  of  ships  has  been  proposed  by  Blanke  and  Christensen  (1986):  

m ! Yv! !mzg!Yp! mxg!Yr! 0 0

!mzg!Kv! Ix!Kp! 0 0 0

mxg!Nv! 0 Iz!Nr! 0 0

0 0 0 1 0

0 0 0 0 1

v!

p!

r!

!!

"!

"

Yuv |u| Y|u|p |u| !mu " Yuru Yuu!u2 0

K|u|v |u| Kupu " Kp Kuru WGMT"Kuu!u2 0

Nuvu 0 N|u|r|u|!mxgu N|u|u! |u|u 0

0 1 0 0 0

0 0 1 0 0

v

p

r

!

"

#

Yext

Kext

Next

0

0

" !

#

#

2nd-­‐order  modulus  model  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 47: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

47

7.4.3 Nonlinear Model based on Low- Aspect-Ratio Wing Theory This  approach  is  well  suited  to  derive  a  physical  model  structure  which  can  best  describe  the  nonlinear  damping  forces  ac9ng  on  a  marine  cra^.  The  parameters  of  the  model  must,  however,  be  found  by  curve  fiHng  the  simulated  response  to  9me-­‐series  for  instance  by  using  system  iden9fica9on.  

Li^  and  drag  due  to  low-­‐  aspect-­‐ra9o  wing  theory    

XLD ! XuuL u2 " XuuuL u3 " XvvL v2 " XrrL r2 " XrvL rv " XuvvL uv2

" XrvuL rvu " XurrL ur2 " Xvv!!L v2!2 " Xvr!!L vr!2 " Xrr!!L r2!2

#XLD

YLD ! YuvL uv " YurL ur " YuurL u2r " YuuvL u2v " YvvvL v3 " YrrrL r3

" YrrvL r2v " YvvrL v2r " Yuv!!L uv!2 " Yur!!L ur!2

#YLD

KLD ! YLDzcp! KuvL uv " KurL ur " KuurL u2r " KuuvL u2v " KvvvL v3

" KrrrL r3 " KrrvL r2v " KvvrL v2r " Kuv!!L uv!2 " Kur!!L ur!2

NLD ! YLDxcp! NuvL uv " NurL ur " NuurL u2r " NuuvL u2v " NvvvL v3

" NrrrL r3 " NrrvL r2v " NvvrL v2r " Nuv!!L uv!2 " Nur!!L ur!2

#

#

#

#

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 48: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

48

D!!" !

!XuuL u ! Xuuu

L u2

!XrvuL rv

!XvvL v ! Xrv

L r

!XuvvL uv ! Xvv!!

L v!2

!Xvr!!L r!2

0 !XrrL r ! Xurr

L ur ! Xrr!!L r!2

!Yuv!!L v!2!Yur!!

L r!2!YuvL u ! Yuuv

L u2!YvvvL v2

!YrrvL r2!Y |v |v |v|!Y |r|v |r|

0!YurL u ! Yuur

L u2!YrrrL r2

!YvvrL v2!Y |v |r|v|!Y |r|r|r|

!Kuv!!L v!2!Kur!!

L r!2!KuvL u ! Kuuv

L u2!KvvvL v2

!KrrvL r2!K|v |v |v|!K|r|v |r|

!Kp!Kpppp2!KurL u ! Kuur

L u2!KrrrL r2

!KvvrL v2!K|v |r|v|!K|r|r|r|

!Nuv!!L v!2!Nur!!

L r!2!NuvL u ! Nuuv

L u2!NvvvL v2

!NrrvL r2!N|v |v |v|!N|r|v |r|

0!NurL u ! Nuur

L u2!NrrrL r2

!NvvrL v2!N|v |r|v|!N|r|r|r|

7.4.3 Nonlinear Model based on Low- Aspect-Ratio Wing Theory In  addi9on  to  the  low-­‐aspect-­‐ra9o  li^  and  drag  components  it  is  necessary  to  include  cross-­‐flow  drag  and  viscous  roll  damping.    

