63
Chang-Han Yun / Ph.D. Hankyung University June , 2015 Chapter 5. Membrane Filtration Process

Chapter 5. Membrane Filtration Processelearning.kocw.net/KOCW/document/2015/hankyong/yunchang... · 2016. 9. 9. · Hankyong National University Membrane Filtration Process 5 Dialysis

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Chang-Han Yun / Ph.D.

    Hankyung University

    June , 2015

    Chapter 5. Membrane Filtration Process

  • 2 Membrane Filtration Process Hankyong National University

    Contents

    1. Membrane Separation Process

    5. Waste Water Reuse

    4. Desalination

    3. Reverse Osmosis(RO)

    2. Filtration Membrane

    Contents Contents

    6. Reference for Industrial WW Reuse

  • 3 Membrane Filtration Process Hankyong National University

    1. Membrane Separation Process

    1. Filtration Membrane

    6. Membrane Reactor

    4. Facilitated Transport Membrane

    3. Membrane Contactor

    2. Dialysis Membrane

    Membrane

    Processes Membrane

    Processes

    7. Bio Membrane

    5. Permselective Membrane

  • 4 Membrane Filtration Process Hankyong National University

    Filters Pore Size

    (㎛) Separation

    Mechanism Application

    Operating

    Pressure(bar)

    Particle Filter(PF)

    Roughing Filter(RF) 5.0 ∼ 1,000 Sieving SS removal 0.03 ∼2.0

    Micro Filter(MF) 0.05 ∼ 5.0 Sieving

    (Porous)

    Colloid/Bacteria

    removal 1.0 ∼ 5.0

    Ultra Filter(UF) 0.05∼0.005 Sieving

    (Porous)

    Colloid/Virus

    removal 1.0 ∼ 5.0

    Nano Filter(NF)

    0.001

    ∼ 0.005

    Solution-diffusion-

    imperfection

    (Non-porous)

    Salt(>+2)

    rejection

    5.0 ∼ 10.0

    Hyper Filter(HF)

    Reverse Osmosis(RO)

    Forward Osmosis(FO)

    0.00005

    ∼ 0.0005

    Solution-diffusion-

    imperfection

    (Non-porous)

    Salt(>+1)

    rejection 10.0 ∼ 70.0

    Filtration 1. Membrane Separation Process

  • 5 Membrane Filtration Process Hankyong National University

    Dialysis

    Membranes

    Characteristics Separation

    Mechanism Application

    Retentate Permeate

    Size Comp.

    Dialysis Macro Solutes

    Micro Minor

    (solvent)

    Sieving and

    hindered diffusion Acid, Alkali

    (>0.02㎛)

    Hemo-

    Dialysis (HD) (0.005㎛) 〃 〃 〃 Artificial kidney

    Donnan-

    Dialysis (DD) Charged ions 〃 〃 Ion-exchange

    Pretreatment of

    desalination

    Metal recovery

    Electro-

    Dialysis (ED)

    Co-ions,

    Macro-ions,

    Water

    Micro

    (ions) Minor 〃

    Desalination

    Chloro-Alkali

    Electro-Dialysis

    Reversal (EDR) 〃 〃 〃 〃 〃

    Dialysis 1. Membrane Separation Process

  • 6 Membrane Filtration Process Hankyong National University

    Membrane

    Contactors

    Characteristics Separation

    Mechanism Application

    Retentate Permeate

    Size Comp.

    Membrane-based

    Solvent Extraction

    (MSE/MSX)

    Solvent

    Less soluble Minor

    More

    soluble

    Solubility

    difference

    Organic pollutants removal

    Olefin extraction

    Metal recovery

    Membrane

    Stripping

    (MS)

    Water

    Less soluble 〃

    More

    volatile 〃

    Dissolved gas(air, NH3 etc)

    free water

    Membrane

    Distillation

    (MD)

    Non-volatile Either

    volatile

    High volatility

    and diffusion

    Concentration of liquid

    foods

    Pore

    Condensation

    (PC)

    Permanent

    gas Minor Condensable

    Pore condensation

    and permeation VOC removal from gas

    Membrane

    Contactor 1. Membrane Separation Process

  • 7 Membrane Filtration Process Hankyong National University

    Facilitated

    Transport

    Membrane

    Characteristics Separation

    Mechanism Application

    Retentate Permeate

    Size Comp.

    Emulsion Liquid

    Membrane

    (ELM)

    Water

    Less soluble

    /reactive

    Minor

    More

    soluble

    /reactive

    Solubility difference

    Reaction kinetics

    Zn recovery in viscose rayon

    Metal/Protein recovery

    Phenol removal

    Immobilized

    Liquid Membrane

    (ILM/SLM)

    〃 〃 〃 〃 Metal/Protein recovery

    Phenol removal

    Acid gas removal

    Contained Liquid

    Membrane

    (CLM)

    〃 〃 〃 〃 〃

    Facilitated

    Transport 1. Membrane Separation Process

  • 8 Membrane Filtration Process Hankyong National University

    Permselective

    Membrane

    Characteristics Separation

    Mechanism Application

    Retentate Permeate

    Size Comp.

