132
206 CHAPTER 4 THE AVERAGE MODEL OF THE SYMMETRICAL AND SYMMETRICAL MULTIPLE-STAR IPM MACHINES 4.1 Introduction For many studies the simplified model of a machine is needed. The simplified models can be used for designing the drives, steady state analysis and decoupling of the models [120]. This chapter starts with the modelling of symmetrical and asymmetrical triple-star nine-phase machines using the Fourier series. After generating the general equations for turn functions of the machines phases, the general form of the Fourier series of the winding functions are derived. The Fourier series of the airgap function of the machines are also derived in this chapter and using them the general form of the Fourier series of different inductances of the machines stators are derived. In the next section by neglecting the inductances with the higher order harmonics the simplified inductances are presented. The simplified inductances are then transformed to the rotor reference frame and the general model of the machines is generated. To verify the machines model, they are simulated using the MATLAB Simulink and the simulation results are presented. The general model of the machines is decoupled to remove the coupling terms between different machines and the decoupled models for symmetrical and asymmetrical machines are presented. In the final sections of this chapter an asymmetrical double-star six-phase IPM is also modelled using Fourier series of the machine parameters [83]. The model is generated and transformed to the rotor

CHAPTER 4 THE AVERAGE MODEL OF THE SYMMETRICAL AND

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

206

CHAPTER 4

THE AVERAGE MODEL OF THE SYMMETRICAL AND SYMMETRICAL

MULTIPLE-STAR IPM MACHINES

4.1 Introduction

For many studies the simplified model of a machine is needed. The simplified models can

be used for designing the drives, steady state analysis and decoupling of the models [120]. This

chapter starts with the modelling of symmetrical and asymmetrical triple-star nine-phase machines

using the Fourier series. After generating the general equations for turn functions of the machines

phases, the general form of the Fourier series of the winding functions are derived. The Fourier

series of the airgap function of the machines are also derived in this chapter and using them the

general form of the Fourier series of different inductances of the machines stators are derived. In

the next section by neglecting the inductances with the higher order harmonics the simplified

inductances are presented. The simplified inductances are then transformed to the rotor reference

frame and the general model of the machines is generated. To verify the machines model, they are

simulated using the MATLAB Simulink and the simulation results are presented. The general

model of the machines is decoupled to remove the coupling terms between different machines and

the decoupled models for symmetrical and asymmetrical machines are presented. In the final

sections of this chapter an asymmetrical double-star six-phase IPM is also modelled using Fourier

series of the machine parameters [83]. The model is generated and transformed to the rotor

207

reference frame and finally the model is decoupled to remove the couplings between the two sets

of the three phase machines. The major contribution of this chapter is generating decoupled models

and corresponding transformation matrixes for triple-star nine-phase IPM machines (symmetrical

and asymmetrical connections) that can be used for designing controllers for triple-star machines

without facing the complexities raised by the coupling terms between different sets of the three

phase machines.

A1+

A1+

B3-

B3-A2+

A2+

A1+

A1+

B3-

B3-A2+

A2+

A1- A1-

B3+B3+

A2-A2-

A1- A1-

B3+B3+

A2-A2-

C1-

C1-A3+

A3+

C2-C2-

C1-

C1-

A3+

A3+

C2-C2-

C1+

C1+A3-

A3-

C2+

C2+

C1+C1+

A3-

A3-C2+

C2+

B1+B1+

C3- C3-

B2+B2+

B1+B1+

C3-

B2+B2+

B2-

B2-

C3+B1-

C3+B1-

B2-

B2-

C3+

C3+

B1-

B1-

1 23

4

5

6

7

8

9

10

11

12

13

14

1516

1718192021

22

23

24

25

26

27

28

29

30

31

32

33

3435

36

C3-

Figure 4.1: The clock diagram of the symmetrical triple-star machine.

4.2 Modelling the Stator Inductances of Triple-Star Machines

208

In this section the stator inductances of both symmetrical and asymmetrical triple-star IPM

machines are modeled using the Fourier series of the machine parameters such as the winding

functions and airgap functions.

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

NA1

NB1

NC1

Ɵ (Degree)

50

50

-50

Figure 4.2: The turn functions of the machine 1 phases (symmetrical).

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

NA2

NB2

NC2

Ɵ (Degree)

50

50

-50

Figure 4.3: The turn functions of the machine 2 phases (symmetrical).

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

Ɵ (Degree)

50

50

-50

NA3

NB3

NC3

Figure 4.4: The turn functions of the machine 3 phases (symmetrical).

209

Unlike the coupled modelling, there will be some simplifying assumptions made to have a

simpler model. For example, in this modelling method, the higher frequency order components of

the winding functions and airgap functions are neglected. The modelling can start from the clock

diagram and turn functions of the machine. The clock diagram and the turn functions of the

symmetrical machine (shown in Figure 4.1) are repeated here in Figures 4.2 to 4.4. Similarly, for

the asymmetrical machine the turn functions can be generated using the clock diagram, the clock

diagram of the asymmetrical machine is shown in the Figure 4.5.

A1+

A1+

B3-

B3-

A2+

A2+

A1+

A1+

B3-

B3-

A2+

A2+

A1- A1-

B3+B3+

A2-A2-

A1-

B3+B3+

A2- A2-

C1-

C1-

A3+

A3+

C2-

C2-

C1-

C1-

A3+

A3+

C2-

C2-C1+

C1+

A3-A3-

C2+

C2+

C1+C1+

A3-A3-

C2+

C2+

B1+B1+

C3-C3-

B2+

B1+B1+

C3-C3-

B2+B2+

B2-

B2-C3+

B1-

C3+

B1-

B2-

B2-

C3+

C3+B1-

B1-

1 23

4

5

6

7

8

9

10

11

12

13

14

1516

1718192021

22

23

24

25

26

27

28

29

30

31

32

33

3435

36

B2+

A1-

Figure 4.5: The clock diagram of the asymmetrical triple-star machine.

Using the new clock diagram the turn functions can be generated as Figures 4.6 to 4.8.

210

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

NA1

Ɵ (Degree)

50

50

-50

NB1

NC1

Figure 4.6: The turn functions of the machine 1 phases (asymmetrical).

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

NA2

Ɵ (Degree)

50

50

50

NB2

NC2

Figure 4.7: The turn functions of the machine 2 phases (asymmetrical).

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

NA3

Ɵ (Degree)

50

50

50

NB3

NC3

Figure 4.8: The turn functions of the machine 3 phases (asymmetrical).

Based on the above figures the general form of Fourier series of the turn function can be

generated as:

211

)(7sin)(5sin

)(3sin)sin(

75

310

kk

kkx

kdNkdN

kdNkdNNn

n

NN

NNicbax x

nx

iii

4,

2,

93,2,1,,, 0

(4.1)

Where: ‘ kd ’ equals to 1 and 2 for the symmetrical and asymmetrical machines

respectively. Also, for each phase that is placed in slot number ‘S’ the ‘k’ can be defined as:

1 Sk

(4.2)

Also, based on Figure 3.6, the Fourier series of the inverse airgap function can be presented

as [152]:

)(14cos)(10cos

)(6cos)(2cos),(

43

210

1

rr

rrr

aa

aaag

(4.3)

Where, a0, a1, a3, a4 are the Fourier series amplitudes for the inverse air gap function and

can be defined as:

,0 aa ba 1,

32

ba ,

53

ba ,

74

ba

bb gga

11

2

1,

ab ggb

11

2

1

(4.4)

Using the equations (4.1) and (4.3) the winding function of each phase can be calculated

as [74]:

212

2

0

2

0

),(

1

),(

)(

)()(

dg

dg

n

nN

r

r

w

ww

(4.5)

The different parts of the equation (4.5) can be expressed as:

2

0

0

43

2102

0

2)(14cos)(10cos

)(6cos)(2cos

),(

1ad

aa

aaad

g rr

rr

r

(4.6)