Resul9ng  nonlinear  damping  matrix  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 49: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

49

7.4.3 Nonlinear Model based on Low- Aspect-Ratio Wing Theory

Nonlinear  4-­‐DOF  maneuvering  model  (surge,  sway,  roll  and  yaw)  

M!! " CRB!!"! " CA!!"! " D!!"! " G" # # " #wind " #wave #

M !

m ! Xu" 0 0 0

0 m ! Yv" !mzg!Yp" mxg!Yr"

0 !mzg!Kv" Ix!Kp" 0

0 mxg!Nv" 0 Iz!Nr"

,CRB!!" !

0 0 mzgr !m!xgr # v"

0 0 0 mu

!mzgr 0 0 0

m!xgr # v" !mu 0 0

CA!!" !

0 0 0 Yv" v

0 0 0 !Xu" u

0 0 0 Yv" v

!Yv" v Xu" u !Yv" v 0

,G !

0 0 0 0

0 0 0 0

0 0 !K! 0

0 0 0 0

#

#

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 50: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

50 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.5 Equations of Motion (6 DOF)  Ship  models  are  usually  reduced  order  models  for  control  of  the  horizontal  plane  mo9ons  (surge,  sway  and  yaw)  in  combina9on  with  roll  if  roll  damping  is  an  issue.  Semi-­‐submersible  control  system  are  also  designed  for  the  stabiliza9on  of  the  horizontal  plane  mo9ons  but  for  these  type  of  vessels  it  is  also  of  interest  to  simulate  the  heave,  roll  and  pitch  mo9ons  during  cri9cal  opera9ons  as  drilling.      In  this  sec9on  we  will  discuss  6-­‐DOF  models  (surge,  sway,  heave,  roll,  pitch  and  yaw)  which  are  useful  for  predic9on  and  simula9on  of  coupled  mo9ons.      A  6-­‐DOF  model  can  be  used  in  an  accurate  simula9on  model  of  your  system  or  even  in  a  model-­‐based  control  system  if  all  DOFs  are  actuated.      Some  underwater  vehicles  have  actua9on  in  all  DOF.  

Copyright © Bjarne Stenberg/NTNU

Page 51: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

51

7.5.1 Nonlinear 6-DOF Vector Representations in BODY and NED Equa9ons  of  mo9on  expressed  in    BODY  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

M ! MRB "MA

C!!" ! CRB!!" " CA!!"D!!" ! D " Dn!!"

# # #

where  different  representa9ons  for  Jk(η) can  be  used:      Euler  angles:  Unit  quaternions:    

!! " Jk!!"" #

M !! " C!!"! " D!!"! " g!"" " go # # " #wind " #wave #

J!!!"Jq!!"

! :! !N,E,D,!,",#"!

! :! !N,E,D,!,"1,"1,"1"!

Page 52: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

52

7.5.1 Nonlinear 6-DOF Vector Representations in BODY and NED Equa9ons  of  mo9on  expressed  in  NED  using  Euler  angles  Kinema9c  transforma9on  using:        Euler  angles  are  singular  at                                        ! ! !"/2

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

M!!!"!! " C!!",!" #! " D!!",!" #! " g!!!" " go! $ #! " #wind! " #waves! #

J!!"" !Rbn!!nb" 03!303!3 T"!!nb"

!! " J#!!"" # " " J#!1!!" !!!# " J#!!" !" $ !J#!!"" # !" " J#!1!!"$%! ! !J#!!"J#!1!!" !!%

! :! !N,E,D,!,",#"!

M!!!" ! J""!!!"MJ""1!!"

C!!",!" ! J""!!!"#C!"" "MJ""1!!" #J"!!"$J""1!!"

D!!",!" ! J""!!!"D!""J""1!!"

g!!!" $ go!!!" ! J""!!!"#g!!" $ go $

#! $ #wind! $ #wave

! ! J""!!!"!# $ #wind $ #wave" #

Page 53: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

53

7.5.1 Nonlinear 6-DOF Vector Representations in BODY and NED Equa9ons  of  mo9on  expressed  in  NED  using  quaternions  Kinema9c  transforma9on  using:        The  unit  quaternions  are  nonsingular                                                                                              Pseudoinverse  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

M!!!"!! " C!!",!" #! " D!!",!" #! " g!!!" " go! $ #! " #wind! " #waves! #

Jq!!" !Rbn!q" 03!304!3 Tq!q"

! :! !N,E,D,!,"1,"1,"1"!