    Gas Permeation

    Membrane

    (GPM)

    Less soluble Either More soluble Solution-

    diffusion

    H2S removal in natural gas

    CO2 recovery in flue gas

    H2, He purification

    N2, O2 enrichment

    Vapor Permeation

    Membrane

    (VPM)

    Permanent gas

    Less soluble Minor More soluble 〃

    Water vapor removal

    VOC/VIC removal

    Pervaporation

    (PV) Less soluble 〃

    More volatile

    More soluble 〃

    Alcohol/H2O separation

    VCM recovery in

    PVC synthesis process

    Permselective 1. Membrane Separation Process

  • 9 Membrane Filtration Process Hankyong National University

    Relative Size

    of Common

    Material

    Molecular

    Weight

    0.001 0.01 0.1 1.0 10 100 1000

    100 200 5,000 20,000 100,000 500,000

    Aqueous Salt

    Metal Ion

    Filtration

    Technology

    Pyrogens

    Virus

    Colloidal Silica

    Bacteria

    Carbon Black Paint Pigment

    Yeast Cells Beach Sand

    Pollens

    Reverse Osmosis

    Ultra-Filtration

    Micro-Filtration

    Particle Filtration

    Nano-Filtration

    Soluble Removal

    (Ions, COD) Colloid Removal SS Removal

    SDI(0.05㎛) SS filter(1.4㎛)

    Filtration

    Spectrum 2. Filtration Membrane

  • 10 Membrane Filtration Process Hankyong National University

    Membrane

    Module

    Tubular Spiral Wound

    Hollow Fiber Plate & Frame

    2. Filtration Membrane

  • 11 Membrane Filtration Process Hankyong National University

    Module

    Characteristics

    Module type

    Items Spiral wound Hollow fiber Tubular Plate & Frame

    Typical Packing Density

    m2(Area)/m3(Volume) 800 6,000 70 500

    Required feed flow rate

    (m/s) 0.25∼0.5 ∼0.005 1∼5 0.25∼0.5

    Feed pressure drop

    (kg/cm2) 3∼6 0.1∼0.3 2∼3 3∼6

    Membrane fouling

    propensity High High Low Moderate

    Ease of cleaning Poor to good Poor Excellent Good

    Feed stream filter size (㎛) 10∼20 5∼10 Not required 10∼25

    2. Filtration Membrane

  • 12 Membrane Filtration Process Hankyong National University

    Polysulfone

    Spacer

    0.2㎛

    50㎛

    120㎛

    Support layer

    Polyamide

    (Active layer)

    Support Layer(50㎛)+ Active Layer(0.2㎛)

    Ion separation using reverse osmosis

    Spiral Wound 2. Filtration Membrane

  • 13 Membrane Filtration Process Hankyong National University

    Feed Spacer

    Feed Spacer

    Polysulfone

    Product Spacer

    0.2㎛

    50㎛

    120㎛

    Support layer

    Polyamide

    (Active layer)

    Product Spacer

    Support Layer(50㎛)+ Active Layer(0.2㎛)

    Ion separation using reverse osmosis

    Spiral Wound 2. Filtration Membrane

  • 14 Membrane Filtration Process Hankyong National University

    Hollow Fiber

    Non-Braid Type

    Braid Type

    (Reinforced)

    2. Filtration Membrane

  • 15 Membrane Filtration Process Hankyong National University

    Hollow Fiber

    Submergible Type Case Type

    2. Filtration Membrane

  • 16 Membrane Filtration Process Hankyong National University

    MBR

    MBR : Membrane Bio Reactor

    → (Bio treatment + Membrane filtration) Reactor

    2. Filtration Membrane

    Raw WW

    Anaerobic

    Tank

    Anoxic

    Tank

    Aerobic

    Tank Membrane

    Module

    Pump Filtrate

    Effluent

    Filtrate

    Tank

  • 17 Membrane Filtration Process Hankyong National University

    MBR

    Aerobic Bio Degradation

    Bio

    Pollutants(Org/T-N) + O2(Air) CO2 ↑ + H2O + Cell

    Sludge

    Blower Excess Sludge

    WW

    MLSS(Mixed Liquor Suspended Solid)

    • MLSS of Conventional Activated Sludge : 1,500 ∼ 4,000 mg/L

    • MLSS of Aerobic MBR : 4,000 ∼ 10,000 mg/L

    MLVSS(Mixed Liquor Volatile Suspended Solid) : 70% of MLSS in general

    SRT(Sludge Retention Time) : 20 ∼ 30 days in general

    2. Filtration Membrane

  • 18 Membrane Filtration Process Hankyong National University

    Fouling

    Deposit → Remove through Flushing / Backwashing

    Clogging

    Cake Formation

    Plugging → Recover by Using Backwashing / CIP (※ CIP : Chemical In Placed)

