84
Chapter 5 Digital Electronics

Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

Chapter 5

Digital Electronics

Page 2: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 2

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

fast (< 100 GHz) low-power (aJ / gate)

5.1 Superconductivity and Digital Electronics

requires cooling new technology new periphery (power supply, packaging, ...)

Page 3: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 3

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

The Cryotron (1956)

Icontr Igate Icontr

Igate

0 1

(a) (b)

5.1.1 Historical Development

• low switching speed of ≈ 10 ns limited by the L/R time

• control line has higher critical magnetic field switching of gate line into normal state

Page 4: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 4

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Icontr Igate

0 1

(a)

Icontr

Igate

0 1

(b)

The Josephson Switch (1966, Matisoo, IBM)

5.1.1 Historical Development

JJ JJ

• critical current of dc SQUID is suppressed below Igate by magnetic field generated by control line switching to voltage state

• sub-ns switching speed achievable

Page 5: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 5

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Rapid Single Flux Quantum (RSFQ) Logic (1985)

5.1.1 Historical Development

(Likharev, Nakajima)

Page 6: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 6

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

1. Fast, low power

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-12

10-11

10-10

10-9

10-8

10-7

ga

te d

ela

y (

s)

power dissipation / gate (W)

5.1.2 Advantages of Josephson Switching Devices

Page 7: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 9

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

2. Matched superconducting striplines for wiring

3. Junction technology available (Nb based)

for 1 Mio. switching elements

5.1.2 Advantages of Josephson Switching Devices

W: line width tI: insulator thickness tM: magnetic thickness e: dielectric constant

Page 8: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 10

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

1. no transistor-like superconducting devices limited gain, fan-out, small parameter spread of Josephson junctions required

5.1.2 Disadvantages of Josephson Switching Devices

Page 9: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 12

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Ic

I

V 2D/e

Igate

Igate Icontr IL

Ic Ls RJ(V) C RL

5.2 The voltage state Josephson logic

• Josephson junction stays in the voltage state after switching latching logic

• to switch back to the zero-voltage state the gate current has to be switched off

Page 10: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 13

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

JJ RL

Ib

Ig

Ls C R(V)

5.2 The voltage state Josephson logic

Simplified circuit diagram

Page 11: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 14

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Characteristic Times

5.2.1 Operation Principle and Switching Times

with

Page 12: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 15

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Switching Speed 1. Turn-on delay:

5.2.1 Operation Principle and Switching Times

3. Steering time:

2. Rise time:

Page 13: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 16

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

0 20 40 60 t (ps)

0 20 40 60 t (ps)

I gate

+ I co

ntr

I L

tt tr

0

DI

5.2.1 Operation Principle and Switching Times

Page 14: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 18

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.2.2 Power Dissipation

Ic

I

V Vg = 2D/e

Igate

for Nb-junction technology:

𝑉𝑔 ≃ 3 mV

𝐼𝑐 ≥ 1 mA @ 4.2 K to avoid thermally activated processes

with 𝑉𝑔 ≃ 𝐼𝑐𝑅N and 𝐼𝑐 ≥ 1 mA ⇒ 𝑅N ≤ 3 Ω

𝑅sg ∼ 10 ⋅ 𝑅N ⇒ 𝑅sg ≤ 30 Ω

⇒ 𝑃diss ≤ 3 × 10−7 Watt ⇒ 𝐸 = 𝑃diss ⋅ 𝜏 ≤ 3 × 10−18 J

Page 15: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 19

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.2.2 Power Dissipation

comparison to semiconductor technology

Page 16: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 20

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3) 1. latching nature of Josephson junction based switch requires to

switch off the bias current

2. global clock system required

3. ac power source Josephson junctions biased with ac current source Shapiro steps

4. switching back into the zero voltage state takes long time problem to recapture the phase in local minimum running state may occur, if we switch on the bias current after a too short time punchthrough effect

5.2.3 Global Clock, Punchthrough

Page 17: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 21

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.2.4 Josephson Logic Gates

general requirements:

• high fan out: a single switching gate should be capable of triggering N

consecutive gates

• large operating margins for stable operation and large tolerable parameters

spread

• small size allowing for very large scale integration (VLSI)

• short switching time allowing for high clock frequency

• low power dissipation allowing for high integration density

• sufficient input -- output isolation allowing for directionality of logic signals

Page 18: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 22

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

magnetically coupled gate

directly/galvanically coupled gate:

Icontr Igate

Icontr Igate

2Ic

Igate

S

R

Ism(Icontr)

Icontr

Ic Ic

Ic Ic

2Ic

Igate

S

R

Ism(Icontr)

Icontr

0

0

Ism

Ism

5.2.4 Josephson Logic Gates

Page 19: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 23

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Icontr

Ic 2Ic Ic

Rd Rd

Igate

RL

Icontr 0

S

R

(a) (b) Is

m

Igate

A

B

3-Junction Interferometer Logic (JIL) Gate

5.2.4 Josephson Logic Gates

Page 20: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 25

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

IA

Ic 3Ic

Rd

3L

RL

IA 0

S

R

(a) (b) IB

Igate

A

B

L

IB

Igate

Current Injection Device (CID)

5.2.4 Josephson Logic Gates

Page 21: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 27

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Icontr J2

RL

Icontr 0

S

R

(a) (b)

Ic1

Igate

Igate

J1

Ism

Ic1+Ic2

Ic1-Ic2

Ioff

Josephson Atto Weber Switch (JAWS)

5.2.4 Josephson Logic Gates

Page 22: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 29

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Icontr

RL

Icontr 0

S

R

(a) (b) Igate

Igate

Ism

Ic1+Ic2

Ic1

Directly Coupled Logic (DCL) Gate

5.2.4 Josephson Logic Gates

Page 23: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 31

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Icontr

RL

(a) (b) Igate

R3

RBP

Icontr J2

R4 RL J1

Igate

J3

R3

Resistor Coupled Josephson Logic (RCJL) Gate

5.2.4 Josephson Logic Gates

Page 24: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 33

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Icontr

RL

Icontr 0

S

R

(a) (b) Igate

Igate

Ism

Ri

Rp

J1

A

B

J2

J3

J4

4-Junction Logic (4JL) Gate

5.2.4 Josephson Logic Gates

Page 25: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 35

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.2.4 Josephson Logic Gates

Page 26: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 36

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3) Types:

NDRO: Non-Destructive Read-Out DRO: Destructive Read-Out Speed: ≈ CPU speed

5.2.5 Memory Cells

Page 27: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 37

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Igate

write write

L/2 L/2

read J3

J1 J2

NDRO

5.2.5 Memory Cells

“0” no flux in the loop no circulating current junction J3 is in zero voltage state: 𝑽 𝑱𝟑 = 𝟎 “1” a single or several flux quanta in the loop finite circulating current junction J3 is in voltage state: 𝑽 𝑱𝟑 ≠ 𝟎

bias current of J3 is below its zero field critical current

Page 28: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 38

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Icontr 0

Ism

``0” ``1”

WR1 WR0

Rea

d

2Ic

J1 J2

control line Icontr

Igate

L

Igate

DRO

5.2.5 Memory Cells

“0” no flux in the loop threshold characteristic 𝐼𝑠

𝑚 𝐼contr is peaked at 𝐼contr = 0

“1” a single or several flux quanta in the loop threshold characteristic 𝐼𝑠

𝑚 𝐼contr is peaked at 𝐼contr ≠ 0 corresponding to a single flux quantum in the SQUID loop

“READ” vary 𝐼gate and 𝐼contr allong the green arrows:

voltage state for “1” and zero voltage state for “0” memory content is destroyed during read-out

Page 29: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 40

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.2.5 Memory Cells

Page 30: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 41

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

MUX shift

Q register

MUX shift

MUX MUX destination controller

source controller

function controller

output controller

A decoder

A memory

cell

B decoder

B memory

cell

A address B address memory I/O

register

I/OC

carry out carry out

data in

function

control

carry in

output

control

destination

control

source

control

ALU

5.2.6 Microprocessors

Page 31: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 43

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

ETL-JC1: integrating Josephson element based on niobium into 4LSI chips, it demonstrated the principle of Josephson computer.

