Chapter 7 Heat Conduction

Embed Size (px)

Citation preview

  • 8/17/2019 Chapter 7 Heat Conduction

    1/43

    !"#$%&' )

    *%+,-*%#%& .% !/0+12/0

  • 8/17/2019 Chapter 7 Heat Conduction

    2/43

    6-1 What is Heat?

    Heat is a form of energy that exist by virtue of temperature difference.

    Heat is transferred  (flows) from a higher-temperature to a lower-

    temperature region.

    Note: Heat transfer can take place by: a) conduction, b) convection andc) radiation, in a steady-state and in a transient conditions.

    Steady-state conduction occurs when the temperature at all points in thesolid body does not vary with time.

    Three modes of heat transfer.

  • 8/17/2019 Chapter 7 Heat Conduction

    3/43

     Another illustration of modes of heat transfer.

  • 8/17/2019 Chapter 7 Heat Conduction

    4/43

     Actual scenario of heat conduction through a glass window.

  • 8/17/2019 Chapter 7 Heat Conduction

    5/43

    6-2 One-Dimensional  Steady-State Conduction

    We will focus on the one-dimensional steady-state conduction problems

    only. It is the easiest heat conduction problem.

    In one-dimensional problems, temperature gradient exists along one 

    coordinate axis only.

    Objective

    The objective of our analysis is to determine; a) the temperature distributionwithin the body and, b) the amount of heat transferred (heat flux).

    1T 

    2T 

    3T 

     xq

     x

  • 8/17/2019 Chapter 7 Heat Conduction

    6/43

     An energy balance across a control volume (shaded area) yields,

     AdxdxdqqQAdxqA   !

    "#$

    %& +=+

    6-3 The Governing Equation

    Consider heat conduction q (W/m2) through a plane wall, in which there is a

    uniform internal heat generation, Q (W/m3).

  • 8/17/2019 Chapter 7 Heat Conduction

    7/43

    where q = heat flux per unit area (W/m2)

     A = area normal to the direction of heat flow (m2)Q = internal heat generated per unit volume (W/m3)

    Cancelling term qA and rearranging, we obtain,

    dx

    dqQ   =

    For one-dimensional heat conduction, the heat flux q is governed by the

     Fourier’s law, which states that,dT 

    q k dx

    ! "= # $ % &

    ' (

    where k  = thermal conductivity of the material (W/m.K)

    (dT/dx) = temperature gradient in x-direction (K/m)

    Note: The  –ve sign is due to the fact that heat flows from a high-temperature tolow- temperature region.

    … (i)

    … (ii)

  • 8/17/2019 Chapter 7 Heat Conduction

    8/43

    Fourier established the partial differential

    equation governing heat diffusion process.

    He solved the equation using infinite series

    of trigonometric functions.

    He introduced the representation of afunction as a series of sine or cosines, now

    known as the Fourier series.

    Jean Baptiste Joseph Fourier March 21 1768 - May 16 1830

  • 8/17/2019 Chapter 7 Heat Conduction

    9/43

    Substituting eq.(ii) into eq.(i) yields,

    0=+!"

    #$%

    &Q

    dx

    dT k 

    dx

    The governing equation has to be solved with appropriate boundary conditions

    to get the desired temperature distribution, T .

    Note:

    Q is called a source when it is +ve (heat is generated), and is called a sink  whenit is -ve (heat is consumed).

  • 8/17/2019 Chapter 7 Heat Conduction

    10/43

    6-4 Boundary Conditions

    There are three types of thermal boundary conditions:

    a) Specified temperature, T i = T o;

    b) Specified heat flux, e.g., qi = 0 (insulated edge or surface);

    c) Convection at the edge or surface, (h & T ! are specified).

    These are illustrated below.

    Note: h is the convective heat transfer coefficient (W/m2K).

  • 8/17/2019 Chapter 7 Heat Conduction

    11/43

    6-5 Finite Element Modeling

    The uniform wall can be modeled using one-

    dimensional element.

    To obtain reasonably good temperature

    distribution, we will discretize the wall into

    several 1-D heat transfer elements, as shown.

    Note:

     X  represents the global  coordinate system.

    Can you identify the kind of boundary

    conditions present?

