73
EE141 1 Combinational Circu Chapter 6 (I) Chapter 6 (I) Designing Designing Combinational Combinational Logic Circuits Logic Circuits Static CMOS Static CMOS Pass Transistor Logic Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1411

Combinational Circuits

Chapter 6 (I)Chapter 6 (I)Designing Designing CombinationalCombinationalLogic CircuitsLogic Circuits

••Static CMOSStatic CMOS••Pass Transistor LogicPass Transistor Logic

V1.0 4/25/03V2.0 5/4/03V3.0 5/15/03

Page 2: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1412

Combinational Circuits

Revision ChronicleRevision Chronicle5/2: Add some NAND8 figures (to compare NAND8 circuits) from old Weste textbook to this slide.5/4:

Add 4 Pass-Transistor Logic Slides from WestetextbookSplit Chapter 6 into two parts: Part I focuses on Static and Pass Transistor Logic. Part II focuses on Dynamic Logic

5/15:Add the Transmission Gate slides (x5) from Kang’s textbook

Page 3: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1413

Combinational Circuits

Combinational vs. Sequential LogicCombinational vs. Sequential Logic

CombinationalLogicCircuit

OutInCombinational

LogicCircuit

OutIn

State

Combinational Sequential

Output = f(In, Previous In)Output = f(In)

Page 4: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1414

Combinational Circuits

Static CMOS CircuitsStatic CMOS Circuits•At every point in time (except during the switching transients) each gate output is connected to either

via a low-resistive path (PUN, PDN)

•The outputs of the gates assume at all times thevalue of the Boolean function, implemented by the circuit (ignoring the transient effects duringswitching periods).

•This is in contrast to the dynamic CMOS circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuitnodes.

VDD or Vss

Page 5: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1415

Combinational Circuits

Static Complementary CMOSStatic Complementary CMOSVDD

F(In1,In2,…InN)

In1In2

InN

In1In2InN

PUN

PDN

PMOS only(good for transfer 1)

NMOS only (good for transfer 0)

……

Pull-up Network (PUN) and Pull-down Network (PDN) are Dual Logic Networks

Page 6: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1416

Combinational Circuits

Threshold Drops in NMOS and PMOSThreshold Drops in NMOS and PMOS---- Check Candidates for PUN and PDNCheck Candidates for PUN and PDN

VDD

VDD → 0

CL

G

PDN

0 → VDD

CLD

PUN

VGS

G

VDD

S DVDD

0 → VDD - VTnD S

CL

VDD → |VTp|

SVGS

GVDD

CL

GS D

Page 7: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1417

Combinational Circuits

Complementary CMOS Logic StyleComplementary CMOS Logic Style

Page 8: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1418

Combinational Circuits

NMOS Transistors NMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1

Page 9: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE1419

Combinational Circuits

PMOS Transistors PMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low

Page 10: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14110

Combinational Circuits

Example 1: NAND2 GateExample 1: NAND2 Gate

(Use DeMorgan’s Law)

Page 11: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14111

Combinational Circuits

Example2: NOR2 GateExample2: NOR2 Gate

),3,2,1(),3,2,1(

Connnet to:PUN

GND Connect to:PDN

…… InInInFInInInG

VBABAF

BAG

DD

⇒+=⋅=

⇒+=

DDV

Page 12: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14112

Combinational Circuits

Design of Complex CMOS GateDesign of Complex CMOS GateDDV

D

AB

C

)( CBADF +⋅+=A

D

B C

Page 13: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14113

Combinational Circuits

Constructing a Complex GateConstructing a Complex Gate

C

(a) pull-down network

SN1 SN4

SN2

SN3D

FF

A

DB

C

D

F

A

B

C

(b) Deriving the pull-up networkhierarchically by identifyingsub-nets

D

A

A

B

C

VDD VDD

B

(c) complete gateSN1

SN1

SN2

SN2

Page 14: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14114

Combinational Circuits

Static CMOS PropertiesStatic CMOS PropertiesFull rail-to-rail swing: High noise marginsLogic levels not dependent upon the relative device sizes: RatiolessAlways a path to Vdd or GND in steady state: Low output impedanceExtremely high input resistance; nearly zero steady-state input current (input to CMOS gate)No steady-state direct path between power and ground: No static power dissipationPropagation delay function of output load capacitanceand resistance of transistors

