25
Chapter 5: Phonons (2) Thermal Properties Phonon heat capacity Planck distribution Density of states Debye model for D.O.S. Debye T 3 law Einstein model for D.O.S. Thermal conductivity Thermal resistivity Umklapp process

Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Chapter 5: Phonons (2) Thermal Properties

Phonon heat capacity

Planck distribution

Density of states

Debye model for D.O.S.

Debye T3 law

Einstein model for D.O.S.

Thermal conductivity

Thermal resistivity

Umklapp process

Page 2: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Phonon Heat Capacity

• Heat capacity at constant volume ~

• Phonons’ contribution to CV ~ the lattice heat capacity (Clat)

• other than phonons? electrons’ contribution to CV (Ch. 6)

• Total energy of the phonons at a temperature T in a crystal ~ the sum of the energies over

all phonon modes

where is the energyV

V

UU

CT

Page 3: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

x <n>

1 0.5

2 1.5

3 2.5

x x - 0.5

~ 진동수 w의 phonon이 온도 T일 때

몇 개인지에 대한 통계적 분포

Wave vector K를 가지면서 진동수 w인 phonon이 평균적으로 몇 개인가?

또는 몇 번째 excited state를 평균적으로 점유하고 있는가?

Page 4: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Planck Distribution (1)

• Consider a set of identical harmonic oscillators in thermal equilibrium

• Since the number of particles with an energy of Ei is proportional to exp(-Ei/kBT)

(Boltzmann factor), the ratio of the number of oscillators in the (n+1)th state to the number

in the n-th state is

• The fraction of the total number of oscillators in the n-th quantum state is

• • •

T 1

For each harmonic oscillator,

1( )

2n

n n

E n

E E

w

w

1 1exp( / ) exp[ ( ) / ]

exp( / ) exp( / )exp( / ) 1n B n B

n B n B

nB

n

E k T E k T

E k T

Nk T

E kN Tw

w

0

0

2

01 2

0

exp( / )

exp( /(1

))

n

n Bn

B

s

N n k TP

N N

N

Ns k T

NN

w

w

임의의 조화진동자가 n번째 양자상태에 있을 확률

1

/ Bk Tw

Page 5: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Planck Distribution (2)

• The average excitation quantum number of an oscillator is

• The Planck distribution is given by

• Total energy of phonon at T is

0

0

0

exp( / )

exp( / )

B

ss

sB

s

s s k T

n sP

s k T

w

w

온도 T의 평형 상태에서 진동자의 평균적인 양자상태의 수

1

exp( / ) 1B

nk Tw

,

,

,

,exp( / ) 1

K p

lat

K p K p

K p K p

K p

nUw

w w

x-1

0 2 40

2

4

<n

>

x

0 1 2 3 40

1

2

3

<n

>

x-1

Page 6: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Normal Model Enumeration

• Total energy of oscillators of frequency w in thermal equilibrium is

• For the calculation, an integral form is preferred.

• When the crystal has Dp(w)dw modes between w and w+dw,

• Lattice heat capacity,

• The central problem is to find D(w), the number of modes per unit frequency range ~ the

density of modes or the density of states

,

,exp( / ) 1

K p

K p K p

Uw

w

,

,

( )exp( / ) 1 exp( / ) 1

K p

p

K p pK p

U d Dw w

w ww w

2

2( ) wher

(e

)

1/

x

B p xp

x ek d D x

eww w

Page 7: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Density of States in One Dimension – Fixed boundary condition

• Consider vibrations of a 1-dim line of length L carrying N+1 particles at separation a.

• Boundary conditions : the end atoms at s = 0 and N are fixed

• Vibrational mode : standing wave with a displacement, us, of the particle s

N+1 particles in a line

with a length of L = Na

( ) 0 sin( ) 0 ~ trivial solution

( ) sin( ) 0 ~ , / /

2 3 ( 1) , , , ,

i s sKa

ii s N NKa NKa n K n Na n L

NK

L L L L

NK

L a

s = N

~ indistinguishable with other K' < /a

(there are N-1 moving particles)

N half-waves

Page 8: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Density of States in One Dimension – Periodic boundary condition

• For the unbounded medium, the solutions are periodic over a large distance L

~ u(sa) = u(sa+L) : periodic boundary condition

• The traveling wave solution is

-One mode for the interval of DK = 2/L

s = N

L = Na

0 ,exp[ ( )]s K pu u i sKa tw

~ N independent solutions

~ N particles can move independently

Page 9: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

• In 1-dimensional case,

the number of modes per unit frequency range is D(w) ~ density of states

- the number of modes D(w)dw is given by

where dw/dK is the group velocity, which is obtained from the dispersion relation

• In 2-dimensional caes :

- When a periodic boundary condition is applied over a square of side L for a square lattice

of lattice constant a,

- The interval DK = 2/L for each direction of x and y

- Average area of (2/L)2 per one value of K

- Within the circle of area K2, the number of allowed

points (vibration modes or states) is

1(

( )2 /( )2)

L dKD d d

d

L ddN

d dKw w w

w

w

w

222

222

K LK

L

Page 10: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Density of States in 3-Dimensions

• Apply periodic boundary conditions over N3 primitive cells within a cube of side L

L L

L = Na

Number of allowed values of K per unit volume of K space

22

23( )

24

8

dN dN dK V dKK

d dK d

K

d

VK dD

d

w w w

w w

How to find dK/dw ? (i) Debye model (ii) Einstein model

Page 11: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Debye Model for Density of States

K

w

v

2

2( )

2

VK dKD

dw

w

Wavevector larger than KD is not allowed in the Debye model.