!! " Jq!!"" # " " Jq!!!" !!!# " Jq!!" !" # !Jq!!"" # !" " Jq!!!"$$! ! !Jq!!"Jq!!!" !!%

Tq!!q" ! !Tq"!q"Tq!q""!1Tq"!q"

! 4Tq"!q" #

M!!!" ! Jq! !!""MJq! !!"C!!",!" ! Jq! !!""#C!"" "MJq! !!" "Jq!!"$Jq! !!"D!!",!" ! Jq! !!""D!""Jq! !!"

g!!!" # go!!!" ! Jq! !!""#g!!" # go $

#! # #wind! # #wave

! ! Jq! !!""!# # #wind # #wave" #

Page 54: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

54

M !

m ! Xu" !Xv" !Xw"

!Xv" m ! Yv" !Yw"

!Xw" !Yw" m ! Zw"

!Xp" !mzg!Yp" myg!Zp"

mzg!Xq" !Yq" !mxg!Zq"

!myg!Xr" mxg!Yr" !Zr"

!Xp" mzg!Xq" !myg!Xr"

!mzg!Yp" !Yq" mxg!Yr"

myg!Zp" !mxg!Zq" !Zr"

Ix!Kp" !Ixy!Kq" !Izx!Kr"

!Ixy!Kq" Iy!Mq" !Iyz!Mr"

!Izx!Kr" !Iyz!Mr" I z!Nr"

Property    7.1  (System  Iner&a  Matrix)  For  a  rigid  body  the  system  iner^a  matrix  is  posi9ve  definite  

    M ! MRB "MA # 0

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.5.1 Nonlinear 6-DOF Vector Representations in BODY and NED

Property  7.2  (Coriolis  and  Centripetal  Matrix):  For  a  rigid  body  moving  through  an  ideal  fluid  the  Coriolis  and  centripetal  matrix  can  always  be  parameterized  such  that  it  is  skew-­‐symmetric:  

C!!" ! !C!!!", "! # "6

Page 55: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

55

7.5.1 Nonlinear 6-DOF Vector Representations in BODY and NED

(1)M!!!" ! M!!!"! " 0 " ! # "6(2) s! #M!

!!" $ 2C!!",!" s ! 0 " s # "6, " # "6, ! # "6

(3) D!!",!" " 0 " " # "6, ! # "6

Equa9ons  of  mo9on  expressed  in  NED  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

M!!!"!! " C!!",!" #! " D!!",!" #! " g!!!" " go! $ #! " #wind! " #waves! #

since  M = MT > 0 and  M  =  0.        It  should  be  noted  that  C∗(ν,η)  will  not  be  skew-­‐symmetrical  although  C(ν) is  skew-­‐symmetrical.  

.

Page 56: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

56

V! " !!!" ! C"!#! ! D"!#! ! g"## # Jk!"##Kp#$ #

V! " !!M!" # #!Kp#"

" !!M!" # #!KpJk!#"!

" !!#M!" # Jk!!#"Kp#$ #

Example  7.8.1  (Lyapunov  Analysis  exploi&ng  MIMO  Model  Proper&es)      

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.5.1 Nonlinear 6-DOF Vector Representations in BODY and NED

A  Lyapunov  func9on  candidate  can  be  based  on  kine9c  and  poten9al  energy  

V ! 12 !

!M! " 12 "!Kp" #

M! ! 0

M ! M! " 0 Kp ! Kp! " 0

M!" ! C!!"! ! D!!"! ! g!#" " $

Kd ! 0V! " !!!!Kd # D"!#$!" 0 #

GAS follows from Krasowskii-LaSalle's theorem if Jk(η) is nonsingular.