Josephson register and arithmetic logic unit.

5.2.6 Microprocessors

Page 32: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 44

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.2.6 Microprocessors

Page 33: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 45

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.2.6 Microprocessors

Page 34: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 46

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3) specific properties of RSFQ logic

5.3 RSFQ Logic

• nonlatching logic,

• clock frequencies above 100 GHz,

• requirement of overdamped Josephson junctions,

• low power consumption: 𝑃diss ⋅ 𝜏 ≃ 10−18 J per bit.

Page 35: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 47

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

S1

S2

S3

Sn

Sout

V(t)

t

S1

S2

Sout

``0”

``1”

T

T

t t´

5.3.2 Information in RSFQ Logic

Page 36: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 49

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Ic

I

V IcRL

Igate

Igate + Icontr

V

t 0 0

0

1 0

Igate Icontr IL

Ic Ls RL

Ic

I

V 2D/e

Igate

Igate + Icontr

0

1

0

5.3 RSFQ Logic

latching voltage state logic

non-latching flux quantum logic

Page 37: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 50

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Ic

I

V IcRL

Igate

Igate + Icontr

V

t 0 0

0

1 0

Igate Icontr IL

Ic Ls RL

Ic

I

V 2D/e

Igate

Igate + Icontr

0

1

0

5.3 RSFQ Logic

latching voltage state logic

non-latching flux quantum logic

Page 38: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 51

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

-1.0

-0.5

0.0

0.5

1.0

I(t)

/ I

c

0 10 20 30 40 500.0

0.5

1.0

1.5

2.0

V(t

) / I c

R

t / tc

(a)

(b)

5.3.1 Basic Components of RSFQ Circuits

generation of RSFQ pulses

Page 39: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 52

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

SFQ pulse generation

pulse duration: 𝚽𝟎/𝟐𝑰𝒄𝑹𝑵 ≃ 1 ps for 𝐼𝑐𝑅𝑁 = 1 mV

5.3.1 Basic Components of RSFQ Circuits

Page 40: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 53

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Igate

L

SFQ out

J1

J2

ramp in

Icontr

Icontr

0

Ism

t pulse reset

I1

I2

Vout

0 t

Vout

0 Icontr

``0” ``1”

Igate

I1 I2

L2

SFQ out

J2

J1

dc in

Igate

Vout

L1

L3 J3

(a) (c)

(b) (d)

5.3.1 Basic Components of RSFQ Circuits

dc to SFQ converter

Page 41: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 54

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3) Igate,1

J1 J2 J3

Igate,2 Igate,3

L1 L2 L3 A B

J1

L1 A

J2

L2

J3

L3

B

C

Igate,1

Igate,2

Igate,3

J2

Igate

B J1

L2 A

L1

Josephson transmission line

buffer stage pulse splitter

5.3.1 Basic Components of RSFQ Circuits

Page 42: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 56

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

J1 J2

Igate

L

F LS

LR

JS

JR

S

R

LF

0 1

Icirc

Ism

IS

``0” ``1”

Igate

IR

(a) (b)

RS flip-flop or DRO register

5.3.1 Basic Components of RSFQ Circuits

Page 43: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 57

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

J1 J2

Igate,2 L

C LS

LR

JS

JR T L3

0 1

Icirc

OR gate A

B

Igate,1

J1 J2

Igate,A L

LS

LR

JS

JR T

0 1

Icirc

J1 J2

Igate,B L

LS

LR

JS

JR T L3

0 1

Icirc

B

A L3

JA

JB

JA

JB

JC

C

Igate,C

AND gate

5.3.3 Basic Logic Gates

Page 44: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 58

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

J1 J2

Igate

L

out

LS

LR

JS

JR

in

T

0 1

Icirc

J3

NOT gate

5.3.3 Basic Logic Gates

Page 45: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 59

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Igate

0 1

Icirc

Igate

0 1

Icirc

Igate

0 1

Icirc

Igate

0 1

Icirc

Igate

T

out in

shift register

5.3.3 Basic Logic Gates

Page 46: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 60

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

simulation: maximum delay about 6𝜋𝜏𝑅𝐿

overdamped Josephson junctions:

5.3.5 Maximum Speed of RSFQ Logic

3 µm technology: 2𝜋𝜏𝑅𝐿 ≃ 3 ps

Page 47: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 61

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

but: power dissipation mainly determined by dissipation in biasing resistors: ≈ 1µW/gate

5.3.6 Power Dissipation

with 𝐼𝑐 ≃ 100 𝜇𝐴 and ∫ 𝑉𝑑𝑡 = Φ0

Page 48: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 62

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Applications of RSFQ

5.3.7 Prospects of RSFQ

Page 49: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 63

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.3.7 Prospects of RSFQ

Page 50: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 64

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Pseudo random bit generator, operated up to 17 GHz

5.3.7 Prospects of RSFQ

Page 51: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 66

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

________________________

Stony Brook ____________________________________________

PetaFLOPS Scale Computing:

Speed and Power Scales (Year 2006)

Semiconductors (CMOS)

Performance: > 100K chips @

<10 GFLOPS each

Power: >150 W per chip

total >15 MW

Footprint: >30x30 m2

Latency >3 ms

Superconductors (RSFQ)

Performance: 4K processors @

256 GFLOPS each

Power: 0.05 W per PE node

total 250 W @ 5 K

(100 kW @ 300 K)

Footprint: 1x1 m2

Latency 20 ns

K. K. Likharev, SUNY Stony Brook

5.3.7 Prospects of RSFQ

Page 52: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 67

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

K. K. Likharev, SUNY Stony Brook

5.3.8 Fabrication Technology

Page 53: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 68

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

1 THz

HTS RSFQ (??)

100 GHz 30M JJ

3M JJ 0.4 mm

300K JJ 0.8 mm

10K JJ 1.5 mm

3.5 mm

10 GHz 0.05 mm

0.07 mm

0.10 mm

0.12 mm

0.14 mm

0.20 mm

1 GHz

"no known solutions"

optical lithography

100 MHz

1995 1998 2001 2004 2007 2010

Year

RSFQ ROADMAP (VLSI circuit clock frequency)

RSFQ (Stony Brook Forecast)

CMOS (SIA Forecast 1997)

LTS RSFQ

5.3.9 RSFQ Roadmap

________________________

Stony Brook ____________________________________________

Page 54: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 70

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

x(t)

0

x (tk)

t 0

1

2

3

4

5

6

T tk

ym

5.4 Analog-to-Digital Converters

step 1: transform the time-continuous signal 𝑥 𝑡 into a time-discrete signal 𝑥𝑘 = 𝑥 𝑡𝑘 : 𝑡𝑘 are the points in time at which the signal is sampled, usually one writes 𝑡𝑘 = 𝑘 ⋅ 𝑇, with 𝑘 an integer and 𝑇 the sampling period

ADC – principle of operation

step 2: transform the real number 𝑥 into a set of discrete numbers 𝑦𝑚, which most conveniently are represented by a set of integer numbers 𝑦𝑚 = 𝑚, smallest step in the quantization process: least significant bit (LSB)

ADC converts an analog signal 𝑥 𝑡 into a digital signal 𝑚, 𝑘 , 𝑚, 𝑘 = integer numbers

Page 55: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 71

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

superconducting ADCs are based on the principle of flux quantization in a closed superconducting loop and the fast switching of Josephson junctions

5.4 Analog-to-Digital Converters

• practical devices: the input signal S to be measured (e.g. a current or voltage) is converted into a magnetic flux Φ (cf. SQUID sensors)

• corresponding circuit has to determine the integer 𝑚 satisfying the relation

𝑚 − 1 Φ0 ≤ Φ ≤ 𝑚 Φ0 the flux generated by the input signal S is determined within an accuracy of Φ0/2

• important fact: the quantization process relies on a fundamental physical constant and therefore has an inherent precision not known for semiconductor devices

• there exist various ways to determine the number 𝑚 and hence types of ADCs.