2

0

0000

2

0

432107

432105

432103

432101

432100

2

0 43210

753102

0

2

)(14cos)(10cos)(6cos)(2cos)(7sin

)(14cos)(10cos)(6cos)(2cos)(5sin

)(14cos)(10cos)(6cos)(2cos)(3sin

)(14cos)(10cos)(6cos)(2cos)sin(

)(14cos)(10cos)(6cos)(2cos

)(14cos)(10cos)(6cos)(2cos

)(7sin)(5sin)(3sin)sin(

),(

)(

aNdaN

d

aaaaakdN

aaaaakdN

aaaaakdN

aaaaakdN

aaaaaN

daaaaa

kdNkdNkdNkdNNd

g

n

rrrrk

rrrrk

rrrrk

rrrrk

rrrr

rrrr

kkkk

r

w

(4.7)

Therefore, equations (4.6) and (4.7) result in:

0

0

00

2

0

2

0

2

2

),(

1

),(

)(

Na

aN

dg

dg

n

r

r

w

(4.8)

Using the above equations, the general form of the winding functions of the machines can

be expressed as:

)(7sin)(5sin)(3sin)sin(

)(7sin)(5sin)(3sin)sin()(

7531

075310

kkkk

kkkkw

kdNkdNkdNkdN

NkdNkdNkdNkdNNN

(4.9)

Now the general form of the self and mutual inductances (between phases ‘j’ and ‘i’) of

the machines phases can be generated as:

213

2

0

75310

7531

43210

2

0

)(7sin)(5sin)(3sin)sin(

)(7sin)(5sin)(3sin)sin(

)(14cos)(10cos)(6cos)(2cos

)()(),(

1

d

dkNdkNdkNdkNN

dkNdkNdkNdkN

aaaaa

rl

dNng

rlL

kikikiki

kjkjkjkj

rrrr

o

ij

r

oji

(4.10)

The equation (4.10) is equal to:

2

0

77

7573

7170

57

5553

5150

37

3533

3130

17

1513

1110

43210

2

0

)(7sin)(7sin

)(5sin)(7sin)(3sin)(7sin

)sin()(7sin)(7sin

)(7sin)(5sin

)(5sin)(5sin)(3sin)(5sin

)sin()(5sin)(5sin

)(7sin)(3sin

)(5sin)(3sin)(3sin)(3sin

)sin()(3sin)(3sin

)(7sin)sin(

)(5sin)sin()(3sin)sin(

)sin()sin()sin(

)(14cos)(10cos)(6cos)(2cos

)()(),(

1

d

dkdkNN

dkdkNNdkdkNN

dkdkNNdkNN

dkdkNN

dkdkNNdkdkNN

dkdkNNdkNN

dkdkNN

dkdkNNdkdkNN

dkdkNNdkNN

dkdkNN

dkdkNNdkdkNN

dkdkNNdkNN

aaaaa

rl

dNng

rlL

kikj

kikjkikj

kikjkj

kikj

kikjkikj

kikjkj

kikj

kikjkikj

kikjkj

kikj

kikjkikj

kikjkj

rrrr

o

ij

r

oji

(4.11)

The non-zero terms are:

214

2

0

7770

5550

3330

1110

43210

2

0

)(7sin)(7sin)(7sin

)(5sin)(5sin)(5sin

)(3sin)(3sin)(3sin

)sin()sin()sin(

)(14cos)(10cos)(6cos)(2cos

)()()(),(

1

d

dkdkNNdkNN

dkdkNNdkNN

dkdkNNdkNN

dkdkNNdkNN

aaaaa

rl

dNng

rlL

kikjkj

kikjkj

kikjkj

kikjkj

rrrr

o

ij

r

oji

(4.12)

The equation (4.12) is equal to:

2

0

2

770

2

550

2

330

2

110

43210

2

0

7cos27cos2

)(7sin

5cos25cos2

)(5sin

3cos23cos2

3sin

cos2cos2

sin

)(14cos)(10cos)(6cos)(2cos

)()(),(

1

d

kkdkkdN

dkNN

kkdkkdN

dkNN

kkdkkdN

dkNN

kkdkkdN

dkNN

aaaaa

rl

dNng

rlL

jikijkj

jikijkkj

jikijkkj

jikijkkj

rrrr

o

ij

r

oji

(4.13)

And the term with non-zero averages are:

215

2

02

74

2

53

2

32

2

11

2

7

2

5

2

3

2

10

2

0

)(14cos27cos2

)(10cos25cos2

)(6cos23cos2

)(2cos2cos2

7cos2

5cos2

3cos2

cos2

)()()(),(

1

d

kkdN

akkdN

a

kkdN

akkdN

a

kkdN

kkdN

kkdN

kkdN

a

rl

dNng

rlL

rijkrijk

rijkrijk

jikjijikjik

o

ij

r

oji

(4.14)

The last equation is equal to:

2

0

2

74

2

53

2

32

2

11

2

7

2

5

2

3

2

1

0

2

0

714cos71428cos4

510cos51020cos4

36cos3612cos4

2cos24cos4

7cos2

5cos2

3cos2

cos2

)()()(),(

1

d

kkdkkdN

a

kkdkkdN

a

kkdkkdN

a

kkdkkdN

a

kkdN

kkdN

kkdN

kkdN

a

rl

dNng

rlL

ijkrijkr

ijkrijkr

ijkrijkr

ijkrijkr

jikjik

jikjik

o

ij

r

oji

(4.15)

And finally the stator inductances can be expressed as:

216

ijkrijkr

ijkrijkr

jikjik

jikjik

o

ij

r

oji

kkdN

akkdN

a

kkdN

akkdN

a

kkdN

kkdN

kkdN

kkdN

a

rl

dNng

rlL

714cos4

510cos4

36cos4

2cos4

7cos2

5cos2

3cos2

cos2

2

)()()(),(

1

2

74

2

53

2

32

2

11

2

7

2

5

2

3

2

1

0

2

0

(4.16)

Where ‘ ik ’ and ‘ jk ’ are:

1, NumberSlotingCorrespondk ji (4.17)

The machines inductances have different harmonics including DC, second, sixth, tenth and

fourteenth order. Neglecting the harmonics with frequencies higher than two, the general equation

for the inductances can be derived as:

ijkrjiko

ij

r

oji

kkdN

akkdN

arl

dNng

rlL

2cos4

cos2

2

)()(),(

1

2

11

2

10

2

0

(4.18)

4.3 Transformation of the Inductances to the Rotor Reference Frame

The inductances of the machines can be arranged inside a 9×9 matrix and be transformed

to the rotor reference frame using the transformation presented in section 3.4.