Nonlinear  PD-­‐controller  

!" ! Jk!!"#

! ! g!"" ! Kd# ! Jk!!""Kp" #

!" ! Jk!!"#

M#" " C!#"# " D!#"# " g!!" ! $

# #

Page 57: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

57

7.5.2 Symmetry Considerations of the System Inertia Matrix

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

(iii)  yz-­‐plane  (fore/a^)  symmetry)  

M !

m11 0 m13 0 m15 0

0 m22 0 m24 0 m26

m31 0 m33 0 m35 0

0 m42 0 m44 0 m46

m51 0 m53 0 m55 0

0 m62 0 m64 0 m66

M !

m11 m12 0 0 0 m16

m21 m22 0 0 0 m26

0 0 m33 m34 m35 0

0 0 m43 m44 m45 0

0 0 m53 m54 m55 0

m61 m62 0 0 0 m66

(i)  xy-­‐plane  (bohom/top  )  symmetry) (ii)  xz-­‐plane  (port/starboard)  symmetry  

(iv)  xz-­‐  and  yz-­‐planes    (port/starboard  and  fore/a^)  symmetries

M !

m11 0 0 0 m15 m16

0 m22 m23 m24 0 0

0 m32 m33 m34 0 0

0 m42 m43 m44 0 0

m51 0 0 0 m55 m56

m61 0 0 0 m65 m66

M !

m11 0 0 0 m15 0

0 m22 0 m24 0 0

0 0 m33 0 0 0

0 m42 0 m44 0 0

m51 0 0 0 m55 0

0 0 0 0 0 m66

Page 58: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

58

Assump&on  7.1  (Small  Roll  and  Pitch  Angles)    The  roll  and  pitch  angles:  

   These  are  good  assump9ons  for  vessels  where  the  pitch  and  roll  mo9ons  are  limited-­‐that  is,  

highly  metacentric  stable  cra^      When  deriving  the  linearized  equa9ons  of  mo9on  it  is  convenient  to  introduce  a  vessel  

parallel  coordinate  system  obtained  by  rota9ng  the  body  axes  an  angle ψ about  the  z-­‐axis  at  each  9me  step.    

 This  implies  that:      where  

7.5.3 Linearized Equations of Motion (Vessel-Parallel Coordinates)

!," are small

!" ! J!!!#!!"!0! P"#!#

P!!! !R!!! 03"303"3 I3"3

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 59: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

59

Defini&on  7.2  (Vessel-­‐Parallel  Coordinate  System)    The  vessel  parallel  coordinate  system  is  defined  as:  

   

 where                is  the  NED  posi9on/aHtude  expressed  in  BODY  coordinates  and  P  is  given  by        

   No9ce  that  PTP  =  I6×6.  

!p ! P!!!"!

!p

P!!! !R!!! 03"303"3 I3"3

7.5.3 Linearized Equations of Motion (Vessel-Parallel Coordinates)

NED  

BODY  !p!

xb

yb xn

yn Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 60: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

60

Low-­‐speed  applica9ons  (sta9onkeeping)  Vessel-­‐parallel  (VP)  coordinates  implies:  

7.5.3 Linearized Equations of Motion (Vessel-Parallel Coordinates)

!" p ! P" !!!"! # P!!!"!"

! P" !!!"P!!"!p#P!!!"P!!"$

! rS!p#$ #

where                              and  r ! !"

S !

0 1 0 0 0 0

!1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

For  low-­‐speed  applica9ons  r ≈ 0 and  

!" p ! #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) Copyright © Bjarne Stenberg/NTNU

Page 61: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

61

7.5.3 Linearized Equations of Motion (Vessel-Parallel Coordinates) The  gravita9onal  and  buoyancy  forces  can  also  be  expressed  in  terms  of  VP  coordinates.    

For  small  roll  and  pitch  angles:      No9ce  that  this  formula  confirms  that  the  restoring  forces  of  a  leveled  vessel φ = θ = 0 is  

independent  of  the  yaw  angle  ψ.      

g!!"!!"!0! P!!#"G! "P!!#"GP!#"

G!p ! G!p

For  a  neutrally  buoyant  submersible  (W = B)  with  xg = xb and  yg = yb we  have:      For  a  surface  vessel  G  is  defined  as:  

G !diag!0, 0,0, 0, "zg ! zb#W, "zg ! zb#W, 0!

G !

02!2 02!30

0

03!2 Gr0

0

0 0 0 0 0 0

, Gr !!Zz 0 !Z"

0 !K# 0

!Mz 0 !M"

P!!!"GP!!" ! GNo9ce  that:  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 62: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

62

Low-­‐speed  maneuvering  and  DP:  ν ≈ 0  implies  that  the  nonlinear  Coriolis-­‐centripetal,  damping,  restoring,  and  buoyancy  forces  and  moments  can  be  linearized  about  ν = 0            and  φ = θ = 0.  Since  C(0) =   0  and  Dn(0) = 0  it  makes  sense  to  approximate:  

!" p ! #

M#" $ D# $ G!p ! % $ w

#

#

7.5.3 Linearized Equations of Motion (Vessel-Parallel Coordinates)

The  resul9ng  state-­‐space  model  becomes:  

!x " Ax # Bu # Ew

A !0 I

!M!1G !M!1D, B !

