53
Chapter 7 Electrodynamics .0 Introduction .1 Electromotive Force .2 Electromagnetic Induction .3 Maxwell’s Equations

Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

Embed Size (px)

Citation preview

Page 1: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

Chapter 7 Electrodynamics

7.0 Introduction

7.1 Electromotive Force

7.2 Electromagnetic Induction

7.3 Maxwell’s Equations

Page 2: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

?Et

? 0t

7.0 Introduction

electrostatic static

0

1E

magnetostatic

0B J

conservation of charge

? B

E

00?

0

0 ?B Jt

0

=

0

0E

0B

0Jt

?Et

Page 3: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.0 (2)

Maxwell’s equations:

0E

0B

BE

t

0 0 0B J Et

dJ displacement current

Page 4: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.0 (3)

dE

Magnetic flux

Induced electric field (force)

)(tB

induce

EB

E

=

BE

t

E da B dat t

B da

Page 5: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.0 (4)

E,B fields propagate in vacuum e.g. , BE

, ~ )( wtkxie

• E Bt

0 0B Et

aB

a aE induced by B

b aB induced by E

b bE induced by B

c bB induced by E

wave

Page 6: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.0 (5)

A.C. current can generate electromagnetic waveantennacyclotron massfree electron laser …..

E Bt

0 0 0B J Et

0( , )J x x t

aB

aE

bB

bE

Page 7: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1 Electromotive Force

7.1.1 Ohm’s Law

7.1.2 Electromotive Force

7.1.3 Motional emf

Page 8: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.1 Ohm’s Law

Current density conductivity force per unit charge of the medium

resistivity

0 for perfect conductors

for vk

usually true

but not in plasma; especially, hot.

Ohm’s Law

( a formula based on experience)

J f

1

for f E v B

( )J E v B

J E

Page 9: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.1 (2)

Total current flowing from one electrode to the other

V=I R Ohm’s Law (based on experience)

Potential current resistance [ in ohm (Ω) ]

Note : for steady current and uniform conductivity

10E J

Page 10: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.1 (3)

Ex. 7.1

sol:

LV

AEAJAI

parallelin

seriesin

AL

R

I=?R=?

uniform

uniform

V

1 2 1 2,L L R R R

211 2

1 1 1,A A

R R R

Page 11: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.1 (4)

Ex. 7.3 Prove the field is uniform E

i.e.,

V=0 V=V0A=const =const

ˆ0 0 at the surfaces on the two endsJ J n

ˆ 0E n

0V

n

2 0 Laplace equationV

0( )V z

V zL

0 ˆV

E V zL

Page 12: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.1 (5)

L2

)ab(ln

R

Ex. 7.2 V ?Is

2E s

s

: line charge density

0ln ( )

2

a

b

bV E d

a

E V

10

0 02 [ ln ]

bI J da E da L V L

a

2

ln ( )

LV

ba

Page 13: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.1 (6)

The physics of Ohm’s Law and estimation of microscopic

the charge will be accelerated by before a collision

time interval of the acceleration is

E

a

2,

vmint mfp

thermal

mfp

mean free path

2

21

tamfp typical casefor very strong field and long mean free path

Page 14: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

2 thermalave

nfq FJ n f q v

v m

7.1.1 (7)The net drift velocity caused by the directional acceleration is

molecule density e charge

free electrons per molecule

Eq

=

mass of the molecule

RIVIP 2Power is dissipated by collision

Joule heating law

1

2 2 thermalave

av at

v

2

2 thermal

nf qJ E

mv

Page 15: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

b bab s sa aV E d f d f d

sf d f d

7.1.2 Electromotive Force

The current is the same all the way around the loop.

force electrostatic

electromotive force

0dE )0( E

outside the source

Produced by the charge accumulationdue to Iin > Iout

sourcef f E

E V

0f

sE f

Page 16: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.3 motional emf

,,

mag vmag v

Ff vB

q

B

,mag vF qvB

, causesmag vf d vBh u

Page 17: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

( ) ( )dx d d

vBh Bh Bhxdt dt dt

7.1.3 (2)

h

cossin

dd

=

sin)

cos)((

huBdf pull

cossin

uv

vBh

Work is done by the pull force, not . B

magnetic flux

pullf uB for equilibrium

Page 18: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.3 (3)

magnetic flux

for the loop

flux rule for motional emf

B da Bhx

d dxBh vBh

dt dt

d

dt

Page 19: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

( ) magw B d f d

7.1.3 (4)

a general proof

dtd

ribbon

( ) ( )d t dt t

ribbonB da

( )da v d dt

( ) ( )d

B v d B w ddt

magf

Page 20: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.1.3 (5)

Ex. 7.4

=?