217

0303303303

3033333

3033333

0203302302

2033232

2033232

0103301301

1033131

1033131

0203302302

2033232

2033232

0202202202

2022222

2022222

0102201201

1022121

1022121

0103301301

1033131

1033131

0102201201

1022121

1022121

0101101101

1011111

1011111

33

33

33

22

22

22

11

11

11

333333232323131313

333333232323131313

333333232323131313

323232222222121212

323232222222121212

323232222222121212

313131212121111111

313131212121111111

313131212121111111

333

333

222

222

111

111

1

1000000

1000000

1000000

0001000

0001000

0001000

0000001

0000001

0000001

2

1

2

1

2

1000000

000000

000000

0002

1

2

1

2

1000

000000

000000

0000002

1

2

1

2

1

000000

000000

3

2

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

LLL

SC

SC

SC

SC

SC

SC

SC

SC

SC

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

SSS

CCC

SSS

CCC

SSS

CCC

TLT

dq

dddqd

qdqqq

dq

dddqd

qdqqq

dq

dddqd

qdqqq

dq

dddqd

qdqqq

dq

dddqd

qdqqq

dq

dddqd

qdqqq

dq

dddqd

qdqqq

dq

dddqd

qdqqq

dq

dddqd

qdqqq

rr

rr

rr

rr

rr

rr

rr

rr

rr

ccbcacccbcacccbcac

cbbbabcbbbabcbbbab

cabaaacabaaacabaaa

ccbcacccbcacccbcac

cbbbabcbbbabcbbbab

cabaaacabaaacabaaa

ccbcacccbcacccbcac

cbbbabcbbbabcbbbab

cabaaacabaaacabaaa

rrr

rrr

rrr

rrr

rrr

rrr

rssr

(4.19)

218

In the equation (4.19) ‘ r ’ is the rotor angle ‘C’ represents ‘cos’, ‘S’ represents ‘sin’,

3

2 and 21, and 3 are the arbitrary initial angles for the transformations corresponding

to machines 1,2 and 3 respectively. For easier manipulation equation (4.19) can be broken into

different parts according to the bellow procedure:

The machines inductances in the rotor reference frame can be considered as:

33231

23221

13121

qd

qd

qd

qd

LMM

MLM

MML

L

(4.20)

Now each term of the matrix in the equation (4.20) can be defined as below. The diagonal

terms which represent the self-inductances of each set (after adding the leakage inductance) are

defined as:

000

0

0

2

3

00

0

0

2

3

1

1

1

5.05.05.03

2

22

22

111111

111111

111111

iiii

iiii

ls

iiolsiio

iioiiols

irir

irir

irir

ccbcac

cbbbab

cabaaa

iririr

iririr

qdi

CLSL

SLCL

L

CLLSL

SLCLL

SC

SC

SC

LLL

LLL

LLL

SSS

CCC

L

(4.21)

And also the mutual between each two sets of the machines can be defined as:

219

000

0)2()2(

0)2()2(

2

3

000

0)()(

0)()(

2

3

1

1

1

5.05.05.03

2

1212

1212

313131

313131

313131

kjkkjk

kjkkjk

kjkokjko

kjkokjko

jrjr

jrjr

jrjr

ccbcac

cbbbab

cabaaa

krkrkr

krkrkr

kjqd

djkCLdjkSL

djkSLdjkCL

djkCLdjkSL

djkSLdjkCL

SC

SC

SC

LLL

LLL

LLL

SSS

CCC

M

(4.22)

Where:

0

2

10 arlNL o 2

12

12

arlNL o

(4.23)

The non-diagonal terms of the equation (4.21) are equal to zero. To remove coupling

between the different axis of the machines, the non-diagonal terms of the equation (4.22) should

be equal to zero. By setting them equal to zero the proper initial angles can be calculated as

equations (4.24) and (4.25).

kjkkjk djkdjkS )(0)(

(4.24)

11 )2(0)2( kjkkjk djkdjkS (4.25)

For different combinations of ‘k’ and ‘j’ the initial angles are calculated and given in Table

4.1. This table represents the proper initial values and the coefficients to remove the couplings

between ‘q’ and ‘d’.

220

Table 4.1 The initial angle for the transformation d1 and dk1 for different machines.

1kd 1d

1 2 3

Symmetrical 4 2 0

9

2

9

4

Asymmetrical 1 1 0

9

9

2

By substituting the values of equation (4.23) in the equations (4.21) and (4.22) and

selecting the initial values of Table 4.1 the inductance matrixes change to:

ls

dd

qq

ls

ls

ls

qd

L

L

L

L

LLL

LLL

L

00

00

00

00

00

00

2

311

11

20

20

1

(4.26)

ls

dd

qq

ls

ls

ls

qd

L

L

L

L

LLL

LLL

L

00

00

00

00

00

00

2

322

22

20

20

2

(4.27)

ls

dd

qq

ls

ls

ls

qd

L

L

L

L

LLL

LLL

L

00

00

00

00

00

00

2

333

33

20

20

3

(4.28)

000

00

00

000

00

00

2

331

31

20

20

13 dd

qq

qd L

L

LL

LL

M

(4.29)

221

000

00

00

000

00

00

2

313

13

20

20

31 dd

qq

qd L

L

LL

LL

M

(4.30)

000

00

00

000

00

00

2

321

21

20

20

12 dd

qq

qd L

L

LL

LL

M

(4.31)

000

00

00

000

00

00

2

312

12

20

20

21 dd

qq

qd L

L

LL

LL

M

(4.32)

000

00

00

000

00

00

2

332

32

20

20

23 dd

qq

qd L

L

LL

LL

M

(4.33)

000

00

00

000

00

00

2

323

23

20

20

32 dd

qq

qd L

L

LL

LL

M

(4.34)

Now using equations (4.26) to (4.34) the machines inductances in the rotor reference frame

can be presented as equation (4.35). Unlike the models that were generated in the Sections 3.3 and

3.4, in this matrix the mutual inductances between the d and q axis are zero. This fact is due to

ignoring the higher order harmonics of the winding functions and airgap function. By substituting

the matrix of equation (4.35) in to the model of Section 3.2 the machines model can be expressed

as equation (4.36).

222

ls

lsdddddd

lsqqqqqq

ls

ddlsdddd

qqlsqqqq

ls

ddddlsdd

qqqqlsqq

qd

L

LLLL

LLLL

L

LLLL

LLLL

L

LLLL

LLLL

L

00000000

000000

000000

00000000

000000

000000

00000000

000000

000000

332313

332313

322212

322212

312111

312111

(4.35)

33

32231133333

2231133333

22

233211122222

3321122222

11

13312211111

3312211111

olso

pmddddddddlsddd

qqqqqqqlsqqq

olso

pmddddqddddlsddd

qqqqqqqlsqqq

olso

pmddddddddlsddd

qqqqqqqlsqqq

iL

iLiLiLL

iLiLiLL

iL

iLiLiLL

iLiLiLL

iL

iLiLiLL

iLiLiLL

(4.36)

By substituting the flux linkages of equation (4.36) in to the voltage equations (3.59) to

(3.61) the machines voltages in the rotor reference frame can be expressed as equation (4.37). The

equivalent circuits of the q and d axis and also zero sequence are shown in Figures 4.9 to 4.11.

223

0

0

0

0

0

0

00000000

000000

000000

00000000

000000

000000

00000000

000000

000000

0

0

0

0

0

0

00000000

000000

000000

00000000

000000

000000

00000000

000000

000000

000000000

001000000

010000000

000000000

000001000

000010000

000000000

000000001

000000010

1

1

1

3

3

3

2

2

2

1

1

1

332313

332313

322212

322212

312111

312111

1

1

1

3

3

3

2

2

2

1

1

1

332313

332313

322212

322212

312111

312111

3

3

3

2

2

2

1

1

1

3

3

3

2

2

2

1

1

1

pmd

pmd

pmd

o

d

q

o

d

q

o

d

q

ls

lsdddddd

lsqqqqqq

ls

ddlsdddd

qqlsqqqq

ls

ddddlsdd

qqqqlsqq

pmd

pmd

pmd

o

d

q

o

d

q

o

d

q

ls

dddddd

qqqqqq

ls

dddddd

qqqqqq

ls

dddddd

qqqqqq

r

o

d

q

o

d

q

o

d

q

se

o

d

q

o

d

q

o

d

q

i

i

i

i

i

i

i

i

i

L

LLLL

LLLL

L

LLLL

LLLL

L

LLLL

LLLL

p

i

i

i

i

i

i

i

i

i

L

LLL

LLL

L

LLL

LLL

L

LLL

LLL

i

i

i

i

i

i

i

i

i

r

V

V

V

V

V

V

V

V

V

(4.37)

224

rse

Lq1q1

Lls

1dr

1qV

1qi rseLls2qr

2qV

2qi

rse

Lq3q3

Lls

3qr

3qV3qi

Lq2q2

23q

qL31q

qL

21qqL

1oi

Figure 4.9: The equivalent circuit of the q axis.