0M!1

, E !0M!1

x ! !!p!,"!!!, u # $

which  is  the  linear  ^me  invariant  (LTI)  state-­‐space  model  used  in  DP.  

! " P!!!!p

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

M!" ! C!!"!0!#D ! Dn!!"$!

D!!%g!#"

G#p

! go " $ ! $wind ! $wavesw

#

Page 63: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

63

7.5.3 Linearized Equations of Motion (Vessel-Parallel Coordinates) Vessels  in  transit  (cruise  condi9on):  For  vessels  in  transit  the  cruise  speed  is  assumed  to  sa9sfy:    This  suggests  that      where    

u ! uo

N!uo!! !!" "C!""" #D!"""#|"!"o

!o ! !uo, 0, 0, 0, 0, 0"!

!" p ! "# # #o

M"#" $ N!uo!"# $ G!p ! % $ w

#

#

!! " ! ! !o

Linear-­‐parameter-­‐varying  (LPV)  model:  

!x " A!uo"x # Bu # Ew ! F"o

A!uo" !0 I

!M!1G !M!1N!uo!, B !

0M!1

, E !0M!1

, F !I0

x ! !!p!,""!!!

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 64: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

64

7.5.4 Transforming the Equations of Motion to a Different Point

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

P

COCG

rg

rp

When  deriving  the  nonlinear  equa9ons  of  mo9on  it  is  convenient  to  transform  iner9a,  damping,  gravita9onal,  and  buoyancy  forces  between  different  points  in  {b}  to  exploit  structural  proper9es  of  the  model.      The  rigid-­‐body  transla9onal  and  rota9onal  parts  of  the  system  iner9a  matrix  is  decoupled  if  the  coordinate  system  is  located  in  the  CG  while  it  is  common  to  express  hydrodynamic  added  mass  and  damping  in  CF  alterna9vely  CO.      System  transforma9on  matrix    -­‐  transforms  the  generalized  veloci9es,  accelera9ons,  and  forces  between  two  points  in  {b}.

vp/nb ! vb/nb " !b/nb ! rp/nb

! vb/nb ! S!rpb"!b/nb

! vb/nb " S!!rpb"!b/nb #

Page 65: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

65

7.5.4 Transforming the Equations of Motion to a Different Point

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

P

COCG

rg

rp

System  transforma9on  matrix

fbb

mbb

!fp

b

rpb ! fp

b " mpb

!I3!3 03!3S!rp

b" I3!3

fpb

mpb

#

! ! H!!rpb"!p

#

#

H!rpb" !

I3!3 S!!rpb"

03!3 I3!3, H!1!rp

b" !I3!3 S!rp

b"

03!3 I3!3 #

vp/nb

!b/nb

! H!rpb"

vb/nb

!b/nb

"

"p ! H!rpb""

#

#

Page 66: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

66

7.5.4 Transforming the Equations of Motion to a Different Point

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Equa9ons  of  mo9on  about  CO

M !! " C!!"! " D!!"! " g!"" # # #

Mp ! H!!!rpb"MH!1!rp

b"

Cp!!" ! H!!!rpb"C!!"H!1!rp

b"

Dp!!" ! H!!!rpb"D!!"H!1!rp

b"

gp!"" ! H!!!rp

b"g!""

#

#

#

#

!p ! H!rpb"! ! ! H!1!rp

b"!p

Equa9ons  of  mo9on  about  P

M ! H!!rpb"MpH!rp

b"

C!!" ! H!!rpb"Cp!!"H!rp

b"

D!!" ! H!!rpb"Dp!!"H!rp

b"

g!"" ! H!!rpb"gp!""

#

#

#

#

H!!!rpb"MH!1!rpb"Mp

!!p " H!!!rpb"C!!"H!1!rpb"Cp!!"

!p

" H!!!rpb"D!!"H!1!rpb"Dp!!"