0

a

magf ds

0

awsB ds

2

2

wBa

2

R 2

wBaI

R

ˆ( )magf v B ws w B

ˆwsB s

Page 21: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2 Electromagnetic Induction

7.2.1 Faraday’s Law

7.2.2 The Induced Electric Field 7.2.3 Inductance

7.2.4 Energy in Magnetic Fields

Page 22: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.1 Faraday’s Law M. Faraday’s experiments

Induce induce induce

Faraday’s Law (integral form)

Faraday’s Law (differential form)

loop moves B moves B Area ,

[ ]I v B

[ ]I E

[ ]I E

( )emfd

E d E dadt

d

B da B dadt t

BE

t

Page 23: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

Lenz’s law : Nature abhors a change in flux ( the induced current will flow in such a direction that the flux it produces tends to cancel the change. )

7.2.1 (2)

A changing magnetic field induces an electric field.

(a) (b) & (c) induce that causesE

I

drive I

, notv B E

Page 24: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.1 (3)

sol:ˆ MnMKb

MB

0

at center , spread out near the ends

2

0max aM

Ex. 7.5

Induced ? )(t

ˆz r

loop

Page 25: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.1 (4) Ex. 7.6

Plug in, why ring jump?rI

Plug in, induces

B

B F

F

F

ring jump.

sI

I

B

induces rB I

v B

v B

Page 26: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.2 The Induced Electric Field

0 encB d I

dtd

dE

BE

t

0B J

0 ( 0)E

0B

Page 27: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.2 (2)

induced = ?E

sol:

dtBd

stBsdtd

dtd

dE

22 )]([ sE 2

=

2 dtBds

E

E

B

Ex. 7.7

Page 28: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.2 (3)

dtdB

adtd

dE 2

0BB

The charge ring is at rest

0B

What happens?sol:

torque on d ˆ( ) ( )dN r F b d E z b Ed

2 2ˆ ˆ [ ]dB dB

N dN zb E d zb a b adt dt

the angular momentum on the wheel

zbBaBdabdtNB ˆ0

202

0

Ex. 7.8. z

Page 29: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.2 (4)

sol:

Induced ?)( sE

quasistatic

z

B

( )I t

0 ˆ2

IB

s

Page 30: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.2 (5)

=

Constant K( s , t )

0 '2 '

Id dE d B da ds

dt dt s

0( ) ( )E s E s

0

0 1'

2 '

s

s

dIds

dt s

00 (ln ln )

2

dIs s

dt

0 ˆ( ) [ ln ]2

dIE s s K z

dt

s << c = I / (dI/dt)

Page 31: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.3 Inductance

121212 IMadB

21)( adA

mutual inductance

1 2A d

0 11 1 12

ˆ

4

d RB I I

R

0 1 124

I dd

R

0 1 11 4

I dA

R

Page 32: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.3 (2)

Neumann formula

The mutual inductance is a purely geometrical quantity

0 1 221 4

d dM

R

M21 = M12 = M 1 = M12 I2

1 = 2 if I1 = I2

Page 33: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.3 (3)

Ex. 7.10

sol:B1 is too complicated… 2 = ?

Instead, assume I running through solenoid 2

20 1 2M a n n

III 12

?

?2

M

n2 turns per unit length

n1 turns per unit length

2

1 I given

assume I too.

1 1 1, per turmn 21 2

20 1 2 2

20 1 2

2 2 1( )

n a B

a n n I

a n n I

I I I

2 0 2 2B n I

Page 34: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.3 (4)

• )(1 tI

dtdI

Mdtd 12

2

changing current in loop1, induces current in loop21I

• self inductance

)(tI

self-inductance (or inductance )

[ unit: henries (H) ]A

VoltH

sec11

• back emf

L I

will reduce it.dI

L Idt

Page 35: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.3 (5)

Ex. 7.11

sol: adBN

sNI

B

20

b

adss

hNI

N1

20

20 ln ( )2

N h bL

a

L(self-inductance)=?

b

a

N turns

20 ln ( )2

N Ih b

a

Page 36: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.3 (6)

Ex. 7.12

sol:

IRdtdI

L 0

0( )Rt

LI t keR

particular solution

)1()1()( 00 tt

LR

eR

eR

tI

R0

( ) ?I t

0if (0) 0 ,I kR

time constantL

R

general solution

Page 37: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.4 Energy in Magnetic Fields

From the work done, we find the energy

in , E

dEdVWe20

2)(

21

But, does no work.B

In back emf

In E.S.

test charge

q

21( )2B

d dI dW I L I LI

dt dt dt

21 1

2 2BW LI I 21

( )2kW mv

( )s s loopB da A da A d

1 1

( )2 2B loop loop

W I A d A I d

WB = ?