    Fouling

    La

    yer

    Cake Layer formed on the surface of membrane by deposition of SS in feed

    Gel Not movable layer of soluble polymer formed on the surface of membrane by

    concentration

    Scale Insoluble hardness layer formed on the surface of membrane by concentration

    Pore Blocking Block the pore inside by adsorption of organic or salting-out of inorganic salt

    Path Blocking Block the path of feed stream in membrane module by SS

    2. Filtration Membrane

  • 19 Membrane Filtration Process Hankyong National University

    Fouling

    Air Flushing : Continuous supply the air to the bottom of membrane frame

    Backwashing by flowing-back the filtrate :

    ※ 0.5∼1.0 min. after every 20∼30 min. filtration(backwash flux = 1.5∼2.0 × filtration flux)

    CEBW : Chemical Enhanced Back Wash(Backwashing using filtrate containing HOCl)

    ※ 1 time per day

    CIP

    ※ 1 time per 3 months

    To maintain stable operation, the efficiency of air flushing is most important.

    To enhance the flushing effects

    Module & Frame Structure → Optimization of aerator : air stream line, bubble size, volume

    Roughness of Membrane Surface

    2. Filtration Membrane

  • 20 Membrane Filtration Process Hankyong National University

    Operating

    Principle of RO

    Osmosis Reverse Osmosis

    Osm

    osi

    s

    Low Salt

    Solution

    High Salt

    Solution

    Mem

    bra

    ne

    Mem

    bra

    ne

    ΔP

    ΔP

    - O

    smo

    sis

    Low Salt

    Solution

    High Salt

    Solution

    3. Reverse Osmosis

  • 21 Membrane Filtration Process Hankyong National University

    Salt and water

    ΔP

    water

    ΔP

    water

    Salt

    Reverse Osmosis

    Operating Principle of RO

    Water Desalination Cost

    Operating

    Principle of RO 3. Reverse Osmosis

  • 22 Membrane Filtration Process Hankyong National University

    RO Membrane

    Material

    Poly-Amide

    (PA)

    Cellulose

    (CA)Remark

    2∼12 4∼6

    15 30

    TDS 99+ 98

    SiO2 99+ 95

    Stable Unstable

    Production Rate Salt Rejection Performance Drop

    Salt Permeability 30%↑ 100%↑

    Salt Rejection 99% → 98.7% 98% → 96%

    Very Low Low

    High Low

    Oxitant Resistance

    Physico-Chemical Stability

    Materials

    Items

    pH Range

    Operating Pressure (kgf/cm2)

    Salt

    Rejection(%)

    Fouling

    Long Time Using

    After 3 Years

    Using

    3. Reverse Osmosis

  • 23 Membrane Filtration Process Hankyong National University

    RO Membrane

    Rejection

    NO Inorganic Rejection(%) MW NO Organic Rejection(%) MW

    1 NaF 99 42 1 HCHO 35 30

    2 NaCN 98 49 2 CH3OH 25 32

    3 NaCI 99 58 3 C2H5OH 70 46

    4 SiO2 99 60 4 Isopropyl Alcohol 90 60

    5 NaHCO3 99 84 5 Urea 70 60

    6 NaNO3 99 85 6 Lactic Acid(pH 2) 94 90

    7 MgCl2 99 95 7 Lactic Acid(pH 5) 99 90

    8 CaCl2 99 111 8 Glucose 98 480

    9 MgSO4 99 120 9 Sucrose 99 342

    10 NiSO4 99 155 10 Disinfectant 99 -

    11 CuSO4 99 160 11 BOD 95 -

    12 COD 97 -

    3. Reverse Osmosis

  • 24 Membrane Filtration Process Hankyong National University

    RO Membrane

    Rejection

    NO Cation Rejection(%) NO Anion Rejection(%)

    1 Na+ 97 1 Cl- 99

    2 Ca2+ 99 2 HCO3- 98

    3 Mg+2 99 3 SO42- 99

    4 K+ 98 4 NO3- 96

    5 Fe3+ 99 5 F- 98

    6 Mn2+ 99 6 SiO2- 99

    7 Al3+ 99 7 PO43- 99

    8 NH4+ 99 8 Br2+ 98

    9 Cu2+ 99

    10 Ni2+ 99

    11 Zn2+ 99

    12 Sr2+ 98

    13 Cd+2 99

    14 Ag+ 99

    15 Hg2+ 99

    3. Reverse Osmosis

  • 25 Membrane Filtration Process Hankyong National University

    1. Rejection of inorganic > organic

    2. Rejection of electrolyte > non-electrolyte

    3. Valence↑ → Rejection ↑

    4. Hydration number and ion size of inorganic ions ↑ → Rejection ↑

    5. Molecular size of non-electrolyte ↑ → Rejection ↑

    6. Gaseous salt, Gas(NH3, Cl2, CO2, O2, H2S) : low rejection

    7. Weak acid : low rejection

    ※ Rejection of organic acid : Citric acid > Tartaric acid > Acetic acid

    Characteristics

    of RO 3. Reverse Osmosis

  • 26 Membrane Filtration Process Hankyong National University

    Operation Mode

    Permeate R O

    Raw

    Water

    Tank

    Raw Water

    Concentrate

    Boosting Pump

    High pressure Pump

    Batch

    R O

    Raw

    Water

    Tank

    Continuous (Feed & Bleed)