!p " H!!!rpb"g!""gp!""

# H!!!rpb"##p

#

Page 67: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

67

7.5.5 6-DOF Models for AUVs and ROVs

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

!! " J!!"" #

M !! " C!!"! " D!!"! " g!"" # # # M !

m ! Xu" 0 !Xw"

0 m ! Yv" 0

!Xw" 0 m ! Zw"

0 !mzg!Yp" 0

mzg!Xq" 0 !mxg!Zq"

0 mxg!Yr" 0

0 mzg!Xq" 0

!mzg!Yp" 0 mxg!Yr"

0 !mxg!Zq" 0

Ix!Kp" 0 !Izx!Kr"

0 Iy!Mq" 0

!Izx!Kr" 0 Iz!Nr"

D!!" ! !diag#Xu,Yv ,Zw,Kp,Mq,Nr$! diag#X |u|u|u|,Y|vv| |v|,Z |w|w|w|,K |p|p|p|,M |q|q|q|,N |r|r|r|$

#

Approximate  model  for  noncoupled  mo9ons  

d!Vrc,!cr" !

12 "AFcCX!!rc"Vrc

2

12 "ALcCY!!rc"Vrc

2

12 "AFcCZ!!rc"Vrc

2

12 "ALcHLcCK!!rc"Vrc

2

12 "AFcHFcCM!!rc"Vrc

2

12 "ALcLoaCN!!rc"Vrc

2

3DOF!

12 "AFcCX!!rc"Vrc

2

12 "ALcCY!!rc"Vrc

2

000

12 "ALcLoaCN!!rc"Vrc

2

#

Dn!!"! !

|!|!Dn1!|!|!Dn2!|!|!Dn3!|!|!Dn4!|!|!Dn5!|!|!Dn6!

# Alterna9ve  representa9on  using  current  coefficients  

Page 68: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

68

7.5.6 Longitudinal and Lateral Models for Submarines The  6-­‐DOF  equa9ons  of  mo9on  can  in  many  cases  be  divided  into  two  noninterac9ng  (or  lightly  interac9ng)  subsystems:  

ü  Longitudinal  subsystem:  states  u,w,q  and  θ ü  Lateral  subsystem:  states  v,p,r  and  ψ    

 This  decomposi9on  is  good  for  slender  bodies  (large  length/width  ra9o).  Typical  applica9ons  are  aircrac,  missiles,  and  submarines.      

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 69: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

69

yz-­‐plane  of  symmetry    (fore/a^  symmetry)    

7.5.6 Longitudinal and Lateral Models for Submarines

M !

m11 m12 0 0 0 m16

m21 m22 0 0 0 m26

0 0 m33 m34 m35 0

0 0 m43 m44 m45 0

0 0 m53 m54 m55 0

m61 m62 0 0 0 m66

M !

m11 0 m13 0 m15 0

0 m22 0 m24 0 m26

m31 0 m33 0 m35 0

0 m42 0 m44 0 m46

m51 0 m53 0 m55 0

0 m62 0 m64 0 m66

M !

m11 0 0 0 m15 0

0 m22 0 m24 0 0

0 0 m33 0 0 0

0 m42 0 m44 0 0

m51 0 0 0 m55 0

0 0 0 0 0 m66

xy-­‐plane  of  symmetry    (boeom/top  symmetry):  

xz-­‐plane  of  symmetry  (port/starboard  symmetry)  

M ! diag!m11,m22,m33,m44,m55,m66"

xz-­‐,  yz-­‐  and  xy-­‐planes  of  symmetry  (port/starboard,  fore/a^  and  bohom/top  symmetries).  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 70: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

70

M !

m11 0 m13 0 m15 0

0 m22 0 m24 0 m26

m31 0 m33 0 m35 0

0 m42 0 m44 0 m46

m51 0 m53 0 m55 0

0 m62 0 m64 0 m66

Starboard-­‐port  symmetry  implies  the  following  zero  elements:                  The  longitudinal  and  lateral  submatrices  are:  

7.5.6 Longitudinal and Lateral Models for Submarines

Mlong !

m11 m13 m15

m31 m33 m35

m51 m53 m55

, M lat !

m22 m24 m26

m42 m44 m46

m62 m64 m66

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 71: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

71

Longitudinal  subsystem  (DOFs  1,  3,  5)    

         

7.5.6 Longitudinal and Lateral Models for Submarines

Rbn!!" !

c!c" !s!c# " c!s"s# s!s# " c!c#s"s!c" c!c# " s#s"s! !c!s# " s"s!c#!s" c"s# c"c#

T!!!" "

1 s!t" c!t"0 c! !s!0 s!/c" c!/c"

J!!" !Rbn!"" 03!303!3 T"!""

d!