Page 15: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14115

Combinational Circuits

Switch Delay ModelSwitch Delay Model

A

ReqA

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

NOR2

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

NAND2

A

Rp

A

Rp

A

Rn CL

INV

Page 16: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14116

Combinational Circuits

Input Pattern Effects on DelayInput Pattern Effects on DelayDelay is dependent on the patternof input (Assume Rp = 2 Rn for same size of transistors)Low-to-high transition:

Both inputs go low– Delay is 0.69 (Rp/2) CL

One input goes low– Delay is 0.69 (Rp) CL

High-to-low transition:Both inputs go high (required for NAND)

– Delay is 0.69 (2Rn)CL

ARp

BRp

CL

B

Rn

ACint

Rn

Page 17: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14117

Combinational Circuits

Transistor SizingTransistor SizingAssumes Rp = 2Rn at same W/L

A

Rp

B

Rp

CL

A

Rn

B

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

11

4

4

2 2

2

2

NAND is preferred than NOR implementation!!

Page 18: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14118

Combinational Circuits

Delay Dependence on Input PatternsDelay Dependence on Input Patterns

-0.5

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400

A=B=1→0

A=1, B=1→0

A=1→0, B=1

time [ps]

Vol

tage

[V]

57A= 1→0, B=1

76A=1, B=1→0

35A=B=1→0

50A= 0→1, B=1

62A=1, B=0→1

69A=B=0→1

Delay(psec)

Input DataPattern

NMOS = 0.5µm/0.25 µmPMOS = 0.75µm/0.25 µmCL = 100 fF

A=1, B=1→0 (for both Cint and CL)A=1, B=0→1 (Consider Body effect)

NAND2 is trueOUT connects to GND

Page 19: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14119

Combinational Circuits

Transistor Sizing a Complex Transistor Sizing a Complex CMOS GateCMOS Gate

D

A

1

2

2 2

4

48

8

2/NR

case) criticalfor oneonly (wide,2/NR

B

C

OUT = D + A • (B + C)A

D

B C

Page 20: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14120

Combinational Circuits

FanFan--In ConsiderationsIn Considerations

4-input NAND Gate

Page 21: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14121

Combinational Circuits

FanFan--In ConsiderationsIn Considerations

DCBA

D

C

B

A CL

C3

C2

C1

R4

R3

R2

R1

Distributed RC model(Elmore delay)

tpHL = 0.69(R1C1+(R1+R2)C2

+ (R1+R2+R3)C3

+ (R1+R2+R3+R4)CL

=0.69 Reqn(C1+2C2+3C3+4CL)

Propagation (H L) delay deteriorates rapidly as a function of fan-in no. : Quadratically in the worst case.

Page 22: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14122

Combinational Circuits

ttpp as a Function of Fanas a Function of Fan--InIn

tpLH

t p(p

sec)

fan-in

0

250

500

750

1000

1250

2 4 6 8 10 12 14 16

tpHL

Quadratic (H->L)

tp

(L H)Linear Increase in Intrinsic Capacitance,Assume Only one PMOS is On for criticalcase

Page 23: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14123

Combinational Circuits

((tpHLtpHL, , tpLHtpLH) as a Function of Fan) as a Function of Fan--OutOut

Gates with a fan-in greater than or equal to 4 becomes excessively slow and should be avoided!

Page 24: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14124

Combinational Circuits

ttpp as a Function of Fanas a Function of Fan--In and FanIn and Fan--OutOut

Fan-in: quadratic due to increasing resistance and capacitance

Fan-out: each additional fan-out gate adds two gate capacitances to CL To the preceding stage)

Page 25: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14125

Combinational Circuits

Fast Complex Gates: Design Technique 1Fast Complex Gates: Design Technique 1Transistor sizing

Increase Intrinsic parasitic cap and create CL of the preceding stage

Progressive sizing

C3

C2

C1M1

M2

M3

CLDistributed RC line:

•M1 > M2 > M3 > … > MN(the FET closest to theoutput is the smallest)

•Not simple in Layout!

InN MN

In3

In2

In1

Page 26: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14126

Combinational Circuits

Fast Complex Gates: Design Technique 1Fast Complex Gates: Design Technique 1

Page 27: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14127

Combinational Circuits

Fast Complex Gates: Design Technique 2Fast Complex Gates: Design Technique 2

Input reordering: Put late arrival signal near the output node.