Page 38: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.4 (2)In volume

1( )

2B VW A J d

dBAV )(

21

0

dBAdBVV )(

21

21

0

2

0

)()()( BAABBA

B

2B

s

adBA )(

s0

dBWspaceallB 2

021

dEdVWelec20

2)(

21

dBdJAWmag2

021

)(21

Page 39: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.2.4 (3)

Ex. 7.13

sol:

bsasI

B ˆ2

0

< < 0B

20

0

1( ) (2 )

2 2B BI

W dW sdss

)length(

?BW

s as b

20 ln( )4

I b

a

21

2BW L I

0 ln ( )2

bL

a

20

4

b

a

I ds

s

Page 40: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3 Maxwell’s Equations

7.3.1 Electrodynamics before Maxwell 7.3.2 How to fix Ampere’s Law 7.3.3 Maxwell’s Equations

7.3.4 Magnetic Charge

7.3.5 Maxwell’s Equation in Matter

7.3.6 Boundary Conditions

Page 41: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.1 Electrodynamics before Maxwell

0)()()(

B

ttB

E

but

?)()( 0 JB

=0

Ampere’s Law fails because 0 J

0E

0B

BE

t

0B J

(Gauss Law)

(no name)

(Faraday’s Law)

(Ampere’s Law)

Page 42: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.1

an other way to see that Ampere’s Law fails for nonsteady current

encIdB 0

they are not the same.

loop 1

2

For loop 1, Ienc = 0For loop 2, Ienc = I

Page 43: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.2 How to fix Ampere’s Law

)(][ 00 tE

Ett

J

continuity equations, charge conservation

such that, Ampere’s law shall be changed to

tE

JB

000

A changing electric field induces a magnetic field.

Jd displacement current

Page 44: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.2

adtE

JadB

)( 000

adtE

IdB enc

000

=

for the problem in 7.3.1

between capacitorsAQ

E00

11

IAdt

dQAt

E

00

11

IIdBloop 0

01 00

10

IIdBloop 02 0 0

loop 1

2

Page 45: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.3 Maxwell’s equations

0 B

Et

JB

000

tB

E

0 E

Gauss’s law

Faraday’s law

Ampere’s law with Maxwell’s correction

Force law

continuity equationt

J

( the continuity equation can be obtained from Maxwell’s equation )

( )F q E v B

Page 46: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.3

0 B

JEt

B

000

0tB

E

0 E

Since , produce , J

E

B

),( trJ

E

B

Page 47: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.4 Magnetic Charge

Maxwell equations in free space ( i.e., , )0e 0eJ

symmetric

BE

EB

00

With and , the symmetry is broken.If there were ,and .

e eJ

m mJ

mB 0

tB

JE m

0

tE

JB e

000 symmetric

tJ ee

t

J mm

and

So far, there is no experimental evidence of magnetic monopole.

0E

0B

Et

0B

0 0B Et

0

eE

Page 48: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.5 Maxwell’s Equation in Matter

bound charge bound current

Pb MJb

0 no correspondingbJ

tP

tb

polarization currentPJ

0

Pb Jt

da

tda

tdI b )(

daJadtP

P

Pb

Q

surface charge

Page 49: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.5 (2)

Pfbf

Pt

MJJJJJ fPbf

0

1Gauss's law ( )fE P

fDor

PED

0

Et

Pt

MJB f

000 )(

Ampere’s law ( with Maxwell’s term )

)()( 0000 PEt

JMB f

Dt

JH f

MBH

0

1

Page 50: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.5 (3)

In terms of free charges and currents, Maxwell’s equationsbecome

fD

Dt

JH f

0 B

tB

E

displacement current, and , are mixed.D H E B

one needs constitutive relations: ( , ) and ( , )D E B H E B

Page 51: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

for linear dielectric.

7.3.5 (4)

orExP e

0

ED

HxM m

BH

1

)1(0 ex

)1(0 mx

0 B

fE

tB

E

tE

JB f

Page 52: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.6 Boundary Condition

Maxwell’s equations in integral form

Over any closed surface S

for any surface bounded by the S closed loop L

L s

dE d B da

dt

,f encsD da Q

0

sB da

fencL s

dH d I D da

dt

1 1,D B

2 2,D B

Page 53: Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations

7.3.6

aaDaD f 21

0S 021 adB

dtd

EE

fDD 21

021 BB

021 EE

= =

)nK()n(KHH ff

21

nKHH f ˆ21 = =

nKBB f ˆ11

22

11

= =

fEE 2211