1qr

1dV

Ld2d2

rseLls

2qr

2dV

Ld3d3

rse

Lls

3qr

3dV

2di

3di

Ld1d1

rse Lls 1di

21ddL

23d

dL31d

dL

Figure 4.10: The equivalent circuit of the d axis.

225

1oV

rse Lls1oi

2oV

rse Lls2oi

3oV

rse Lls3oi

Figure 4.11: The equivalent circuit of the zero sequence.

Also, substituting the same inductances in to the torque equations presented in section 3.2

results in [122]:

11

133122111113312211111

22

3

22

3

qpmd

dqqqqqqqqqqddddddddde

iP

iiLiLiLiiLiLiLP

T

(4.38)

22

233222212123322221212

22

3

22

3

qpmd

dqqqqqqqqqdddddddde

iP

iiLiLiLiiLiLiLP

T

(4.39)

33

333323213133332321313

22

3

22

3

qpmd

dqqqqqqqqqqddddddddde

iP

iiLiLiLiiLiLiLP

T

(4.40)

226

And finally the mechanical dynamic equation can be expressed as:

rLreeee BTpP

JTTTT

2321

(4.41)

Table 4.2 shows the inductances of the machines in the rotor reference frame for the cases

of symmetrical and asymmetrical connection. It can be seen that the inductances have the same

values for q and d axis of the rotor reference frame.

Table 4.2 The inductances of the symmetrical and asymmetrical machines in rotor reference

frame.

2, 12

120

2

10

arlNLarlNL oo ,

The Inductance in Rotor Reference Frame Symmetrical

Asymmetrical

11qL 202

3LL 20

2

3LL

11dqL 0 0

11qdL 0 0

11dL 202

3LL 20

2

3LL

22qL 202

3LL 20

2

3LL

22dqL 0 0

22qdL 0 0

22dL 202

3LL 20

2

3LL

33qL 202

3LL 20

2

3LL

33dqL 0 0

33qdL 0 0

33dL 202

3LL 20

2

3LL

31ddL 22

3LLo 20

2

3LL

13ddL 22

3LLo 20

2

3LL

31qdL 0 0

227

13qdL 0 0

31dqL 0 0

13dqL 0 0

31qqL 2

2

3LLo

2

2

3LLo

13qqL 22

3LLo 2

2

3LLo

32ddL 22

3LLo 20

2

3LL

23ddL 22

3LLo 20

2

3LL

32qdL 0 0

23qdL 0 0

32dqL 0 0

23dqL 0 0

32qqL 22

3LLo 2

2

3LLo

23qqL 22

3LLo 2

2

3LLo

21ddL 22

3LLo 20

2

3LL

12ddL 22

3LLo 20

2

3LL

21qdL

0

0

12qdL 0 0

21dqL 0 0

12dqL 0 0

21qqL 22

3LLo 2

2

3LLo

12qqL 22

3LLo 2

2

3LLo

228

4.3.1 The MMF Analysis

In this section using the winding functions generated for the symmetrical and asymmetrical

machines the general equations for the stator MMF is generated for symmetrical and asymmetrical

machines. The harmonic currents generated by a polluted voltage source such as an inverter or a

grid with voltage harmonics in winding ‘w’ of a machine can be defined as in equation 4.42 [139].

)(7sin)(5sin)(3sin)sin()( 7531 ksksksksw kdtIkdtIkdtIkdtItI (4.42)

The winding function of the winding ‘w’ is presented in equation (4.9). Using the equations

(4.9) and (4.42) the MMF of the winding ‘w’ can be expressed as:

)(7sin)(5sin)(3sin)sin(

)(7sin)(5sin)(3sin)sin()()(

7531

7531

ksksksks

kkkkww

kdtIkdtIkdtIkdtI

kdNkdNkdNkdNtIN

(4.43)

Expanding the equation (4.43) results in:

229

7147cos77cos

5127cos527cos

3107cos347cos

87cos67cos

2

1

7125cos725cos

5105cos55cos

385cos325cos

65cos45cos

2

1

1073cos473cos

853cos253cos

633cos33cos

43cos23cos

2

1

87cos67cos

65cos45cos

43cos23cos

2coscos

2

1

)()(

77

57

37

17

75

55

35

15

73

53

33

13

71

51

31

11

kss

ksks

ksks

ksks

ksks

kss

ksks

ksks

ksks

ksks

kss

ksks

ksks

ksks

ksks

kss

ww

kdttNI

kdtkdtNI

kdtkdtNI

kdtkdtNI

kdtkdtNI

kdttNI

kdtkdtNI

kdtkdtNI

kdtkdtNI

kdtkdtNI

kdttNI

kdtkdtNI

kdtkdtNI

kdtkdtNI

kdtkdtNI

kdttNI

tIN

(4.44)

230

For each of the machines there are nine equations like equation (4.44) to describe the MMF

of each phase of the machine. For each machine (three phase set) the total MMF of the stator is the

sum of the corresponding phases MMF.

6,3,

)()(iiiw

ww tINMMF (4.45)

By substituting the different parameters (K and dk) from equation (4.17) and Table 4.1 into

equation (4.45) and using MATLAB/Symbolic for simplifying that the MMF for each machine (three

phase) set of symmetrical and asymmetrical machines could be presented. For symmetrical case the

MMF of the machines 1,2 and 3 are presented as equation (4.46), (4.47) and (4.48) respectively.

77cos

5247cos

3487cos

727cos

2

3

7245cos

55cos

3245cos

485cos

2

3

4873cos

2453cos

33cos

243cos

2

3

727cos

485cos

243cos

cos

2

3

)()(

77

57

37

17

75

55

35

15

73

53

33

13

71

51

31

11

7,4,1

1

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tINMMF

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

w

ww

(4.46)

231

77cos

5427cos

3667cos

907cos

2

3

7425cos

55cos

3425cos

665cos

2

3

8473cos

4253cos

33cos

423cos

2

3

907cos

665cos

423cos

cos

2

3

)()(

77

57

37

17

75

55

35

15

73

53

33

13

71

51

31

11

8,5,2

2

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tINMMF

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

w

ww

(4.47)

77cos

5247cos

3487cos

727cos

2

3

7245cos

55cos

3245cos

485cos

2

3

4873cos

2453cos

33cos

243cos

2

3

727cos

485cos

243cos

cos

2

3

)()(

77

57

37

17

75

55

35

15

73

53

33

13

71

51

31

11

9,6,3

3

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tINMMF

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

w

ww

(4.48)

The MMF of the machine is equal to the sum of the equations (4.46) to (4.48) which is

presented in equation (4.49)

232

77cos5247cos

3487cos727cos

2

9

7245cos55cos

3245cos485cos

2

9

4873cos2453cos

33cos243cos

2

9

727cos485cos

243coscos

2

9

)()(

7757

3717

7555

3515

7353

3313

7151

3111

9

1

tNItNI

tNItNI

tNItNI

tNItNI

tNItNI

tNItNI

tNItNI

tNItNI

tINMMF

ss

ss

ss

ss

ss

ss

ss

ss

w

ww

(4.49)

For asymmetrical case, the MMF of the machines 1,2 and 3 are presented as equation (4.49),

(4.50) and (4.51) respectively.