    There is only one  unknown quantity at any

    given node, i.e. the nodal temperature, T i.

  • 8/17/2019 Chapter 7 Heat Conduction

    12/43

    For a one-dimensional steady-state conduction, temperature varies linearly along

    the element.

    Therefore we choose a linear  temperature function given by,( )

      2211  T  N T  N T    +=!  or ( )   [ ]T  N T    =! 

    6-6 Temperature Function

    For a given element in local  coordinate (! ), temperature T  varies along the

    length of the element.

    We need to establish a temperature function so that we can obtain the

    temperature T , at any location along the element, by interpolation.

  • 8/17/2019 Chapter 7 Heat Conduction

    13/43

    ( ) ( )

    ( )12 1 2 1

    2 21 d  x x x x dx x x

    ! !   =   " " #   =" "

    We wish to express the (dT/dx ) term in the governing equation in terms of

    element length, l e, and the nodal temperature vector, {T }. Using the chain

    rule of differentiation

    ! ! 

    !    d 

    dT 

    dx

    dx

    dT 

    dx

    dT "="=

    ( ) ( ) ( )  2121

    2

    1

    2

    11

    2

    11

    2

    1T T 

    dT T T T    +!="++!=

    # # # # 

    Substitute eq.(ii) and eq.(iii) into eq.(i) we get,

    ( )2112

    21

    12

    1

    2

    1

    2

    12T T 

     x xT T 

     x xdx

    dT +!

    !="

    #$%

    &' +!

    !=

    where ( )! "=   12

    1

    1 N    ( )! +=   1

    2

    1

    2 N and

    Recall, …(ii)

    …(iii)

    …(i)

  • 8/17/2019 Chapter 7 Heat Conduction

    14/43

    or, [ ]{ }

    [ ]{ }

    2 1

    11 1

      e

    e

    dT T 

    dx x x

    dT  B T 

    dx

    =

      !!

    =

    where [ ]

    ( )

    [ ] [ ]2 1

    1 11 1 1 1

    e

     B

     x x l 

    =   !   =   !

    !

    is called the temperature-gradient matrix. The heat flux, q (W/m2) can then

    be expressed as

    [ ]   12

    11 1

    e

    T q k 

    T l 

    ! "= # $ #   % &

    ' (

  • 8/17/2019 Chapter 7 Heat Conduction

    15/43

    The element conductivity matrix [k T ] for the 1-D heat transfer element

    will be derived using the potential energy approach.

    Recall, the conduction governing equation with internal heat generation,

    0=+!"

    #$%

    &Q

    dx

    dT k 

    dx

    Imposing the following two boundary conditions,

    ( )!==

    "==   T T hqT T   L L xo x   and0

    6-7 Element Conductivity Matrix

    and solving the equation yields the total potential energy, !T  given by

    ( )2

    2

    0 0

    1 1

    2 2

     L L

    T L

    dT k dx QTdx h T T  

    dx!   "

    # $=   %   +   %

    & '( ) * * 

  • 8/17/2019 Chapter 7 Heat Conduction

    16/43

    2 1

    2 1

    2

    2 2

    el  x xd dx dx d d   x x

    ! ! ! "=   #   = ="

    [ ]{ }   [ ]{ }( ) ( )

    ande e

    dT T N T B T  

    dx= =

     Assuming that heat source Q = Qe and thermal conductivity k = k e are constant

    within the element, the functional " T  becomes

    { }   [ ] [ ]   { }

    [ ]   { } ( )

    1( ) ( )

    1

    1 ( ) 2

    1

    1

    2 2

    2 2

    e T ee eT T T 

    e

    ee e L

    e

    k l T B B d T  

    Q l  N d T h T T 

    ! " 

    #

    $#

    % &=   #' (

    ) *

    % &+   #' (

    ) *

    +   , 

    +   , 

    Note: The first term of the above equation is equivalent to the internal strain

    energy for structural problem. We identify the element conductivity matrix, 

    [ ] [ ] [ ]1

    12

    T e e

    T T T 

    k l k B B d  ! 