!!"

cos! 00 1

wq

#! sin!0

u

v,p, r,! are small

not  controlling  the  N-­‐posi9on  using  speed  control  instead  

Resul9ng  kinema9c  equa9on:  

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 72: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

72

Longitudinal  subsystem  (DOFs  1,  3,  5)  For  simplicity,  it  is  assumed  that  higher  order  damping  can  be  neglected-­‐that  is,                                          .  Coriolis  is,  however,  modeled  by  assuming  that                              and  that    2nd-­‐order  terms  in  v,w,p,q  and  r  are  small.  Hence,  DOFs  1,  3,  5  gives:                        Assuming  a  diagonal  MA  gives:  

7.5.6 Longitudinal and Lateral Models for Submarines

Dn!!" ! 0 u ! 0

CRB!!"! !0 0 0

0 0 "mu

0 0 mxgu

u

w

q

CRB!!"! !

m!ygq " zgr"p ! m!xgq ! w"q ! m!xgr " v"r

!m!zgp ! v"p ! m!zgq " u"q " m!xgp " ygq"r

m!xgq ! w"u ! m!zgr " xgp"v " m!zgq " u"w "!Iyzq " Ixzp ! Izr"p " !!Ixzr ! Ixyq " Ixp"r

Collec9ng  terms  in  u,w,  and  q,  gives:  

CRB!!" ! "CRB! !!"

The  skew-­‐symmetric  property  is  destroyed  for  the  decoupled  model:  

CA!!"! !

!Zw" wq # Yv" vr

!Yv" vp # Xu" uq

!Zw" !Xu" "uw # !Nr"!Kp" "pr

"0 0 0

0 0 Xu" u

0 !Zw" !Xu" "u 0

u

w

q

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 73: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

73

Longitudinal  subsystem  (DOFs  1,  3,  5)  The  restoring  forces  with  W  =  B  and  xg  =  xb:            

7.5.6 Longitudinal and Lateral Models for Submarines

g!!" !

!W ! B" sin!! !W ! B" cos! sin"! !W ! B" cos! cos"! !ygW ! ybB" cos ! cos" " !zgW ! zbB" cos! sin"

!zgW ! zbB" sin ! " !xgW ! xbB" cos! cos"

! !xgW ! xbB" cos ! sin" ! !ygW ! ybB" sin!

g!!! !

00

WBGz sin !

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 74: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

74

7.5.6 Longitudinal and Lateral Models for Submarines Longitudinal  subsystem  (DOFs  1,  3,  5)  

m ! Xu! !Xw! mzg ! Xq!!Xw! m ! Zw! !mxg ! Zq!

mzg ! Xq! !mxg ! Zq! Iy ! Mq!

u!w!q!

"

!Xu !Xw !Xq!Zu !Zw !Zq!Mu !Mw !Mq

uwq

"

0 0 00 0 !!m ! Xu! "u0 !Zw! ! Xu! "u mxgu

uwq

"

00

WBGz sin!#

"1"3"5

m ! Zw! !mxg!Zq!

!mxg!Zq! Iy!Mq!

w!

q!"

!Zw !Zq

!Mw !Mq

w

q

"0 !!m ! Xu! "uo

!Zw! !Xu! "uo mxguo

w

q"

0

BGzWsin !#

"3

"5 #

u ! uo ! constant

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 75: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

75

7.5.6 Longitudinal and Lateral Models for Submarines Longitudinal  subsystem  (DOFs  1,  3,  5)  

Linear  pitch  dynamics  (decoupled):          where  the  natural  frequency  and  period  are:  

!Iy !Mq! "!" !Mq!! # BGzW! $ "5

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

!pitch !WBGzIy ! Mq"