C2

C1In1

In2

In3

M1

M2

M3 CL

C2

C1In3

In2

In1

M1

M2

M3 CL

critical path critical path

charged1

0→1charged

charged1

Delay determined by time to discharge CL, C1 and C2

Delay determined by time to discharge CL

1

1

0→1 charged

discharged

discharged

Page 28: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14128

Combinational Circuits

Fast Complex Gates: Design Technique 3Fast Complex Gates: Design Technique 3

Logic Restructuring (A)

F =NAND8 Gate

In general, C > B > A in speed(B)(C)

Page 29: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14129

Combinational Circuits(from Neil Weste, 2nd Ed, 93)

Tradeoff between Area and Speed (and Power?)

Design Technique 3: Logic RestructuringDesign Technique 3: Logic Restructuring

Page 30: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14130

Combinational Circuits

Fast Complex Gates: Layout Technique Fast Complex Gates: Layout Technique

(A) (B)

(A): 4 internal cap2 output diff cap

(B): 4 internal cap4 output diff cap

(A) Is better than (B)

Page 31: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14131

Combinational Circuits

Optimizing Performance in Combinational Optimizing Performance in Combinational NetworksNetworks

( )∑=

⋅+=N

iiii fgpDelay

1

CL

InOut

1 2 N

(in units of τinv)

For given N: Ci+1/Ci = Ci/Ci-1

To find N: Ci+1/Ci ~ 4How to generalize this to any combinational logic path? E.g., How do we size the ALU datapath to achieve maximum speed?

Page 32: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14132

Combinational Circuits

Logical EffortLogical Effort

Inverter has the smallest logical effort and intrinsic delay of all static CMOS gatesLogical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same currentLogical effort increases with the gate complexity

Page 33: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14133

Combinational Circuits

Logical EffortLogical EffortLogical effort is the ratio of input capacitance of a gate to the inputcapacitance of an inverter with the same output current

B

A

A B

F

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

21 1

4

4

Inverter 2-input NAND 2-input NOR

g = 5/3g = 4/3g = 1

Page 34: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14134

Combinational Circuits

Logical EffortLogical Effort

From Sutherland, Sproull

Page 35: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14135

Combinational Circuits

Estimated Intrinsic Delay FactorEstimated Intrinsic Delay Factor

Page 36: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14136

Combinational Circuits

Logical EffortLogical Effort

( )fgptCCCRktDelay

p

in

Lunitunitp

⋅+=

+⋅==

0

(Assume γ = 1)

p – intrinsic delay : gate parameter g – logical effort : gate parameter f – effective fanout

Normalize everything to an inverter:ginv =1, pinv = 1

Divide everything by τinv(everything is measured in unit delays τinv)

Page 37: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14137

Combinational Circuits

Delay in a Logic GatesDelay in a Logic GatesGate delay:

d = h + p

Effort delay Intrinsic delay

Effort delay:

h = g f

Logical Effort

Effective fanout = Cout/Cin

•Logical effort is a function of topology, independent of sizing•Effective fanout (electrical effort) is a function of load/gate size

Page 38: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14138

Combinational Circuits

Logical Effort of GatesLogical Effort of Gates

Intrinsic�Delay

EffortDelay

1 2 3 4 5Fanout f

1

2

3

4

5

Inverter:

g = 1; p = 12-i

nput

NAND: g = 4/

3;p =

2

Nor

mal

ized

Del

ay

Page 39: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14139

Combinational Circuits

Logical Effort of GatesLogical Effort of Gates

Nor

mal

ized

del

ay (d

)t

1 2 3 4 5 6 7

pINVtpNAND

F(Fan-in)

g = 1p = 1d = f+1

g = 4/3p = 2d = (4/3)f+2

Fan-out (f)

Page 40: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14140

Combinational Circuits

Add Branching EffortAdd Branching Effort

Branching effort:

pathon

pathoffpathonC

CCb

−− +=

Page 41: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14141

Combinational Circuits

Multistage Logic NetworksMultistage Logic Networks( )

1) assume(11

=

⋅+=

⋅+= ∑∑

==

γγ

N

iiii

N

i

iii fgpfgpDelay

•Stage Effort: hi = gifi•Path Electrical Effort: F = Cout/Cin

•Path Logical Effort: G = g1g2…gN

•Branching Effort: B = b1b2…bN

•Path effort (total): H = GFB

•Path delay (total) D = Σdi = Σpi + Σhi

Page 42: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14142

Combinational Circuits

Optimum Effort per StageOptimum Effort per Stage

When each stage bears the same effort:

HhN =N Hh =

Stage efforts: g1f1 = g2f2 = … = gNfN

Effective fanout of each stage: ii ghf =

Minimum path delay

( ) PHNpfgD Niii +=+= ∑ )(ˆ /1

Page 43: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14143

Combinational Circuits

Optimal Number of StagesOptimal Number of StagesFor a given load, and given input capacitance of the first gateFind optimal number of stages and optimal sizing

invN NpNHD += /1

( ) 0ln /1/1/1 =++−=∂∂

invNNN pHHH

ND

NHh ˆ/1=Substitute ‘best stage effort’

Page 44: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14144

Combinational Circuits

Example: Optimize PathExample: Optimize Path1

ab c

5

g = 1f = a

g = 5/3f = b/a

g = 5/3f = c/b

g = 1f = 5/c

Effective fanout, F = 5G = 25/9H = GF=125/9 = 13.9h = 1.93 (optimal stage effort) = a = 1.93b = ha/g2 = 2.23c = hb/g3 = 5g4/f = 2.59

4 H

Page 45: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14145

Combinational Circuits

Example Example –– 88--input ANDinput AND

Page 46: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14146

Combinational Circuits

Method of Logical EffortMethod of Logical Effort

Compute the path effort: F = GBHFind the best number of stages N ~ log4FCompute the stage effort f = F1/N

Sketch the path with this number of stagesWork either from either end, find sizes: Cin = Cout*g/f

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.

Page 47: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14147

Combinational Circuits

SummarySummary

Sutherland,SproullHarris

Page 48: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14148

Combinational Circuits

PassPass--TransistorTransistorLogicLogic

Page 49: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14149

Combinational Circuits

PassPass--Transistor LogicTransistor LogicIn

puts Switch

Network

OutOut

A

B

B

B

• N transistors• No static consumption

Page 50: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14150

Combinational Circuits

Pass Transistor Logic BasicsPass Transistor Logic Basics

)()()( 2211 nn

iii

VPVPVP

VPF

+++=

= ∑Logic Function:

{ }ImpedanceHigh :

,,,1,0 Signals PassSignals Control

ZZXXV

P

iii

i

−∈==

B

B

A

F = AB + 0B = AB

0

Example: AND GateExample: AND Gate

A, B: A is Input signal, B is the Control Signal

Page 51: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14151

Combinational Circuits

Example: Design of XNOR2Example: Design of XNOR2

(b) Pass-networkKarnaugh map

A as the control signalsB as the passed signals

(a) Truth table

)()( BABAF ⋅+−⋅−=

(c) Logic function

Page 52: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14152

Combinational Circuits

Example: Implementation of XNOR2Example: Implementation of XNOR2

(a) Transmission Gate (b)NMOS (c)Cross-couple

Page 53: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14153

Combinational Circuits

Example2: Construct Boolean FunctionsExample2: Construct Boolean Functions

•Implement:

•Truth Table:

Page 54: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14154

Combinational Circuits

NMOSNMOS--Only LogicOnly Logic

00.0

xOut

In3.0

VDD

In

Outx

0.5µm/0.25µm0.5µm/0.25µm

1.5µm/0.25µm

0.5 1 1.5 2

1.0

2.0

Volt a

ge[V

]Time [ns]Suffer from

•Vt degradation (Vx = Vdd- Vt(x))•Body effect (Vsb, Vx has value and Vt(x) is bigger than Vt(0))

Page 55: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14155

Combinational Circuits

NMOSNMOS--only Switchonly Switch

CL

A = 2.5 V

B

C = 2.5VM2

M1

Mn

C = 2.5 V

A = 2.5 V B

VB does not pull up to 2.5V, but 2.5V -VTNThreshold voltage loss causes

static power consumptionNMOS has higher threshold than PMOS (body effect)

Page 56: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14156

Combinational Circuits

NMOS Only Logic: NMOS Only Logic: Level Restoring TransistorLevel Restoring Transistor

Mn

M2

Mr

VDDVDDLevel Restorer

B

XA Out

M1

•Advantage: Full Swing•Restorer adds capacitance, takes away pull down current at X•Ratio problem among (Mr and Mn)

Page 57: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14157

Combinational Circuits

Restorer SizingRestorer Sizing

0 100 200 300 400 5000.0

1.0

2.0

W/Lr =1.0/0.25 W/Lr =1.25/0.25

W/Lr =1.50/0.25

W/Lr =1.75/0.25

Vol

tage

[V]

Time [ps]

3.0

•Upper limit on Restorer Transistor size

Page 58: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14158

Combinational Circuits

Solution 2: Single Transistor Pass Gate with Solution 2: Single Transistor Pass Gate with VVTT=0=0