77cos

5247cos

3487cos

727cos

2

3

7245cos

55cos

3245cos

485cos

2

3

4873cos

2453cos

33cos

243cos

2

3

727cos

485cos

243cos

cos

2

3

)()(

77

57

37

17

75

55

35

15

73

53

33

13

71

51

31

11

7,4,1

1

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tINMMF

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

w

ww

(4.50)

233

77cos

5307cos

3547cos

787cos

2

3

7305cos

55cos

3305cos

545cos

2

3

5473cos

3053cos

33cos

303cos

2

3

787cos

545cos

303cos

cos

2

3

)()(

77

57

37

17

75

55

35

15

73

53

33

13

71

51

31

11

8,5,2

2

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tINMMF

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

w

ww

(4.51)

77cos

5367cos

3607cos

847cos

2

3

7365cos

55cos

3365cos

605cos

2

3

6073cos

3653cos

33cos

363cos

2

3

867cos

605cos

363cos

cos

2

3

)()(

77

57

37

17

75

55

35

15

73

53

33

13

71

51

31

11

9,6,3

3

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tNI

tINMMF

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

w

ww

(4.52)

The MMF of the machine is equal to the sum of the equations (4.50) to (4.52) which is

presented in equation (4.53).

77cos55cos33coscos2

9

)()(

77553311

9

1

tNItNItNItNI

tINMMF

ssss

w

ww

(4.53)

234

It could be seen that the asymmetrical machine lacks the MMF harmonics that result from the

interactions between the different harmonics of the stator current and the winding function. In the

asymmetrical connection these harmonics simply cancel each other’s.

4.4 Simulation of the Symmetrical Nine-Phase Machine

In this section the average model that was generated is simulated using MATLAB/Simulink

for symmetrical case. First step is to put the machine parameters from Tables 3.1 and 4.1 in to the

generated inductances and plugging the resulting inductances into the voltage equations of the Section

4.3. The machine inductances in the rotor reference frame are shown in Figures 4.12 to 4.17.

Figure 4.12: The inductances of the machine 1 in the rotor reference frame.

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld1d1

Ld1q1

Lq1d1

Lq1q1

235

Figure 4.13: The inductances of the machine 2 in the rotor reference frame.

Figure 4.14: The inductances of the machine 3 in the rotor reference frame.

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld2d2

Lq2q2

Ld2q2

Lq2d2

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld3d3

Lq3q3

Ld3q3

Lq3d3

236

Figure 4.15: The mutual inductances between machines 1 and 2 in the rotor reference frame.

Figure 4.16: The mutual inductances between machines 1 and 3 in the rotor reference frame.

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld1d2

Lq1q2

Ld1q2

Lq1d2

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld1d3

Lq1q3

Ld1q3

Lq1d3

237

Figure 4.17: The mutual inductances between machines 2 and 3 in the rotor reference frame.

The magnetic flux linkage of the permanent magnet blocks in the rotor reference frame are

also shown in Figures 4.18 to 4.20.

Figure 4.18: The d and q axis flux linkage due to the rotor permanent magnets of machine 1 in

rotor reference frame.

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld2d3

Lq2q3

Ld2q3

Lq2d3

0 100 200 300 400 500 600 700-0.1

0

0.1

0.2

0.3

Rotor Angle (Degree)

Wb

pmd1

pmq1

238

Figure 4.19: The d and q axis flux linkage due to the rotor permanent magnets of machine 2 in

rotor reference frame.

Figure 4.20: The d and q axis flux linkage due to the rotor permanent magnets of machine 3 in

rotor reference frame.

Three sets of 60 (Hz) 110 (Volts) three-phase voltages (as shown in Figure 4.21) are applied

to the model while the initial rotor speed is 377 𝑟𝑎𝑑/𝑠𝑒𝑐. After the initial transients are passed the

load torque is applied to the machine. Figure 4.22 shows the rotor speed of the machine.

0 100 200 300 400 500 600 700-0.1

0

0.1

0.2

0.3

Rotor Angle (Degree)

Wb

pmd2

pmq2

0 100 200 300 400 500 600 700-0.1

0

0.1

0.2

0.3

Rotor Angle (Degree)

Wb

pmq3

pmd3

239

Figure 4.21: The phase voltages.

Figure 4.22: The rotor speed.

Figure 4.23 (a) shows the electromagnetic and load torque together. As it can be seen after

initial transients have died and the torque goes to zero. After applying the load, the machine starts

generating electromagnetic torque to keep the synchronous speed. The spectrum of the

electromagnetic torque is shown in the Figure 4.23 (b). The main harmonic frequency is zero and the

0 0.005 0.01 0.015 0.02 0.025 0.03

-100

-50

0

50

100

sec.

Volt

2 4 6 8 10 12 14375

376

377

378

sec.

rad

/sec

r

240

rest of the higher harmonics have a relatively lower magnitude compared to the main one. The

electromagnetic torque is generated by three machines and each of them shares a part of that.

(a)

(b)

Figure 4.23 (a) The total electromagnetic and load torque, (b) The spectrum of the

electromagnetic torque of the machine.

2 4 6 8 10 12 14

0

2

4

6

8

sec.

N.m

TL

Te

241

(a)

(b)

(c)

Figure 4.24: (a) The electromagnetic torque generated by machine 1 for average and full order

model, (b) The spectrum of the electromagnetic torque of the full order model, (c) The spectrum of

the electromagnetic torque for the average model.

2 4 6 8 10 12 14-1

0

1

2

3

sec.

N.m

Te1

-Full Order Model Te1

-Average Model

0 20 40 60 80 100 1200

50

100

Frequency (Hz)

Fundamental (0.1Hz) = 1.18 , THD= 59.12%

Mag (

% o

f F

undam

enta

l)

242

(a)

(b)

(c)

Figure 4.25: (a) The electromagnetic torque generated by machine 2 for average and full order

model, (b) The spectrum of the electromagnetic torque of the full order model, (c) The

spectrum of the electromagnetic torque for the average model.

2 4 6 8 10 12 14-1

0

1

2

3

sec.

N.m

Te2

-Full Order Model Te2

-Average Model

0 20 40 60 80 100 1200

50

100

Frequency (Hz)

Fundamental (0.1Hz) = 1.18 , THD= 59.12%

Mag

(%

of

Fundam

enta

l)

243

(a)

(b)

(c)

Figure 4.26: (a) The electromagnetic torque generated by machine 3 for average and full order

model, (b) The spectrum of the electromagnetic torque of the full order model, (c) The

spectrum of the electromagnetic torque for the average model.

2 4 6 8 10 12 14-1

0

1

2

3

sec.

N.m

Te3

-Full Order Model Te3

-Average Model

0 20 40 60 80 100 1200

50

100

Frequency (Hz)

Fundamental (0.1Hz) = 1.18 , THD= 59.12%

Mag

(%

of

Fundam

enta

l)

244

Figures 4.24 to 4.26 show the electromagnetic torque of each machine along with the

electromagnetic torque of the machine from full order modelling in chapter 3. Also the spectrums of

the electromagnetic torques of the average and full order model are shown in the same figures. It can

be seen that the full order model has some harmonics around the voltage source frequency while the

average model does not generate that harmonics.

(a)

(b)

(c)

(d)

Figure 4.27: (a) The electromagnetic torque generated by all machines, (b) The zoomed view of

the total torque, (d) The zoomed view of the torques of the individual machines (c) The spectrum

of the total electromagnetic torque of the full order model.

For the full order model, generated in chapter 3, the total electromagnetic torque and the

spectrum of that are shown in the Figure 4.27. It can be seen that the total torque of the machine has

less ripple compared to the electromagnetic torque of each machine. It also can be seen from the

spectrum of the torque shown in the figure 4.27 (d), with comparing the harmonics of the torque

around the source frequency by that of each individual machine in Figures 4.24 to 4.26. The spectrum

2 4 6 8 10 12 14

0

2

4

6

8

sec.

N.m

Te1

Te2

Te3

Tet

11.01 11.02

4.9

4.95

5

5.05

5.1

sec.

N.m

Tet

11.01 11.02

1.64

1.66

1.68

1.7

1.72

sec.

N.m

Te1

Te2

Te3

245

of the airgap flux linkage of different machines and the total are shown in the Figure 4.28. The main

component is equal to the source frequency and the harmonics can be seen in the zoomed view of the

figure.