Page 56: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 72

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

superconductor technology exhibits a set of characteristics uniquely suitable for the implementation of ADC:

• high switching speed of JJs providing a very short aperture

time 𝜏𝑎 and hence a very high speed and resolution for ADCs

• low power consumption

• natural quantization

• quantum accuracy

• high sensitivity

• low noise

5.4 Analog-to-Digital Converters

Page 57: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 73

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

resolution

• both the range of the input signal 𝑥 and the number of output values 𝑦𝑚 is limited

• the number of output values is usually given as a power of 2:

- n-bit ADC integer numbers range from 0 to 2𝑛 − 1

- representation of any integer number in this range:

𝑥 = 𝑥020 + 𝑥121 + 𝑥222 + ⋯ + 𝑥𝑛−12𝑛−1 with 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛−1 = 0 or 1

• scale and offset the input signal in the analog domain so that x′ = 𝑎𝑥 + 𝑏

Page 58: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 74

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

0 1 2 3 4 5 6 7 0

1

2

3

4

5

6

7

analog input

dig

ital

ou

tpu

t, e

rro

r

x

xmin

xmax

0

2n-1

ym

5.4.1 Foundations of ADCs

scaling & offset

resolution

Page 59: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 75

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

• example:

voltage measurement with 16 bit ADC (216 = 65536 quantization levels)

full scale measurement range is -10 V to +10 V

ADC voltage resolution is: 10𝑉− −10𝑉

65536=

20𝑉

65536= 0.305 mV

5.4.1 Foundations of ADCs

resolution

• effective number of bit (ENOB):

analog signal has limited signal-to-noise ratio (SNR)

it is impossible to resolve the signal beyond a certain number of bits

required SNR per bit:

20 log10 2 = 6.02 dB (16 bit ADC: SNR = 96.32 dB)

Page 60: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 76

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

accuracy

• the magnitude of the quantization error at the sampling instant is between zero and ½ LSB

• the instances 𝑡𝑖 of the sampling process are determined by the sampling period 𝑇 if the original signal >> LSB, the quantization error is not correlated with the signal, and has a uniform distribution then, the quantization error can be treated as white noise its root mean square (rms) value is the standard deviation of this distribution

Page 61: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 77

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

accuracy

• detailed calculation of 𝜖rms

quantization noise 𝜖 𝑛 is treated as a random variable in interval

−𝑞

2, +

𝑞

2,

it has the probability density 𝑝𝜖 𝑥 = 1/𝑞 for 𝑥 ≤ 𝑞/2 and 𝑝𝜖 𝑥 = 0 for 𝑥 > 𝑞/2 (in our case: 𝑞 = 1)

thus, the probability that a given round-off error 𝜖 𝑛 lies in the interval 𝑥1, 𝑥2 is given by

variance of the random variable 𝜖 𝑛 , which is treated as a random

variable in interval −𝑞

2, +

𝑞

2

Page 62: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 78

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

dynamic range of ADCs

• for n-bit ADC the peak-to-peak amplitude is 𝐴𝑝𝑝 = 2𝑛 − 1

• for a sinusoidal input signal, then the rms value of its amplitude is given by

𝐴rms = 𝐴𝑝𝑝/2 2

• the dynamic range (DR) of an ADC is defined as 𝐴rms/𝜖rms using the approximation 2𝑛 − 1 ≃ 2𝑛 (valid for large 𝑛), we obtain for a 𝑛-bit ADC

(98.1 dB for a 16-bit ADC)

Page 63: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 79

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Claude Elwood Shannon Harry Nyquist

5.4.1 Foundations of ADCs

sampling rate

• Shannon-Nyquist sampling theorem: The successful reproduction of a band-limited signal 𝑥 𝑡 is only possible if the sampling rate is higher than twice the highest frequency of the signal: 𝑓𝑠𝑎𝑚 ≥ 2𝑓𝑚𝑎𝑥