VDD

VDD

2.5V

VDD

0V 2.5V

Out0V

WATCH OUT FOR LEAKAGE CURRENTS

Page 59: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14159

Combinational Circuits

Complementary/Differential Pass Transistor Complementary/Differential Pass Transistor Logic (CPL/DPL)Logic (CPL/DPL)

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=A⊕ΒÝ

F=A⊕ΒÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-TransistorNetwork

Pass-TransistorNetwork

AABB

AABB

Inverse

(a)

(b)

Page 60: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14160

Combinational Circuits

Differential Cascode Voltage Switch Logic (DCVSL) (p.267)

VDD VDD

PDN1 PDN2

M1 M2

Out Out

AABB

VSS VSS

Differential Cascode Voltage Switch Logic (DCVSL)

Page 61: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14161

Combinational Circuits

DCVSL ExampleDCVSL Example

B

A A

B B B

Out

Out

XOR-NXOR gate

Page 62: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14162

Combinational Circuits

DCVSL Transient ResponseDCVSL Transient Response

0 0.2 0.4 0.6 0.8 1.0-0.5

0.5

1.5

2.5

A B

A B

A,BA,BV

olta

g e[V

]

Time [ns]

Page 63: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14163

Combinational Circuits

Solution 3: Use of Transmission GateSolution 3: Use of Transmission GateC

C

A A BB

CC

C = 2.5 V

CL

C = 0 V

A = 2.5 VB

Page 64: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14164

Combinational Circuits

Analysis of TG (Transmission Gate)Analysis of TG (Transmission Gate)

outDDnGS

outDDnDS

VVVVVV

−=

−=

,

,

DDpGS

DDoutpDS

VV

VVV

−=

−=

,

,PMOS:

NMOS:

G

G

S

S D

D

peqneqTGeq

pSD

outDDpeq

nDS

outDDneq

pSDnDSD

RRR

IVVR

IVVR

III

,,,

,,

,,

,,

||=

−=

−=

+=

Page 65: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14165

Combinational Circuits

Analysis of TG (I)Analysis of TG (I)

Page 66: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14166

Combinational Circuits

Analysis of TG (II)Analysis of TG (II)

Page 67: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14167

Combinational Circuits

Resistance of Transmission GateResistance of Transmission Gate

Page 68: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14168

Combinational Circuits

Application1: Inverting 2Application1: Inverting 2--toto--1 Multiplexer1 Multiplexer

AM2

M1

B

S

S

S F

VDD

GND

VDD

A BS S

S S

F

)( BSASF ⋅+⋅=

Page 69: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14169

Combinational Circuits

Application2: 6Application2: 6--T(ransistor) XOR GateT(ransistor) XOR GateTruth Table

A

B

F

B

A

B

BM1

M2

M3/M4011101110000

FAB

A

A

A

A

B=0: Pass A SignalB=1: Inverting A Signal

6T has the inverter of B

Page 70: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14170

Combinational Circuits

Application3: Transmission Gate Full AdderApplication3: Transmission Gate Full Adder(to be discussed in Chapter 11)(to be discussed in Chapter 11)

A

B

P

Ci

VDDA

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Similar delays for Sum and Carry

Page 71: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14171

Combinational Circuits

Delay in Transmission Gate NetworksDelay in Transmission Gate Networks

V1 Vi-1

C

2.5 2.5

0 0

Vi Vi+1

CC

2.5

0

Vn-1 Vn

CC

2.5

0

In

V1 Vi Vi+1

C

Vn-1 Vn

CC

InReqReq Req Req

CC

(a)

(b)

C

Req Req

C C

Req

C C

Req Req

C C

Req

C

m

In

(c)

Page 72: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14172

Combinational Circuits

Delay OptimizationDelay OptimizationBuffer can be

(a) Inverter pairs(b) One inverter +Final correcting inverter

Page 73: Chapter 6 (I)access.ee.ntu.edu.tw/.../ppt/lecture_10_chapter6-1_PartI_05-15-2003.… · Logic Circuits •Static CMOS •Pass Transistor Logic V1.0 4/25/03 V2.0 5/4/03 V3.0 5/15/03

EE14173

Combinational Circuits

SummarySummary

Fan-in and Fan-out of gates play an important role in CMOS circuit speed.Concept of Logic Efforts can generalize the invert chain design to complex gate chain design.Pass Transistor Logic leads low-power, low-footprint designs, but it should be used with special care.