, Tpitch ! 2"!pitch

#

Page 76: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

76

Lateral  subsystem  (DOFs  2,  4,  6)    

         

7.5.6 Longitudinal and Lateral Models for Submarines

Rbn!!" !

c!c" !s!c# " c!s"s# s!s# " c!c#s"s!c" c!c# " s#s"s! !c!s# " s"s!c#!s" c"s# c"c#

T!!!" "

1 s!t" c!t"0 c! !s!0 s!/c" c!/c"

J!!" !Rbn!"" 03!303!3 T"!""

not  controlling  the  E-­‐posi9on  using  heading  control  instead  

Resul9ng  kinema9c  equa9on:  

!! " p"! " r

# #

u,w, p, r, ! and " are small

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 77: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

77

Lateral  subsystem  (DOFs  2,  4,  6)  Again  it  is  assumed  that  higher  order  velocity  terms  can  be  neglected  so  that                                            .  Hence:                        Assuming  a  diagonal  MA  gives:    

7.5.6 Longitudinal and Lateral Models for Submarines

Dn!!" ! 0

Collec9ng  terms  in  v,p  and  r,  gives:  

CRB!!" ! "CRB! !!"

The  skew-­‐symmetric  property  is  destroyed  for  the  decoupled  model:  

CRB!!"! !

!m!ygp " w"p " m!zgr " xgp"q ! m!ygr ! u"r

!m!ygq " zgr"u " m!ygp " w"v " m!zgp ! v"w " !!Iyzq ! Ixzp " Izr"q " !Iyzr " Ixyp ! Iyq"r

m!xgr " v"u " m!ygr ! u"v ! m!xgp " ygq"w " !!Iyzr ! Ixyp " Iyq"p " !Ixzr " Ixyq ! Ixp"q

CRB!!"! !0 0 muo

0 0 0

0 0 mxguo

v

p

r

CA!!"! !

Zw" wp ! Xu" ur

!Yv"!Zw" "vw # !Mq" !Nr" "qr

!Xu"!Yv" "uv # !Kp" !Mq" "pq

"0 0 !Xu" u

0 0 0

!Xu" !Yv" "u 0 0

v

p

r

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 78: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

78

Lateral  subsystem  (DOFs  2,  4,  6)  The  restoring  forces  with  W  =  B,  xg  =  xb  and  yg  =  zg:            

g!!" !

!W ! B" sin!! !W ! B" cos! sin"! !W ! B" cos! cos"! !ygW ! ybB" cos ! cos" " !zgW ! zbB" cos! sin"

!zgW ! zbB" sin ! " !xgW ! xbB" cos! cos"

! !xgW ! xbB" cos ! sin" ! !ygW ! ybB" sin!

7.5.6 Longitudinal and Lateral Models for Submarines

g!!" "

0WBGz sin!

0

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 79: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

79

7.5.6 Longitudinal and Lateral Models for Submarines Lateral  subsystem  (DOFs  2,  4,  6)  

u ! uo ! constant

m ! Yv! !mzg ! Yp! mxg ! Yr!!mzg ! Yp! Ix ! Kp! !Izx ! Kr!mxg ! Yr! !Izx ! Kr! Iz ! Nr!

v!p!r!

"

!Yv !Yp !Yr!Mv !Mp !Mr

!Nv !Np !Nr

vpr

"

0 0 !m ! Xu! "u0 0 0

!Xu! ! Yv! "u 0 mxgu

vpr

"

0WBGz sin!

0#

"2"4"6

m ! Yv! mxg!Yr!

mxg!Yr! Iz!Nr!

v!

r!"

!Yv !Yr!Nv !Nr

v

r

"0 !m ! Xu! "uo

!Xu! !Yv! "uo mxguo

v

r#

!2

!6 #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Page 80: Chapter 7 Models for Ships, Offshore Structures and Underwater … · 2014-08-11 · 4! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! M RB! m 0 0 0 mzg!myg

80 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7.5.6 Longitudinal and Lateral Models for Submarines Lateral  subsystem  (DOFs  2,  4,  6)  

Linear  roll  dynamics  (decoupled):          where  the  natural  frequency    and  period  are:  

!Ix ! Kp! "!" ! Kp!! #WBGz! $ "4

!roll !WBGzIx ! Kp" , Troll !

2"!roll

#