    R O

    Raw

    Water

    Tank

    R O

    R O

    Continuous (One-Through)

    Permeate

    Permeate

    Concentrate

    Concentrate

    Concentrate

    Concentrate

    High Pressure

    Pump

    Boosting Pump

    Boosting Pump

    High Pressure

    Pump Permeate

    Permeate

    Raw Water

    Raw Water

    3. Reverse Osmosis

  • 27 Membrane Filtration Process Hankyong National University

    S/W for Simulation

    of RO Block 3. Reverse Osmosis

  • 28 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO) 4. Desalination

  • 29 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO) 4. Desalination

  • 30 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO) 4. Desalination

  • 31 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO)

    with Energy Recovery 4. Desalination

  • 32 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO)

    with Energy Recovery 4. Desalination

  • 33 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO)

    with Energy Recovery 4. Desalination

  • 34 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO)

    with Energy Recovery 4. Desalination

  • 35 Membrane Filtration Process Hankyong National University

    Reverse Osmosis(RO)

    with Energy Recovery 4. Desalination

  • 36 Membrane Filtration Process Hankyong National University

    Forward Osmosis(FO) 4. Desalination

    Draw Solution

  • 37 Membrane Filtration Process Hankyong National University

    Forward Osmosis(FO) 4. Desalination

    Membrane Distillation

  • 38 Membrane Filtration Process Hankyong National University

    Forward Osmosis(FO) 4. Desalination

    Membrane Distillation

  • 39 Membrane Filtration Process Hankyong National University

    Forward Osmosis(FO) 4. Desalination

    Combination Process of Membrane(Hybrid System)

  • 40 Membrane Filtration Process Hankyong National University

    Overview 5. Waste Water Reuse

    WWTP

    WW Sewage

    Discharge

    WWTP

    (Existing)

    Return(20~30%)

    Reuse Plant

    (New)

    Reuse(70~80%)

    1. Purpose

    Reuse the effluent of the WWTP by treating up to industrial water quality.

    Solve problems caused by water shortage at the dry season.

    Design to be minimize the cost by adequate combination of the unit equipment.

    Minimize the initial investment by connecting with existing the WWTP.

    2. Concept

    WW Sewage

    Discharge

  • 41 Membrane Filtration Process Hankyong National University

    Reverse Osmosis (RO)

    Ion Exchange Resin (IX)

    Electro Dialysis (ED or EDR)

    3. Usage

    4. Main Equipments

    General purpose(Toilet, Landscape etc.) colloid/SS removal & disinfection by regulation

    Replace industrial water colloid/SS, BOD, COD and ions removal

    Separation processes are simple isolation of pollutants from water physically,

    not vanish them. So, they basically have a problem that generate the concentrate

    containing highly concentrated pollutants.

    Overview 5. Waste Water Reuse

  • 42 Membrane Filtration Process Hankyong National University

    1st Pre-treatment(Remove particle)

    ▶ Screen ▶ Sand Filter(SF) ▶ Multi-Media Filter(MMF) ▶ Fiber Filter

    2nd Pre-treatment(Remove soluble organic)

    ▶ Activated Carbon(AC) ▶ Advanced Oxidation Process(AOP)

    3rd Pre-treatment(Remove Colloid)

    ▶ Micro Filter(MF) ▶ Ultra Filter(UF) ▶ Double Stage Fiber Filter

    Safety Filter

    ▶ Cartridge Filter(1∼2 ㎛)

    RO / NF(Salt rejection)

    Filtrate to Service

    Concentrate

    (to WWTP)

    Raw Water

    Basic Concept

    ※ SDI : Silt Density Index

    ※ LSI : Langelier Saturation Index

    ☞ SDI < 5.0

    ☞ CODCr < 10 mg/ℓ

    ☞ LSI < - 0.1

    5. Waste Water Reuse

  • 43 Membrane Filtration Process Hankyong National University

    Process

    Purpose : Pollutants removal to discharge the concentrate

    Purpose : Produce ultra pure water(2nd de-ionized water)

    Effluent

    Discharge

    (20~30%)

    Pretreatment

    Salt Rejection(IX/RO/ED etc.)

    Advanced

    treatment

    Reuse

    (70~80%)

    Post treatment

    Optional

    Purpose : Protect the membrane from fouling

    Target Pollutants : Organics, SS, Colloid, Scale etc.