Page 64: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 80

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

sampling rate & sampling theorem

What happens if we increase the signal frequency 𝑓𝑆 above half of the sampling frequency 𝑓sam/2 (same sampling frequency 𝑓sam in all subfigures): for 𝑓𝑆 > 𝑓sam/2, we have a second possible signal (dashed lines), which has exactly the same sampling points

no unique result of the sampling process

𝒇𝑺 = 𝒇𝒔𝒂𝒎/𝟐

𝒇𝑺 > 𝒇𝒔𝒂𝒎/𝟐

𝒇𝑺 < 𝒇𝒔𝒂𝒎/𝟐

Page 65: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 81

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

sampling rate & sampling theorem

• mathematical description of the sampling theorem:

the sampling of a signal 𝑆(𝑡) can be described by the multiplication of 𝑆(𝑡) with periodic array 𝐶 Δ𝑡 of Dirac 𝛿-functions (Dirac comb) yielding the sampled signal 𝑆sam

mathematically this corresponds to a convolution using the convolution theorem we obtain

𝑭𝑻 𝑺𝐬𝐚𝐦 𝝎 = 𝑭𝑻 𝑺 ⋅ 𝑭𝑻 𝑪 𝚫𝒕 𝝎

here, the Fourier transform 𝐹𝑇 𝑆sam (𝜔) = 𝐹𝑇 𝑆sam 𝜔 +2𝜋

Δ𝑡 is

periodic with angular frequency 𝜔sam = 2𝜋/Δt, where Δ𝑡 is the distance between two sampling instances

if 𝑓sam =1

Δ𝑡< 2𝑓S,max (𝑓S,max = maximum signal frequency), lower and

higher frequencies are superimposed in frequency space and can no longer be separated

Page 66: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 82

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

sampling rate & sampling theorem

X(f) (top blue) and XA(f) (bottom blue) are continuous Fourier transforms of two different functions, S(t) and SA(t) (not shown). When the functions are sampled at rate fsam, the images (green) are added to the original transforms (blue) when one examines the discrete-time Fourier transforms (DTFT) of the sequences. In this example, the DTFTs are identical, which means the sampled sequences are identical, even though the original continuous pre-sampled functions are not. If these were audio signals, S(t) and SA(t) might not sound the same. But their samples (taken at rate fsam) are identical and would lead to identical reproduced sounds; thus SA(t) is an alias of S(t) at this sample rate. In this example (of a bandlimited function), such aliasing can be prevented by increasing fsam such that the green images in the top figure do not overlap the blue portion.

−𝑓sam

−𝑓sam

+𝑓sam

+𝑓sam

−𝐵 − 𝑓sam + 𝐵 +𝑓sam − 𝐵 + 𝐵

𝑋(𝑓)

𝑋𝐴(𝑓)

𝑓

𝑓

Page 67: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 83

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

0 1 2 3

-1

0

1

S

t

5.4.1 Foundations of ADCs

𝑡𝐴

sampling rate & aperture time

• sampling process takes a finite amount of time given by the so-called aperture time 𝑡a

• the sampling frequency 𝑓sam must smaller than 1/𝑡𝑎

Page 68: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 84

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

sampling rate & signal frequency/bit resolution

• the input signal is not allowed to changes by more than 1 LSB during 𝑡a (otherwise the error in the conversion process would exceed the resolution of the ADC)

upper limit of the ADC frequency bandwidth

• for a harmonic signal 𝑆 = sin 2𝜋𝑓𝑡 with frequency 𝑓 and amplitude 1, the

maximum slew rate is 𝑑𝑆

𝑑𝑡= 2𝜋𝑓 cos 2𝜋𝑓𝑡 = 2𝜋𝑓

time to slew by one LSB is 𝜏 = 2

(2𝑛−1) 2𝜋𝑓 (peak-to-peak amplitude is 2)

since 𝜏 ≥ 𝑡𝑎 to keep error smaller than ±LSB

𝒇 ≤𝟏

(𝟐𝒏−𝟏) 𝝅

𝟏

𝒕𝒂= 𝒇𝑩 (𝑓𝐵 is input bandwidth of ADC)