    "=   # $ 

    Substitute for dx and (dT/dx) in terms of !  and {T }e,

  • 8/17/2019 Chapter 7 Heat Conduction

    17/43

    Solving the integral and simplifying yields the element conductivity

    matrix, given by

    [ ]  1 1

    1 1

    e

    e

    k k 

    !" #= $ %!& '

    Note: If the finite element model comprises of more than one element, then the

     global conductivity matrix can be assembled in usual manner to give

    [ ]

    11 12 1

    21 22 2

    1 2  ...

     L

     L

     L L LL

     K K K 

     K K K  K 

     K K K 

    ! "# $# $

    =

    # $# $% &

    !

    !

    "

    (W/m2K)

    (W/m2K)

  • 8/17/2019 Chapter 7 Heat Conduction

    18/43

    Exercise 6-1

     A composite wall is made of material A and B as shown. Inner surface ofthe wall is insulated while its outer surface is cooled by water stream with

    T !

     = 30°C and heat transfer coefficient, h = 1000 W/m2K. A uniform heat

    generation, Q A = 1.5 x 106 W/m3 occurs in material A. Model the wall

    using two 1-D heat transfer elements.

    Question: Assemble the global conductivity matrix, [ K T ].

  • 8/17/2019 Chapter 7 Heat Conduction

    19/43

    If there is an internal heat generation, Qe (W/m3) within the element,then it can be shown that the element heat rate vector due to the

    internal heat generation is given by

    { }  2

    1   W

    12 m

    ee e

    Q

    Q l r 

      ! "#= $ %

    & 'Note:

    1. If there is no internal heat generation in the element, then the heat rate vector

    for that element will be,

    2. If there are more than one element in the finite element model, the global heatrate vector , { RQ} is assembled in the usual manner.

    6-8 Element Heat Rate Vector

    { }   ( )2

    1 00   W

    1 02 m

    e e

    Q

    l r 

    !   " # " #= =$ % $ %

    & ' & '

  • 8/17/2019 Chapter 7 Heat Conduction

    20/43

    111 12 1 1

    221 22 2 2

    1 2   ...

    Q L

    Q L

    QL L L LL L

     R K K K T 

     R K K K T 

     R K K K T 

    ! "# $ ! "% %& ' % %

    % % % %& '  =( ) ( )

    & ' % % % %

    & ' % % % %* + , -   , -

    !

    !

    "" "

    6-9 Global System of Linear Equations

    The generic global   system of linear equation for a one-dimensional steady-state heat conduction can be written in a matrix form as

    Note:

    1. 

     At this point, the global system of linear equations have no solution.

    2. 

    Certain thermal boundary condition need to be imposed to solve the equations

    for the unknown nodal temperatures.

  • 8/17/2019 Chapter 7 Heat Conduction

    21/43

    Exercise 6-2

    Reconsider the composite wall in Exercise 6-1. a) Assemble the globalheat rate vector, { RQ}; b) Write the global  system of linear equations for

    the problem.

  • 8/17/2019 Chapter 7 Heat Conduction

    22/43

    111 12 1 11

    221 22 2 2 21

    1 2 1...

    Q L

    Q L

    QL L L LL L L

     R K K K K 

     R K K K T K 

     R K K K T K 

    ! !  

    !  

    !  

    " #$ % " # " #& &' ( & & & &

    & & & & & &' (  =   )* + * + * +

    ' ( & & & & & &' ( & & & & & &, - . / . /. /

    !

    !

    "" " "

    Suppose uniform temperature T = #  °C is specified

    at the left side of a plane wall.

    To impose this boundary condition, modify the

    global SLEs as follows:

    1. 

    Delete the 1st row and 1st column of [ K T ] matrix;

    2. 

    Modify the { RQ} vector as illustrated.

    Note: Make sure that you use a consistent unit.

    6-10 Temperature Boundary Condition

     x

     L

    1

    oT C !  =

  • 8/17/2019 Chapter 7 Heat Conduction

    23/43

    ( )   ( )

    111 12 1   1

    221 22 2   2

    1 2   ...

    Q L

    Q L

     L L LL   QL L

     R K K K    T 

     R K K K    T 

     K K K h   R hT T  !

    " #$ % " #& &' ( & &

    & & & &' (=) * ) *' ( & & & &' (

    & & & &+   ++ ,- .   + ,

    !