    Purpose : Produce industrial water(1st de-ionized water)

    Target Pollutants : Dissolved salts/ions and organics

    1. Pre-treatment

    2. RO

    3. Advanced treatment

    4. Post treatment

    5. Waste Water Reuse

  • 44 Membrane Filtration Process Hankyong National University

    Pre-treatment

    Optional

    Effluents from WWTP

    Particle Filter (PF)

    Granular Activated Carbon(GAC)

    MF / UF Membrane

    Disinfectants

    RO Process Purpose : Stable pretreatment under 2.0 of SDI15

    Purpose : Protect RO from organic fouling

    Target Pollutants : Dissolved polymer and organics

    Purpose : Protect RO from colloidal fouling

    Equipment : SF, MMF, Fiber filters, etc.

    Target Pollutants : SS, Colloid

    1. Particle Filter(PF)

    2. Granular Activated Carbon(GAC)

    3. MF / UF Membrane

    5. Waste Water Reuse

  • 45 Membrane Filtration Process Hankyong National University

    RO

    Optional

    Pretreatment

    Safety Filter

    Heat Exchanger

    R O

    Scale Inhibitor

    Reductants

    Reuse or Reuse after advanced treatment

    CIP

    Purpose : In-site chemical cleaning system of RO

    Purpose : Emergency protection from colloidal fouling

    Target Pollutants : Foreignbody from pipes and pumps

    Purpose : Maintain minimum temperature of inlet water

    for the stable recovery rate of RO permeate

    Purpose : Reject the salts and ions from inlet water

    Rejection Rate : Minimum 99%

    1. Safety Filter

    2. Heat Exchanger

    3. RO (Reverse Osmosis)

    4. CIP (Chemical In Place)

    5. Waste Water Reuse

  • 46 Membrane Filtration Process Hankyong National University

    Permeate Quality

    of RO

    Items WWTP Effluents RO Permeate Industrial Water(IW)

    pH 6 ~ 8 6 ~ 7 6 ~ 7.5

    Conductivity (uS/cm) 1,200 ~ 4,000 < 50 60 ~ 200

    COD (mg/L) 30 ~ 80 1 1

    SS (mg/L) 10 ~ 60 0 1

    Alkalinity (mg/L) 150 ~ 200 < 20 30 ~ 80

    Hardness (mg/L) 60 ~ 100 < 5 40 ~ 120

    Turbidity (NTU) 2 ~ 10 < 0.5 0.4 ~ 2

    5. Waste Water Reuse

  • 47 Membrane Filtration Process Hankyong National University

    Investment

    of RO

    Equipment

    (million ₩)

    Unit Capital

    (1,000 ₩/(m3/d))

    ※ Based on standard market price(2007)

    5. Waste Water Reuse

  • 48 Membrane Filtration Process Hankyong National University

    Economic Comparison

    Particle

    FilterMF / UF Ozone RO

    60 200 100 360

    Electicity(50₩/kwh) 0.4 20 15 110

    Chemicals 6 2 0 100

    Maintenance 2.6 50 3 33

    Total 9 72 18 243

    17% PAC: 30mg/ℓ

    Life time of filter

    media : 3yrs

    Life time of

    membrane: 5yrs

    Ozone Dose : 6mg/ℓ

    Maintenance:

    3%/yr of capital

    Life time of

    membrane: 3yrs

    Operating

    (₩/m3)

    Remark

    Unit Capital(1000 ₩/(m3/day))

    Equipments

    Items

    ※ Based on 5,000 m3/d capacity and standard market price(2007)

    5. Waste Water Reuse

  • 49 Membrane Filtration Process Hankyong National University

    Economic Analysis

    of Sewage Reuse

    Items Price(million ₩) Remarks

    Machinery

    Pumps 750 Include HP Pump

    Pretreatment 930

    Activated Carbon Filter 700

    MF / UF 2,500

    RO 1,800

    CIP System 65

    Chemical Dose System 45

    General Machinery 200

    Sub-Total 6,990

    Installation with Piping 750

    Electricity and Control System 420

    Engineering with margin 600

    Total 8,760 584,000 ₩/(m3/d)

    ▶ Feed Q : 22,000m3/d, Permeate Q : 15,000m3/d(68% Recovery), Concentrate : 7,000m3/d

    ▶ Basis of raw water conductivity : 1,500 μs/cm

    1. Initial Investment Effluent (22,000 m3/d)

    AC UF RO

    Reuse

    68% Recovery

    15,000 m3/d

    5. Waste Water Reuse

  • 50 Membrane Filtration Process Hankyong National University

    Items Price Amount Cost(1000 ₩)