(a)

(b)

(c)

(d)

Figure 4.28: The spectrum of the airgap flux linkage from the average model for, (a) Machine

‘1’, (b) Machine ‘2’, (c) Machine ‘3’, (d) Total.

The stator currents in natural quantities are shown in the Figures 4.29 to 4.31 along with the

currents of the full order modelling. By comparing the currents, the harmonics of the full order model

currents can be seen in these figures.

246

(a)

(b)

(c)

Figure 4.29: The stator currents of machine ‘1’ at steady state for average and full order model,

(a) Phase ‘a’, (b) Phase ‘b’, (c) Phase ‘c’.

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ia1

-Average Model ia1

-Full Order Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ib1

-Average Model ib1

-Full Order Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ic1

-Full Order Model ic1

-Average Model

247

(a)

(b)

(c)

Figure 4.30: The stator currents of machine ‘2’ at steady state for average and full order model,

(a) Phase ‘a’, (b) Phase ‘b’, (c) Phase ‘c’.

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ia2

-Average Model ia2

-Full Order Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ib2

-Full Order Model ib2

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ic2

-Average Model ic2

-Full Order Model

248

(a)

(b)

(c)

Figure 4.31: The stator currents of machine ‘3’ at steady state for average and full order model,

(a) Phase ‘a’, (b) Phase ‘b’, (c) Phase ‘c’.

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ia3

-Full Order Model ia3

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ib3

-Full Order Model ib3

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ic3

-Average Model ic3

-Full Order Model

249

(a)

(b)

(c)

(d)

Figure 4.32: The stator currents in stationary reference frame in, (a) First sequence, (b) Third sequence,

(c) Fifth sequence, (d) Seventh sequence.

The machine currents can be transformed to the stationary reference frame using the

transformation matrix of equation (3.10) to obtain the different sequences of them. Figure 4.32 shows

the first, third, fifth and seventh sequence of the stator currents in the stationary reference frame.

4.5 Simulation of the Asymmetrical Nine-Phase Machine

In this section the average model is simulated using MATLAB/Simulink for the

asymmetrical connection. First step is to put the asymmetrical machine parameters from Tables 3.1

and 4.1 in to the general equation of inductances and substituting the resulting inductances into the

voltage equations of the section 4.3. After that, the triple star IPM machine can be simulated using

MATLAB/ Simulink. The machine inductances in the rotor reference frame are shown in Figures

4.33 to 4.38.

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

iq1

id1

10 10.01 10.02 10.03 10.04 10.05 10.06

-0.5

0

0.5

sec.

Am

per

e

iq3

id3

10 10.01 10.02 10.03 10.04 10.05 10.06

-0.2

0

0.2

0.4

sec.

Am

per

e

iq5

id5

10 10.01 10.02 10.03 10.04 10.05 10.06-0.1

-0.05

0

0.05

0.1

0.15

sec.A

mp

ere

iq7

id7

250

Figure 4.33: The inductances of the machine 1 in the rotor reference frame.

Figure 4.34: The inductances of the machine 2 in the rotor reference frame.

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld1d1

Ld1q1

Lq1d1

Lq1q1

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld2d2

Lq2q2

Ld2q2

Lq2d2

251

Figure 4.35: The inductances of the machine 3 in the rotor reference frame.

Figure 4.36: The mutual inductances between machines 1 and 2 in the rotor reference frame.

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld3d3

Lq3q3

Ld3q3

Lq3d3

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld1d2

Lq1q2

Ld1q2

Lq1d2

252

Figure 4.37: The mutual inductances between machines 1 and 3 in the rotor reference frame.

Figure 4.38: The mutual inductances between machines 2 and 3 in the rotor reference frame.

The magnetic flux linkage of the permanent magnet blocks in the rotor reference frame are

also shown in Figures 4.39 to 4.41.

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld1d3

Lq1q3

Ld1q3

Lq1d3

0 100 200 300 400 500 600 700

0

5

10

x 10-3

Rotor Angle (Degree)

Hen

ry

Ld2d3

Lq2q3

Ld2q3

Lq2d3

253

Figure 4.39: The d and q axis flux linkage due to the rotor permanent magnets of machine 1 in

rotor reference frame.

Figure 4.40: The d and q axis flux linkage due to the rotor permanent magnets of machine 2 in

rotor reference frame.

0 100 200 300 400 500 600 700-0.1

0

0.1

0.2

0.3

Rotor Angle (Degree)

Wb

pmd1

pmq1

0 100 200 300 400 500 600 700-0.1

0

0.1

0.2

0.3

Rotor Angle (Degree)

Wb

pmd2

pmq2

254

Figure 4.41: The d and q axis flux linkage due to the rotor permanent magnets of machine 3 in

rotor reference frame.

Figure 4.42: The phase voltages.

Three sets of 60 (Hz) 110 (Volts) three-phase voltages (as shown in Figure 4.42) are applied

to the model while the initial rotor speed is 377 (rad/sec). When the machine passes the transients and

goes to the steady state, a mechanical load torque equal to 5 N.m is applied to the machine. The

0 100 200 300 400 500 600 700-0.1

0

0.1

0.2

0.3

Rotor Angle (Degree)

Wb

pmq3

pmd3

0 0.01 0.02 0.03 0.04-200

-100

0

100

200

sec.

Vo

lt

Va3

Vb3

Vc3

Va2

Vb2

Vc2

Va1

Vb1

Vc1

255

simulation results are shown in the following. Figure 4.43 shows the rotor speed, the transients at the

beginning and after load application can be seen on that.

Figure 4.43: The rotor speed.

Figure 4.44 (a) shows the electromagnetic and load torque together. As it can be seen after

initial transients have died the torque goes to zero. After applying the load, the machine starts

generating electromagnetic torque to keep the synchronous speed. The spectrum of the

electromagnetic torque is shown in the Figure 4.44 (b). The frequency of the main harmonic is zero

and the rest of the higher harmonics have a relatively lower magnitude compared to the main one.

The electromagnetic torque is generated by three machines and each of them shares a part of that.

Figures 4.45 to 4.47 show the electromagnetic torque of each machine along with the electromagnetic

torque of the same machine from full order modelling in chapter 3. Also, the spectrums of the

electromagnetic torques of the average and full order model are shown in the same figures.

2 4 6 8 10 12 14375

376

377

378

sec.

rad

/sec

r

256

(a)

(b)

(c)

Figure 4.44: (a) The total electromagnetic torque, (b) The Zoomed view of torque at steady

state, (c) The spectrum of the electromagnetic torque of the machine.

2 4 6 8 10 12 14

0

2

4

6

8

sec.

N.m

TL

Te

10 10.001 10.002 10.003 10.004 10.0054.95

5

5.05

sec.

N.m

TL

Te

257

(a)

(b)

(c)

(d)

Figure 4.45: (a) The electromagnetic torques generated by machine 1 for average and full order model, (b)

The zoomed view of torque at steady state, (c) The spectrum of the electromagnetic torque of the full order

model, (d) The spectrum of the electromagnetic torque for the average model.

2 4 6 8 10 12 14-1

0

1

2

3

sec.

N.m

Te1

-Full Order Model Te1

-Average Model

10 10.001 10.002 10.003 10.004 10.0051.6

1.65

1.7

1.75

sec.

N.m

Te1

- Full Order Model Te1

-Average Model

258

(a)

(b)

(c)

(d)

Figure 4.46: (a) The electromagnetic torque generated by machine 2 for average and full order model, (b) The

zoomed view of torques at steady state, (c) The spectrum of the electromagnetic torque of the full order model, (d)

The spectrum of the electromagnetic torque for the average model.

2 4 6 8 10 12 14-1

0

1

2

3

sec.

N.m

Te2

-Full Order Model Te2

-Average Model

10 10.001 10.002 10.003 10.004 10.0051.6

1.65

1.7

1.75

sec.