2𝑛𝑓𝐵 ≃ 1/𝑡𝑎 : the aperture time is limiting the performance of the ADC

(to increase the bit resolution, we have to reduce the bandwidth and vice versa)

• if a signal is sampled at 2𝑓𝐵, we say that it is sampled at the Nyquist rate 𝑓sam = 2𝑓𝑁 = 2𝑓𝐵

Page 69: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 85

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Output size (bits)

Input frequency

1 Hz 44.1 kHz 192 kHz 1 MHz 10 MHz 100 MHz 1 GHz

8 1,243 µs 28.2 ns 6.48 ns 1.24 ns 124 ps 12.4 ps 1.24 ps

10 311 µs 7.05 ns 1.62 ns 311 ps 31.1 ps 3.11 ps 0.31 ps

12 77.7 µs 1.76 ns 405 ps 77.7 ps 7.77 ps 0.78 ps 0.08 ps

14 19.4 µs 441 ps 101 ps 19.4 ps 1.94 ps 0.19 ps 0.02 ps

16 4.86 µs 110 ps 25.3 ps 4.86 ps 0.49 ps 0.05 ps –

18 1.21 µs 27.5 ps 6.32 ps 1.21 ps 0.12 ps – –

20 304 ns 6.88 ps 1.58 ps 0.16 ps – – –

24 19.0 ns 0.43 ps 0.10 ps – – – –

32 74.1 ps – – – – – –

5.4.1 Foundations of ADCs

sampling rate & signal frequency/bit resolution

𝒕𝒂 =𝟏

(𝟐𝒏−𝟏) 𝝅

𝟏

𝒇𝑩

Page 70: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 86

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.1 Foundations of ADCs

aliasing

• if the input signal is changing much faster than the sampling rate, spurious signals called aliases will be produced at the output of the DAC

• the frequency of the aliased signal is the difference between the signal frequency and the sampling rate

• to avoid aliasing, the input to an ADC must be low-pass filtered to remove frequencies above half the sampling rate. This filter is called an anti-aliasing filter.

sampling instances

time / period of the signal

sign

al

Page 71: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 87

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

• advantages:

− significant reduction of the requirement for the anti-alias filter leading to a significant cost reduction

− reduction of quantization noise within the input bandwidth

reduction of a factor 𝑂𝑆𝑅 improvement of dynamic range by 10 log OSR (dB)

− use one-bit ADC and heavy oversampling (penalty: complexity of the digital part and processing speed)

5.4.1 Foundations of ADCs

oversampling

• the term oversampling is used, if the sampling rate is larger than the Nyquist rate 𝑓𝑁

• the oversampling rate is defined as: 𝐎𝐒𝐑 = 𝒇𝒔𝒂𝒎/𝟐𝒇𝑵

example: if an audio signal of 20 kHz bandwidth is sampled at a rate of 160 kHz (2𝑓𝑁 = 2𝑓𝐵 = 40 kHz) , i.e. an OSR of four

Page 72: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 88

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

out Sref

Sin JQ

Isens

L

Icirc

Sin Vout

JQ

L

Icirc

Sin Vout

JS

L Sin

Vout

JQ

RL

RB

semiconductor comparator superconducting one-junction SQUID comparator

Superconducting quasi-one-junction SQUID comparator (QOS)

superconducting voltage to frequency quantizer

5.4.2 The Comparator

Page 73: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 89

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Igate

L/2

Icirc

Sin

OUT-

JQ2 JQ1

OUT+

L/2

Ism

0 Iin

- Igate

+ - + - + - + - +

5.4.2 The Comparator

incremental quantizer

threshold characteristic

if the analog signal increases or decreases, the threshold characteristic is crossed in the one or the other direction to a different flux state

flux quanta enter or leave the superconducting loop via the quantizer Josephson junctions 𝐽𝑄+ and 𝐽𝑄− resulting in SFQ voltage pulses at the