    day month year

    Pretreatment Filter Media 270 mil ₩/set 1 set/4yrs 188 5,625 67,500

    Activated Carbon Filter 95 mil ₩/set 3 set/yr 792 23,750 285,000

    RO Membrane 850,000 ₩/ea 936 ea/2yrs 1,105 33,150 397,800

    C

    H

    E

    M

    CIP Inorganic Chemicals 10 mil ₩/set 1 set/month 333 10,000 120,000

    Organic Chemicals 10 mil ₩/set 1 set/month 333 10,000 120,000

    Filtration Auxiliary 50,000 ₩/kg 7.5 kg/d 375 11,250 135,000

    Disinfectants 85,000 ₩/kg 3 kg/d 255 7,650 91,800

    Anti-

    foulants

    Anti-scalants 85,000 ₩/kg 3 kg/d 255 7,650 91,800

    Anti-organic foulants 85,000 ₩/kg 3 kg/d 255 7,650 91,800

    Electricity 50 ₩/kwh 11 Mwh/d 550 16,500 198,000

    Total (296 ₩/m3) 4,441 133,225 1,598,700

    ▶ Industrial Water Cost : 15,000 m3/d × 550 ₩/m3 × 360 d/yr = 2,970 million ₩/yr

    ▶ Save : about 1,300 million ₩/yr

    2. Operating

    Economic Analysis

    of Sewage Reuse 5. Waste Water Reuse

  • 51 Membrane Filtration Process Hankyong National University

    Industry

    Item Silicon Wafer Tire Automobile Can Manufacture Steel Manufacture Petro-Chemistry

    Starting Date 1995 1995(?) 1996 1998 2002 2002

    Background Lack of water No discharge permit No discharge permit Lack of water Replace city water Effluent regulation

    Permeate of RO (m3/d) 880 180 2,000 525 10,000 3,128

    Characteristics

    of Raw Water

    Wafer washing WW

    High concentration of

    peroxide

    Fine particle

    CODMn : 150 ppm

    BOD : 95 ppm

    SS : 120 ppm

    N-H : 28 ppm

    With sewage(1:1)

    Cond.: 3,500 μs/cm

    Hardness: 200 ppm

    CODMn : 50 ppm

    N-H : 90 ppm

    TDS : 1,580 ppm

    CODCr : 362 ppm

    Floating Oil

    Raw water:STP effluent

    CODMn : 16∼28 ppm Turbidity : 6∼14 NTU

    NH3 : 980 ppm

    CODMn : 80 ppm

    Cond. : 7,000 μs/cm

    Pre-treatment AC+MF+O3+UV+AC RSF+AC+ PF SF+AC+Cation Ex DAF+MMF+AC+UF MDF+MMF+VF MMF

    SDI 4.0∼5.0 11.0 < 3.0

    RO Recovery(%) 70 60 80 75 75 93

    RO CIP(days) 90 28 14∼21 4.1∼7.3일

    Investment(thousand ₩) 2,000,000 6,000,000 800,000 8,000,000

    Unit Capital Cost

    (thousand ₩/(m3/d)) 2,273 3,000 1,524 2,558

    O

    &

    M

    Fix(₩/day) 1,096

    Labor(1000 ₩/day) 199 800

    Direct Operation

    (1000 ₩/day) 113

    Sum(thousand ₩/d) 1,408

    Unit Operation(₩/m3) 1,600 400 800

    Remark

    •MF CIP : 7days

    •MF Rec. : 90∼95% •#2 AC→ SDI 저하 •CF life time : 7days

    •Organic SS

    •No bio treatment

    •Design :96% recovery

    •CF life time : 15days

    •CODCr : 4 ppm

    •CF life time : 30days

    •2 stage RO

    •Evaporator include

    •AC life time : 30days

    •Dead-end UF

    •No industrial water

    •reused as cooling water

    •RO life time : 2 months

    •RO feed:1∼4 NTU

    •3 stage RO

    •Explosion design

    •Concentrate : use

    as a raw material of

    fertilizer

    ▶ Unit Capital : Very High (> 1,000,000 ₩/(m3/d) )

    ※ Sewage effluent reuse by RO : < 600,000 ₩/(m3/d)

    ▶ No standard process flow for reuse of industrial WW

    Analysis of Reference 6. Reference for Industrial WW Reuse

  • 52 Membrane Filtration Process Hankyong National University

    Characteristics

    1. Raw waste water : Silicon wafer washing WW

    2. H2O2 concentration in WW = 300 ppm → generate COD

    3. Reuse to wafer washing(ultra-pure deionized water, >17 ㏁ )

    4. Re-deionization of RO permeate through 2 stages of Mixed Bed

    5. A part of COD was removed at activated carbon and O3/UV

    6. Most of COD was removed at RO and Mixed Bed

    7. Plant was constructed at Nov. of 1994 and operation was started

    at Aug. of 1995

    Items ① ② ③ ④ ⑤ ⑥ ⑦

    Q(m3/d) 1,400 1,260 880

    COD(mg/l) 200 10 10 0.5

    TOC(mg/l) 30 4

    Cond.(㎲/cm) 500 50

    SS(mg/l) 80 30 0

    SDI15 2∼2.8 2.8 Max. 4-5

    Raw

    WW

    Reservoir → Cool

    ing → AC#1

    MF

    Ozone

    → → →

    ↑ ↑ pH disinfection Concentrate

    ↓ Concentrate ↓

    Reuse ← MB

    (#1+#2)