    !

    ""   "

    Suppose that convection occurs on the right side of a

    plane wall, i.e. at x = L.

    The effect of convection can be incorporated bymodifying the global SLEs as follows:

    1. 

     Add h to the last element of the [ K T ] matrix;

    2. 

     Add (hT !

    ) to the last element of { RQ} vector.

    Note: Make sure that you use a consistent unit.

    6-11 Convection Boundary Condition

     x

     L

    We get,

    ;T h!

  • 8/17/2019 Chapter 7 Heat Conduction

    24/43

    Once the temperature distribution within the wall is known, the heat flux

    through the wall can easily be determined using the Fourier’s law.

    We have,

    Note:

    1. At steady-state condition, the heat flux through all elements has the same

    magnitude.

    2.  T 1 and T 2 are the nodal temperatures for an element.

    3. l e is the element length.

    6-12 The Heat Flux

    [ ]   12

    11 1

    e

    T q k 

    T l 

    ! "= # $ #   % &

    ' (W/m2

  • 8/17/2019 Chapter 7 Heat Conduction

    25/43

    Exercise 6-3

    Reconsider the composite wall problem in Exercise 6-2. a) Impose theconvection boundary conditions; b) Solve the reduced SLEs, determine

    the nodal temperatures; c) Estimate the heat flux, q through the

    composite wall.

  • 8/17/2019 Chapter 7 Heat Conduction

    26/43

    Exercise 6-3: Nastran Solution

    413 K

    407 K

    388 K

    378 K

  • 8/17/2019 Chapter 7 Heat Conduction

    27/43

    ( )111 12 1 1221 22 2 2

    1 2

    0

    ...   0

    Q L   o

    Q L

    QL L L LL L

     R K K K T    q

     R K K K T 

     R K K K T 

    ! "   ! "#$ % ! "& &   & &

    ' ( & && & & & & &' (   = +) * ) * ) *' ( & & & & & &' ( & & & & & &+ , - .   - .- .

    !

    !

    "" " "   "

    Suppose heat flux q = qo W/m2 is specified at the leftside of a plane wall, i.e. at x = 0.

    The effect of specified heat flux is incorporated into the

    analysis by modifying the global SLEs, as shown.

    6-13 Heat Flux Boundary Condition

     x

     L

    0q q=

    Note:

    q0 is input as +ve value if heat flows out of the body and as –ve value if heat is

    flowing into the body. Do not alter the negative sign in the global SLEs above.

  • 8/17/2019 Chapter 7 Heat Conduction

    28/43

    Exercise 6-4

    Reconsider the composite wall problem in Exercise 6-3. Suppose there isno internal heat generation in material A. Instead, a heat flux of q = 1500

    W/m2 occurs at the left side of the wall.

    Write the global system of linear equations for the plane wall and impose

    the specified heat flux boundary condition.

    75 W/m K  A

    k    =   !

    21500 W/mq   =

  • 8/17/2019 Chapter 7 Heat Conduction

    29/43

    Exercise 6-4: Nastran Solution

    357 K

    347 K

    337 K

    333 K

  • 8/17/2019 Chapter 7 Heat Conduction

    30/43

    Example 6-1

     A composite wall consists of three

    layers of materials, as shown. The

    ambient temperature is T o = 20oC.

    Convection heat transfer takesplace on the left surface of the wall

    where T ! = 800

    o

    C and h = 25 W/m2oC.

    Model the composite wall using

    three heat transfer elements and

    determine the temperature

    distribution in the wall.

  • 8/17/2019 Chapter 7 Heat Conduction

    31/43

    Example 6-1: Nastran Solution

    305.8 C

    120.5 C

    54.6 C

    20 C

  • 8/17/2019 Chapter 7 Heat Conduction

    32/43

    Solution

    1. Write the element conductivity matrices

    [ ]( )

    [ ]( )

    [ ]( )

    1 3

    2 2

    2

    2

    1 1 1 120 W 50 W  ;

    1 1 1 10.3 m 0.15 m

    1 130 W 

    1 10.15 m

    T T o o

    T    o

    k k C C 

    k C 

    ! !" # " #= =$ % $ %! !& ' & '

    !" #= $ %!& '

    2. Assemble the global  conductivity matrix

    [ ]2

    1 1 0 0

    1 4 3 0 W66.7

    0 3 8 5 m

    0 0 5 5

    T    o K 

    !" #$ %! !$ %

    =

    $ %! !$ %

    !& '

  • 8/17/2019 Chapter 7 Heat Conduction

    33/43

    3. Write the global  system of linear equations

    [ ]{ }   { }T Q K T R=

    !!