N.m

Te2

-Average Model Te2

-Full Order Model

259

(a)

(b)

(c)

(d)

Figure 4.47: (a) The electromagnetic torque generated by machine 3 for average and full order model, (b)

The zoomed view of torques at steady state, (c) The spectrum of the electromagnetic torque of the full order

model, (d) The spectrum of the electromagnetic torque for the average model.

2 4 6 8 10 12 14-1

0

1

2

3

sec.

N.m

Te3

-Full Order Model Te3

-Average Model

10 10.001 10.002 10.003 10.004 10.0051.6

1.65

1.7

1.75

sec.

N.m

Te3

-Average Model Te3

-Full Order Model

260

The spectrum of the airgap flux linkage for average and full order model are shown in the

Figure 4.48. The main component is equal to the source frequency and the harmonics can be seen in

the zoomed view of the figure. Compared to the flux linkage spectrum, shown in the Figure 3.133,

the high frequency components have negligible magnitudes.

(a)

(b)

(c)

(d)

Figure 4.48: The spectrum of the airgap flux linkage of average model for, (a) Machine ‘1’, (b)

Machine ‘2’, (c) Machine ‘3’, (d) The total flux linkage.

The stator currents in natural quantities are shown in the Figures 4.49 to 4.51 along with the

currents of the full order modelling.

261

(a)

(b)

(c)

Figure 4.49: The stator currents of machine 1 at steady state (average and full order model).

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ia1

-Full Order Model ia1

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ib1

-Average Model ib1

-Full Order Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

i c 1

-Average Model i c 1

-Full Order Model

262

(a)

(b)

(c)

Figure 4.50: The stator currents of machine 2 at steady state (average and full order model).

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ia2

-Full Order Model ia2

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ib2

-Full Order Model ib2

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ic2

-Average Model ic2

-Full Order Model

263

(a)

(b)

(c)

Figure 4.51: The stator currents of machine 3 at steady state (average and full order model).

The stator current in the stationary reference frame are also shown in Figure 4.52. This

Figure shows the First, third, Fifth and seventh sequence currents of the stationary reference frame.

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ia3

-Full Order Model ia3

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ib3

-Full Order Model ib3

-Average Model

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

ic3

-Average Model ic3

-Full Order Model

264

(a)

(b)

(c)

(d)

Figure 4.52: The stator currents in stationary reference frame in, (a) First sequence, (b) Third

sequence, (c) Fifth sequence, (d) Seventh sequence.

4.6 Decoupling the Average Model of the Symmetrical and Asymmetrical Triple-Star IPM

Machines

4.6.1 Background

Generally, a linear system can be defined as:

)()()(

)()()(

tDUtCxty

tBUtAxtx

(4.54)

In this equation ‘A’ represents the system matrix, ‘B’ is the input matrix, ‘U’ is the input of

the system, ‘C’ is the output matrix and ‘X’ represents the state vector of the system [160]. The

couplings between the state variables are due to the non-diagonal terms of the matrix ‘A’. To decouple

the state variables from each other, the system needs to be transformed to a decoupled form. The

10 10.01 10.02 10.03 10.04 10.05 10.06

-5

0

5

10

sec.

Am

per

e

iq1

id1

10 10.01 10.02 10.03 10.04 10.05 10.06

-0.5

0

0.5

sec.

Am

per

e

iq3

id3

10 10.01 10.02 10.03 10.04 10.05 10.06

-0.2

0

0.2

0.4

sec.

Am

per

e

iq5

id5

10 10.01 10.02 10.03 10.04 10.05 10.06-0.1

-0.05

0

0.05

0.1

0.15

sec.

Am

per

e

iq7

id7

265

transformation to the new form is basically multiplying the system by a decoupling matrix. The

decoupling matrix can be generated from the matrix ‘A’. An n×n matrix like ‘A’ with distinct eigen

values is called diagonalizable if there exists an invertible matrix like P such that the APP 1 is

diagonal [160].

By considering the eigen values of the matrix A as nii ,....3,2,1, , then for each

eigen value there will be an associated eigen vector given as niqi ,....3,2,1, such that:

iii qAq (4.55)

The set of the eigen vectors are linearly independent, therefore they can be used as a base to

represent ‘A’ in a new form called ‘ A ’. When ‘ A ’ is the representation of the matrix ‘A’ with the

respect of the niqi ,....3,2,1, basis, then the first column of ‘ A ’ is the representation of

111 qAq with respect to the 1q .

0

.

0...

1

21111

nqqqqAq

(4.56)

It means the first column of the ‘ A ’ can be defined as:

0

.

0

1

1

V

(4.57)

266

By repeating the same procedure for the rest of the columns of the matrix ‘A’ the rest of the

columns of the matrix ‘ A ’ can be derived. The matrix ‘ A ’ can be represented as:

n

A

..00

.....

0..0

0..0

ˆ 2

1

(4.58)

The above matrix is a diagonal matrix which means each square matrix with distinct eigen

values can be represented as a diagonal one using it’s eigen vectors as a basis. Based on this, if ‘P’ is

defined as:

nqqqp ...21 (4.59)

Then:

APPA 1ˆ (4.60)

From the equation (4.60) A can be rewritten as:

1ˆ PAPA (4.61)

Substituting this equation in equation (4.54) results in:

)()()(

)()(ˆ)( 1

tDUtCxty

tBUtxPAPtx

(4.62)

By multiplying ‘ 1P ’ from the left hand side the equation (4.62) changes to:

)()()(

)()(ˆ)(

111

1111

tDUPtCxPtyP

tBUPtxPAPPtxP

(4.63)

Now the decoupled state space equations can be defined as [160]:

267

)(')(')('

)(')('ˆ)('

tUDtxCty

tUBtxAtx

(4.64)

Where:

DPDCPCBPBtxPtx 1111 ',','),()(' (4.65)

4.6.2 Decoupling the Machine Model

As it can be seen from the equation (4.37) there are some coupling terms between the different

machines inductances. The coupling terms are actually the non-diagonal terms of the inductance

matrix. These inductances can cause some complexity in designing the controller for the machine

[140]. To remove these coupling terms, a new reference frame is needed to be presented. The

transformation will be a combination of the rotor reference frame transformation and a second

transformation that can make the inductance matrix of equation (4.35) diagonal. The procedure of

finding the new transformation can start from diagonalzing the matrix of equation (4.35). To be able

to determine the diagonal matrix of the inductances, the matrix should have distinct eigen values

[143]. To have distinct Eigen values the zero sequence inductances should be removed, therefore the

inductance matrix can shrink to the matrix of equation (4.66).

d

q

md

mq

md

mq

md

mq

d

q

md

mq

md

mq

md

mq

d

q

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

qd

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

33

33

23

23

31

31

32

32

22

22

12

12

31

31

21

21

11

11

(4.66)

268

Generally, a matrix like qdL is diagnosable if there exists an invertible matrix like P such

that the PLP qd

1 is invertible [147].

P

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

PL

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

qdn

33

33

23

23

31

31

32

32

22

22

12

12

31

31

21

21

11

11

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(4.67)

Where: ‘P’, is a matrix formed by the eigen vectors of the main matrix ( qdL ).

654321 VVVVVVP

(4.68)

To obtain the eigen vectors of the matrix, the eigen values are needed. The eigen values can

be calculated as:

0 ILqd

0

100000

010000

001000

000100

000010

000001

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

33

33

23

23

31

31

32

32

22

22

12

12

31

31

21

21

11

11

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

(4.69)

The last equation is equal to:

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

33

33

23

23

31

31

32

32

22

22

12

12

31

31

21

21

11

11

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

dd

qq

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

(4.70)

269

Using the MATLAB (Symbolic Toolbox), the eigen values of the matrix are.