    RO

    ⑥ Cartridge

    Filter

    AC#2

    UV

    ← ← ← ←

    Operation

    1. Temperature : 25℃

    2. MF operation cycle : 15 minutes

    3. MF CIP cycle : 7 days

    4. MF recovery rate : 90-95 %

    5. RO feed pressure : 15 atm

    6. RO array : 8" module(total 72ea)

    - 1st stage : 6 elements/train×4 trains

    - 2nd stage : (6 elements/train×2 trains)×2 sets

    7. Cartridge filter life time : 7 days

    8. RO CIP cycle : 3 months

    9. RO recovery : 70 %

    Silicon Wafer 6. Reference for Industrial WW Reuse

  • 53 Membrane Filtration Process Hankyong National University

    Specification of unit equipment

    1. AC #1 : COD adsorption and degradation

    - Original design : Bio-reactor using media

    - H2O2 in WW(300 ppm) disturb attachment of bio organism

    - Present status : Use only adsorption column

    (Organic degradation by H2O2)

    2. MF : Removal of SS

    - Material : PP(Pore Size : 0.2㎛)

    - Equipment cost : 700 million ₩

    3. Ozone/UV : COD and TOC break-down

    - Ozone generation : 1kg of O3/hr

    - Ozone contactor size : 1.5 mΦ×5 mL

    - DO of ozonized water : 20 ppm

    4. AC #2 : Residual H2O2 breaking(Micro organism growth)

    5. Cartridge Filter

    - Pore size : absolute 20 ㎛ (normal 5 ㎛)

    - Size : 4 "Φ×20 "L×19 ea×3 sets

    6. RO system : TOC and Salt removal

    - Feed pressure : 15 atm

    - Design : 3 stage(high concentration) → Present : 2 stage operation

    Economy Analysis

    1. Capital Cost upto RO (880m3/d) : 2,000 mil ₩

    2. Operation Cost : 1,600 ₩/m3(include labor)

    ※ 108 ₩/m3(utility, Media, Chemical)

    ☞ Total : 472.6 million ₩/yr

    - Depreciation (10%/yr) : 200 million ₩/yr

    - Interest(10%/yr) : 200 million ₩/yr

    - Labor : 72.6 million/yr

    (2.20 million ₩/mo/person ×3person×12mo)

    Silicon Wafer 6. Reference for Industrial WW Reuse

  • 54 Membrane Filtration Process Hankyong National University

    SF AC #1 AC #2

    ED

    Permeate

    (Reuse)

    DD Al Electro

    Coagulation DAF RSF Sludge

    Sludge

    ① Effluent

    ※ SF : Sand Filter PF : Particle Filter(Marino Filter)

    CF : Cartridge Filter

    ED : Electro Dialysis

    DD : Drum Dryer

    RSF : Rapid Sand Filter

    PF CF R O

    Concentrate

    ② ③ ④ ⑤

    Characteristics

    1. COD Source : Carbon Black(SS)+Soluble Oil

    2. SF+AC : Remove 5 ppm of COD

    3. Design : 96% recovery upto ED,

    (Concentrate : Evaporated by DD)

    4. Present : Discharge concentrate(about 40%)

    Items ① ② ③ ④ ⑤

    Q(m3/d) 240∼300 ← ← ← 144∼180

    BOD(mg/l) 95 4 1

    CODMn(mg/l) 150 4 2.5 2.7 1.1

    CODCr(mg/l) 3.5 4.0

    SS(mg/l) 120 3 0.7 0.5

    SDI5 12.5 11.0

    N-H(mg/l) 28 0.5

    TDS(mg/l) 1,500 81.5

    Conductivity(㎲/cm) 2,000 95.9

    Total Hardness(mg/l) 117 140 2

    TOC(mg/l) 1,607

    Turbidity(NTU) 2∼4

    Operating Conditions

    1. Temperature : 34℃

    2. Cartridge filter life time : 15 days

    3. RO CIP cycle : 28 days

    4. RO recovery : 60 %

    Tire Manufacture 6. Reference for Industrial WW Reuse

  • 55 Membrane Filtration Process Hankyong National University

    SFF AC Cation

    Exchange

    1st

    Evaporator Sludge

    Effluent

    (2,000 m3/d)

    ※ SFF : Sand Flo Filter CF : Cartridge Filter

    VD : Vacuum Dryer

    Heat

    Exchanger

    CF

    (3㎛) 1st RO

    Concentrate

    2nd RO 2nd

    Evaporator VD

    Characteristics

    1. Initial Plan : Discharge to sea(

  • 56 Membrane Filtration Process Hankyong National University

    DAF MMF 1st AC Permeate

    (Reuse)

    2nd AC

    Raw WW

    (700 m3/d)

    ※ DAF : Dissolved Air Floatation MMF : Multi-Media Filter

    UF R O

    Concentrate

    Discharge

    Operation

    1. AC life time : 30 days

    2. SDI of UF Filtrate < 3

    3. RO

    - Temperature : 25℃

    - RO Array : Filmtec BW30 3:2:1×1 block(6 ea/vessel)