    "

    !!

    #

    $

    !!

    %

    !!

    &

    '

    =

    !!

    "

    !!

    #

    $

    !!

    %

    !!

    &

    '

    ((((

    )

    *

    ++++

    ,

    -

    .

    ..

    ..

    .

    4

    3

    2

    1

    4

    3

    2

    1

    5500

    5830

    0341

    0011

    7.66

     R

     R

     R

     R

    4. Write the element heat rate vector

    Since there is NO internal heat generation, Q in the wall, the heat rate vector

    for all elements are

    { } { } { }1 2 3   0

    0Q Q Q

    r r r   ! "

    = = = # $

    % &

  • 8/17/2019 Chapter 7 Heat Conduction

    34/43

    5. Write the global system of linear equations

    1

    2

    3

    4

    1 1 0 0 0

    1 4 3 0 066.7

    0 3 8 5 0

    0 0 5 5 0

    !   " #$ % " #& &' ( & &! !   & & & &' (

      =) * ) *' (! ! & & & &' ( & & & &!+ , - .- .

    6. Impose convection and specified temperature boundary conditions (T 4 = 20°C)results in modified  system of linear equations

    1

    2

    3

    4

    1.375 1 0 0 (25 800)

    1 4 3 0 066.7

    0 3 8 5 0 ( 5 66.7) 20

    0 0 5 5 0

    ! "# $% & # $' '( ) ' '! !   ' ' ' '( )

      =* + * +( )! ! ! ! " "' ' ' '( ) ' ' ' '!, - . /. /

  • 8/17/2019 Chapter 7 Heat Conduction

    35/43

    7. Solving the modified system of linear equations yields

    1

    2

    3

    4

    304.6

    119.0

    57.1

    20.0

    o

    T C 

    ! "   ! "# #   # ## # # #

    =$ % $ %# # # ## # # #& '& '

  • 8/17/2019 Chapter 7 Heat Conduction

    36/43

    Example 6-2

    Heat is generated in a large plate (k = 0.8 W/moC) at a rate of 4000 W/m3.The plate is 25 cm thick. The outside surfaces of the plate are exposed to

    ambient air at 30oC with a convection heat transfer coefficient of 20 W/m2oC.

    Model the wall using four  heat transfer elements and determine: (a) the

    temperature distribution in the wall, (b) heat flux, and (c) heat loss from the

    right side of the wall surface.

    o

    o

    o

    W0.8

    m C

    W20

    m C

    30 C

    h

    T !

    =

    =

    =

    Data:

  • 8/17/2019 Chapter 7 Heat Conduction

    37/43

    Example 6-2: Nastran Solution

    84.3 C

    94 C

    84.3 C

    55 C55 C

  • 8/17/2019 Chapter 7 Heat Conduction

    38/43

    Solution

    [ ]( )

    [ ]

    ( )

    1

    2

    2

    2

    12.8 12.8 W 

    12.8 12.8 m

    12.8 12.8 W 

    12.8 12.8 m

    T    o

    T    o

    k C 

    !" #= $ %!& '

    !" #=

    $ %!& '

    1. Element conductivity matrices.

    Since the element length and thermal conductivity are the same for all

    elements,

    we have [ ]( )

    [ ]

    ( )

    3

    2

    4

    2

    12.8 12.8 W 

    12.8 12.8 m

    12.8 12.8 W 

    12.8 12.8 m

    T    o

    T   o

    k C 

    !" #= $ %!& '

    !" #=

    $ %!& '

    1 2 3 4 5

    T1  T2  T3  T4  T5 h, T $  

    h, T $  

     x

    The finite element model for the plane wall is shown below.