~ D.O.S. (Debye model)

3 3

3 2

4

8 3 6

V K VKN

Page 12: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

2

2 3( )

2

VD

v

ww

1/326

D

Nv

V

w

N

, BB

k Tk Tx d dxw w

3 4

22 3 2 3 2

0 0

3 3 exp( / )

2 exp( / ) 1 2 exp( / ) 1

D D

V B

U V Vd d

T v T v k T

w ww w w

w w w w

Page 13: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

3T

3

BNk

for T

(Debye theory)

Experiment

3T

Page 14: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Debye T3 Law (1)

• At very low temperature, xD = /T >> 1

2 2 3

1

10

11 1 1

1

0

0 0 0

1 1

( ) :

(1 ) exp( )1 (1 )

, Let

1 1

x x x x x x

x x xs

n sx

s

nn sx u n u

ns

t

ns

z

s

e e e e e e sxe e e

dx x e u sx

udx x e d

z dt t e Gamma fun

u e du u es s s

ction

0

11

4 43

10

1

( 1)

1( 1) ( 1) ( 1)

(4) (4) 690 1

( ) :

5

n u

ns

sx

s

z

n

z n Riem

du u e n

n n ns

ann zeta functio

dx x e

n

3 43

41 10 0

1 exp( ) 6

1 15xs

xdx dx x sx

e s

Page 15: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Debye T3 Law (2) 3 4

01 15x

xdx

e

• Low temperature heat capacity of solid argon, plotted

against T3. Here, = 92 K

Page 16: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector
Page 17: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Einstein Model of the Density of States

• • •

T

Page 18: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

General Result for D(w)

• How to obtain a general expression for D(w), the number of states per unit frequency range, from

the phonon dispersion relation w(K).

Element of area dSw on a constant

frequency surface in K space.

~ Perpendicular distance between two

constant frequency surfaces in K space,

one at w and the other at frequency w+dw

d

dK ddK

ww

K공간상의 w면에서 적분을 수행하고

여기에 w+dw 면까지의 거리를 곱함

~ Integral taken over the area of the surface w constant in K space

Page 19: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

• Debye solid : D(w) is proportional to w2

• Actual crystal structure :

- Kinks or discontinuities develop at singular points where group velocity vg = 0.

- Van Hove singularities

Page 20: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

~ O(nm)

Page 21: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

• From the kinetic theory of gases, the thermal conductivity is given by

where C is the heat capacity per unit volume, v is the average particle velocity, and is the mfp of a

particle between collisions.

• Thermal conductivity in dielectric solids ~ C as the heat capacity of the phonons, v the phonon velocity,

and the phonon mean free path.

• Elementary kinetic theory :

1

3K Cv

T T+DT x

- Flux of particles in the x direction : where n is the concentration of molecules

(there is a flux of equal magnitude in the opposite direction)

- Particle moving from T+DT to T gives up energy cDT, where c is the heat capacity of a particle.

- Temperature difference during a free path of the particle is given by

- Net flux of energy :

- Since v is constant for phonons (~ Debye approximation)

2

2

1 1( ) ( )

2 2

1

3

U x x x x x x

dT dTj n v c T n v c T n v c T n v c v n v c

dx dx

dTn v c

dx

D D D

, : average time between collisionsx

dT dTT v

dx dx D

2 1=

3

1 1 where , , and

3 3U

dT dTj Cv K

dx dx

dTnv c v C nc K Cv

dx

(생략 가능)

Page 22: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

~ K-1

Page 23: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Normal Collision Process

• Normal phonon collision (or three-phonon) process : K1 + K2 = K3

- Since DK = K3 – (K1 + K2) = 0, the phonon momentum is conserved

- Energy is conserved ~ w1 w2 w3

- Phonon flux is unchanged (no effect on thermal resistivity)

~ Kn unchanged after collisions K

J K

1st B.Z.

Page 24: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Umklapp (“flip-over”) Process

• When the resulting wavevector K1+K2 reaches out of the first Brillouin zone,

we can define K3 satisfying K1 + K2 = K3 + G, where G is a reciprocal

lattice vector.

• Energy is conserved (w1 w2 w3) but momentum (phonon wavevector) is

not conserved

• Always possible in periodic lattices ~ the wavevector in the first Brillouin

zone is the only meaningful phonon

• A collision of two phonons both with a positive value of Kx can create a

phonon with negative Kx ~ “flip-over” or umklapp process

• K1 and K2 should be large enough to generate K3 exceeding the FBZ ~ the U

process requires high temperature to generate such high valued phonons.

• At high temperature T > , substantial proportion of all phonon collisions

are U processes ~ decrease of the mean-free path ~ finite thermal resistivity

http://upload.wikimedia.org/wikipedia/en/7/7b/Phonon_k_3k.gif

Page 25: Chapter 5: Phonons (2) Thermal Properties - KOCWcontents.kocw.net/KOCW/document/2015/korea_sejong/... · 2016. 9. 9. · Umklapp (“flip-over”) Process • When the resulting wavevector

Size effect (l ~ D)