outputs OUT+ and OUT-, respectively

Page 74: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 90

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.3 Aperture Time

• minimum aperture time given by switching time of Josephson junctions 𝑡𝑎 ∼ 2 𝑝𝑠

• achievable performance of ADC: 𝒇𝑩 ≤𝟏

(𝟐𝒏−𝟏) 𝝅

𝟏

𝒕𝒂

bandwidth of more than 1 MHz for a 16 bit ADC

• fast switching speed of Josephson junctions cannot be fully used due to several technical hurdles: – junctions are embedded into complex circuits the actual switching

speed of the junction may be larger due to parasitic capacitances and inductances

– the SFQ pulses do not arrive exactly at the intended moment

Page 75: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 91

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.4 Different Types of ADCs

two main categories: 1. Nyquist-sampling ADCs (e.g. flash converters)

an ideal Nyquist ADC samples a bandwidth-limited signal at a sampling rate 𝑓sam = 2𝑓𝑁 and provides an accurate digital representation of that signal

composed of a large number of separate quantizers (single-bit comparators), each defining a single quantization level performance limited by the precision of the quantization levels

2. Oversampling ADCs (e.g. delta-sigma converters)

signal is sampled at a frequency 𝑓sam ≫ 2𝑓𝑁 using a single quantizer

feedback techniques and digital filtering have to be used to decrease the quantization noise and enhance the effective dynamic range

Page 76: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 92

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

offset

input Comparator clock

offset

input Comparator clock

offset

input Comparator clock

offset

input Comparator clock

offset

input Comparator clock

R

R

R

R

R

R

2R

2R

2R

2R

2R

S/2

S/4

S/8

S/16

S/32

offset

clock analog signal S

D0 (MSB)

D1

D2

D3

D4 (LSB)

5.4.4 Different Types of ADCs

Flash ADC

most significant bit

least significant bit

R/2R resistor ladder signal division

Page 77: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 93

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

time

anal

og

sign

al

VCO f = V/F0

ga

te

counter

gate

co

ntr

ol

analog input

digital output

VC

O

ou

tpu

t

gate

co

ntr

ol

pu

lse

s to

co

un

ter

time

time

time

pass

block

T t

5.4.4 Different Types of ADCs

Counting Coverters

Page 78: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 94

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.4.4 Different Types of ADCs

Delta-Sigma Converters

Page 79: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 95

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

the evolution of 𝑛𝑟 = − 𝑆𝑁𝑅 + 10 log10 𝐵𝑊 for semiconductor based delta-sigma modulators (DSM) and Nyquist ADCs over time

5.5 Prospects of Superconducting ADCs

Page 80: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 96

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.5 Prospects of Superconducting ADCs

Performance of superconductor lowpass ADCs compared to semiconductor state-of-the-art ADCs (A. Gupta, in Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International)

Page 81: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 98

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.5 Prospects of Superconducting ADCs

15-bit ADC chip

Page 82: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 99

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

5.5 Prospects of Superconducting ADCs

superconducting sigma-delta ADC

Page 83: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 100

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

A 1998 HYPRES superconductor transient digitizer: (a) Block diagram. (b) A superconductor chip with two transient digitizers based on a 6-bit flash ADC and a 32-bit-deep memory. (c) A fast pulse capture: 4 ns for 8 GS/s (top) and 2 ns for 16 GS/s (bottom).

5.5 Prospects of Superconducting ADCs

Page 84: Chapter 5 Digital Electronics - Walther-Meißner-Institutdecoder A memory cell B decoder B memory cell A address memory I/O B address register I/OC carry out carry out data in function

AS-Chap. 5 - 101

R. G

ross

, A. M

arx

and

F.

De

pp

e ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

A 2007 HYPRES second-order band-pass sigma-delta ADC. (a) Schematics of ADC modulators with implicit and explicit feedback loops. (b) X-band ADC chip consisting of second-order band-pass ADC modulator centered for 7.4 GHz and digital signal processor.

5.5 Prospects of Superconducting ADCs