    1 2 3 4

  • 8/17/2019 Chapter 7 Heat Conduction

    39/43

    [ ]

    12.8 12.8 0 0 0

    12.8 25.6 12.8 0 0

    0 12.8 25.6 12.8 0

    0 0 12.8 25.6 12.8

    0 0 0 12.8 12.8

    T  K 

    !" #$ %! !$ %$ %=   ! !$ %

    ! !$ %

    $ %!& '

    2. Assemble the global conductivity matrix,

    1 2 3 4 5

    Note: Connectivity with the global  node numbers is shown.

  • 8/17/2019 Chapter 7 Heat Conduction

    40/43

    3. Heat rate vector for each element

    Since the magnitude of internal heat generation and length of all

    elements are the same, we have

    { }( )

    { }

    ( )

    { }( )

    { }( )

    1

    2

    3

    4

    1 1254000 0.0625

    1 1252

    1 1254000 0.0625

    1 1252

    1 1254000 0.0625

    1 1252

    1 1254000 0.0625

    1 1252

    Q

    Q

    Q

    Q

    ! " ! "#= =$ % $ %

    & ' & '

    ! " ! "#= =$ % $ %

    & ' & '

    ! " ! "#= =$ % $ %

    & ' & '

    ! " ! "#= =$ % $ %

    & ' & '

    { } 2

    125

    250W

     250m

    250

    125

    Q R

    ! "# ## ## #

    = $ %# ## ## #& '

    4. Assemble the global heat rate

    vector, we get

  • 8/17/2019 Chapter 7 Heat Conduction

    41/43

    5. Write the system of linear equation, [ ]{ }   { }T Q K T R=

    !!!

    "

    !!!

    #

    $

    !!!

    %

    !!!

    &

    '

    =

    !!!

    "

    !!!

    #

    $

    !!!

    %

    !!!

    &

    '

    ((((((

    )

    *

    ++++++

    ,

    -

    .

    ..

    ..

    ..

    .

    125

    250

    250

    250

    125

    8.128.12000

    8.126.258.1200

    08.126.258.120

    008.126.258.12

    0008.128.12

    5

    4

    3

    2

    1

    6. Impose convection boundary conditions on both sides of the wall,

    ( )

    ( )!!!

    "

    !!!

    #

    $

    !

    !!

    %

    !!!

    &

    '

    +

    +

    =

    !

    !!

    "

    !!!

    #

    $

    !

    !!

    %

    !!!

    &

    '

    (

    (((((

    )

    *

    +

    +++++

    ,

    -

    +.

    ..

    ..

    ..

    .+

    3020125

    250

    250

    250

    3020125

    208.128.12000

    8.126.258.1200

    08.126.258.120

    008.126.258.12

    0008.12208.12

    5

    4

    3

    2

    1

  • 8/17/2019 Chapter 7 Heat Conduction

    42/43

    7. 

    Solving the modified  system of linear equations by using Gaussian

    elimination method, we obtain the temperatures at the global nodesas follows,

    1

    2

    o

    3

    4

    5

    55.0

    84.3

      C94.0

    84.3

    55.0

    ! "   ! "# #   # ## #   # ## # # #

    =$ % $ %# # # ## # # ## # # #& '& '

    1 2 3 4 5

    T1  T2  T3  T4  T5 h, T $  

    h, T $  

     x

    Note: Notice the symmetry of the temperature distribution.

  • 8/17/2019 Chapter 7 Heat Conduction

    43/43

    8. Compute the heat flux and heat loss.

    a) Heat flux through the wall

    Consider the 4th element. Using the Fourier’s law, we have

    [ ]

    [ ]

    1

    2

    2

    11 1

    84.310.8 1 1

    55.00.0625

    375m

    e

    T q k 

    T l 

    q

    W q

    ! "= # $ #   % &

    ' (

    ! "= # $ #   % &

    ' (

    =

    b) Heat loss from the right side of the wall, per unit surface area.

    Using the Newton’s law of cooling , we have

    ( ) ( ) 220 55 30 500 mwall W 

    q h T T  !=   "   =   # "   =

    The heat flux through the

    wall is not constant due to

    the heat generation Q that

    occurs in the wall.