    - Pressure : 13 atm

    - Recovery : 75%

    Economics

    1. Investment : 800 million ₩

    2. Operation Cost : 800 ₩/m3

    ※ DAF+AC : 570 원/m3

    Characteristics

    1. Flow Rate : 700 m3/day

    2. N-H : 90 mg/l

    3. NBDCOD > 140 mg/l

    4. After DAF

    - N-H < 1 mg/l, - COD < 56 mg/l

    5. SDI after AC : < 5.0

    6. UF : Dead-End Type UF(BUF)

    Items Raw

    Water DAF MMF 1st AC UF RO 2nd AC

    CODCr(mg/l) 362 142 135 10 10 5 32→18

    CODMn(mg/l) 52 36 34 3 3 1 10→5

    Turbidity(NTU) - 0.53 0.45 0.35 0.30 0.15 2.90→2.86

    TDS(mg/l) 1,580 1,690 1,690 1,680 1,680 80 4,700→4,650

    Can Manufacture 6. Reference for Industrial WW Reuse

  • 57 Membrane Filtration Process Hankyong National University

    Characteristics

    1. Raw WW : Effluent of STP

    2. Purpose of Reuse

    Make-up of cooling water

    Operation

    1. Recovery : about 75%

    2. Rejection : about 99.4%(1,651→9.8 ㎲/cm)

    3. CIP cycle and RO life time

    4. Serious fouling by colloidal and micro organism

    5. Very unstable operation by low efficiency of pre-treatment equipment

    RO Train

    Items #1 #2 #3 #4 #5

    Ave. CIP Cycle(day) 6.6 7.3 4.7 4.1 5.1

    Ave. RO life time교체 33 ? 33 66 66

    MDF MMF VF Filtrate

    to C/T

    Raw WW

    (STP Effluent)

    ※ MDF : Micro Disk Filter MMF : Multi-Media Filter

    VF : Vortisand Filter

    CF R O

    Concentrate

    To WWTP

    Items Raw WW MDF MMF VF CF

    CODMn(mg/l) 16∼28

    Turbidity(NTU) 6.0∼14.0 5.5∼13.0 1.0∼4.0 1.0∼4.0 1.0∼4.0

    E.coli(CFU/ml) 107,600 123,400

    Steel Manufacture 6. Reference for Industrial WW Reuse

  • 58 Membrane Filtration Process Hankyong National University

    WW Filtrate

    Concentrate(raw material fertilizer)

    #1 RO Block

    #3 RO Block

    #2 RO Block

    VMMF

    Permeate

    Concentrate

    Items Raw WW Water Quality

    P9026 P9019 Filtrate Concentrate

    Q m3/day 1,440 1,920 - -

    CODMn mg/L 100 40 600

    T-N Mg NH3/L 971 1,000 < 10 > 15,000

    Conductivity uS /cm 7,000 7,000 < 20 > 100,000

    Recovery % 93.1 6.9

    Petro-chemistry 6. Reference for Industrial WW Reuse

  • 59 Membrane Filtration Process Hankyong National University

    Question and Answer

    Dr. Chang-Han Yun

    E-mail : [email protected]

    Mobile : 010-288-2250

    Contact ☞

  • 60 Membrane Filtration Process Hankyong National University

    Microporous

    Hydrophobic

    membrane

    gas-filled pore

    LIQUID

    gas-liquid

    interference

    immobilized GAS

    Pb

    Membrane wall

    Pgi

    Pli

    Ci

    Cb

    Pgas < Paq

    MC Module

    Feed Water

    Degasfied Water

    Sweep(N2)gas Vacuum

    Membrane Contactor

    Membrane Stripping Appendix – Membrane Contactor

  • 61 Membrane Filtration Process Hankyong National University

    Advantage of Membrane Contactor High contact area

    No flooding

    Independent control of each phase

    Immiscible flow

    Contact Area per Volume in Air Stripping

    Data Equipment

    ft2 / ft3 m2 / m3

    Free Dispersion Columns 1 ∼ 10 3 ∼ 33

    Packed / Trayed Columns 10 ∼ 100 33 ∼ 330

    Agitated Columns 50 ∼ 150 164 ∼ 492

    Membrane Contactors 500 ∼ 2,000 1,640 ∼ 6,562

    Advantage Appendix – Membrane Contactor

  • 62 Membrane Filtration Process Hankyong National University

    Industrial Application of

    Membrane Stripping and Membrane Absorption

    Ultra pure water degassing (DO

  • 63 Membrane Filtration Process Hankyong National University

    Schematic Diagram of Facilitated Transport of Olefin

    Olefin Olefin

    Olefin

    |

    M+

    M+

    M+ = Complexing

    Agent(Ag+)

    Paraffin

    Membrane

    Appendix – Membrane Contactor