31111 qqqq LL

31112 dddd LL

2

8

2

312

212

31

113

qqqqqq

qq

LLLL

2

8

2

312

212

31

114

qqqqqq

qq

LLLL

2

8

2

312

212

31115

dddddddd

LLLL

2

8

2

312

212

31116

dddddddd

LLLL

(4.71)

Using the eigen values the eigen vectors ( iV ) of the matrix can be derived as:

0 ii VIA

(4.72)

Therefore, the eigen vectors corresponding to each of the eigen values are given in equations

(4.73) to (4.77).

0

1

0

85.05.0

0

1

21

3111312

212

3111

1 qq

qqqqqqqqqqqq

L

LLLLLL

V

(4.73)

0

1

0

85.05.0

0

1

21

3111312

212

3111

2 qq

qqqqqqqqqqqq

L

LLLLLL

V

(4.74)

270

0

1

0

0

0

1

3V ,

1

0

0

0

1

0

4V

(4.75)

1

0

85.05.0

0

1

0

21

3111312

212

31115

dd

dddddddddddd

L

LLLLLLV

(4.76)

1

0

85.05.0

0

1

0

21

3111312

212

31116

dd

dddddddddddd

L

LLLLLLV

(4.77)

Substituting the self and mutual inductances from the equation 4.66 into the eigen vectors,

they change to:

0

1

0

2

0

1

0

1

0

85.05.0

0

1

22

1 mq

mqqmqmqmqq

L

LLLLLL

V

(4.78)

271

0

1

0

1

0

1

0

1

0

95.05.0

0

1

2

2 mq

mqqmqmqq

L

LLLLL

V

(4.79)

0

1

0

0

0

1

3V ,

1

0

0

0

1

0

4V

(4.80)

1

0

1

0

1

0

1

0

95.05.0

0

1

0

25

md

mddmdmdd

L

LLLLLV

(4.81)

1

0

2

0

1

0

1

0

95.05.0

0

1

0

26

d

mddmdmdd

L

LLLLLV

(4.82)

Now by arranging the vectors in the same matrix, the matrix P can be formed as:

272

(4.83)

The inverse of the matrix P also can be defined as:

(4.84)

The columns of the matrix iW can be defined as:

0

0

02

1

84

8

84

8

312

212

312

212

31

312

212

312

212

31

1

qqqq

qqqqqq

qqqq

qqqqqq

LL

LLL

LL

LLL

W ,

312

212

312

212

31

312

212

312

212

31

2

84

8

84

8

2

10

0

0

dddd

dddddd

dddd

dddddd

LL

LLL

LL

LLLW

(4.85)

0

0

0

0

8

8

312

212

21

312

212

21

3

qqqq

dd

qqqq

qq

LL

L

LL

L

W ,

312

212

21

312

212

214

8

8

0

0

0

0

dddd

qq

dddd

dd

LL

LLL

LW

(4.86)

1

0

2

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

2

0

1

P

654321

1 WWWWWWP

273

0

0

02

1

84

8

84

8

312

212

312

212

31

332

212

312

212

31

5

qqqq

qqqqqq

qqqq

qqqqqq

LL

LLL

LL

LLL

W ,

312

212

312

212

31

312

212

312

212

31

6

84

8

84

8

2

10

0

0

dddd

dddddd

dddd

dddddd

LL

LLL

LL

LLLW

(4.87)

Substituting the self and mutual inductances from equation (4.66) into the vectors results in:

0

0

02

13

16

1

0

0

02

1

94

9

94

9

2

2

2

2

1

mq

mqmq

mq

mqmq

L

LL

L

LL

W ,

6

13

12

10

0

0

94

9

94

9

2

10

0

0

2

2

2

22

md

mdmd

md

mdmd

L

LL

L

LLW

(4.88)

0

0

0

03

13

1

0

0

0

0

9

9

2

2

3

mq

mq

mq

mq

L

L

L

L

W ,

3

13

10

0

0

0

9

9

0

0

0

0

2

2

4

md

md

md

md

L

LL

LW

(4.89)

274

0

0

02

13

16

1

0

0

02

1

94

9

94

9

2

2

2

2

5

mq

mqmq

mq

mqmq

L

LL

L

LL

W ,

6

13

12

10

0

0

94

9

94

9

2

10

0

0

2

2

2

26

md

mdmd

md

mdmd

L

LL

L

LLW

(4.90)

Therefore, by arranging the vectors in the same matrix, the matrix 1P can be expressed as:

(4.91)

Now using the P and 1P the inductance matrix can be diagonalized as equation (4.92).

mqq

mqq

mqq

mdd

mdd

mdd

qdqdn

LL

LL

LL

LL

LL

LL

PLPL

00000

020000

00000

00000

000020

00000

1

(4.92)

6

10

3

10

6

10

3

10

3

10

3

10

2

1000

2

10

02

1000

2

1

03

10

3

10

3

1

06

10

3

10

6

1

1P

275

By adding the leakage inductances to the self-inductances of the equations (4.26) to (4.34)

and substitute them into the equation (4.92) the inductance matrix changes to:

ls

mqls

ls

ls

mdls

ls

qdqdn

L

LL

L

L

LL

L

PLPL

00000

030000

00000

00000

000030

00000

1

(4.93)

Where: lsL represents the leakage inductance of the stator phases. Now the whole model of the

machine can be transformed to the new reference frame to get the decoupled model for the machine.

The new transformation matrix which includes the diagonalizing matrix (after inserting the zero

sequence) can be defined as:

276

2

1

2

1

2

1000000

0002

1

2

1

2

1000

0000002

1

2

1

2

1666333666

333333333

222000

222

222000

222

333333333

666333666

3

2

2

1

2

1

2

1000000

0002

1

2

1

2

1000

0000002

1

2

1

2

1

000000

000000

000000

000000

000000

000000

3

2

100000000

010000000

001000000

0006

10

3

10

6

10

0003

10

3

10

3

10

0002

1000

2

10

00002

1000

2

1

00003

10

3

10

3

1

00006

10

3

10

6

1

333222111

333222111

333111

333222

333222111

333222111

333

333

222

222

111

111

1

rrrrrrrrr

rrrrrrrrr

rrrrrr

rrrrrr

rrrrrrrrr

rrrrrrrrr

rrr

rrr

rrr

rrr

rrr

rrr

rrn

SSSSSSSSS

SSSSSSSSS

SSSSSS

CCCCCC

CCCCCCCCC

CCCCCCCCC

SSS

CCC

SSS

CCC

SSS

CCC

TPT

(4.94)

277

And also the reverse of the transformation matrix can be defined as:

100

100

100

0102002

0102002

0102002

001

001

001

100000000

010000000

001000000

000111000

000000111

000210000

000000012

000111000

000000111

1000000

1000000

1000000

0100000

0100000

0100000

0010000

0010000

0010000

333333

333333

333333

2222

2222

2222

111111

111111

111111

33

33

33

22

22

22

11

11

11

11

rrrrrr

rrrrrr

rrrrrr

rrrr

rrrr

rrrr

rrrrrr

rrrrrr

rrrrrr

rr

rr

rr

rr

rr

rr

rr

rr

rr

rrn

SSSCCC

SSSCCC

SSSCCC

SSCC

SSCC

SSCC

SSSCCC

SSSCCC

SSSCCC

SC

SC

SC

SC

SC

SC

SC

SC

SC

PTT

(4.95)

278

Where ‘C’ represents cos, ‘S’ represents sin, 9

,

3

2 and i is defined according

to Table 4.1. Now the machine equations can be transformed to the new reference frame ( nT ) as:

abciabcisabci pirV

qdnrnqdnrnsabci pTiTrV 11

qdnrnrnqdnrnsrnabcirn pTTiTrTVT 11

(4.96)

The different terms of the equation (4.96) can be represented as:

3

2

1

3

3

2

2

1

1

3

3

3

2

2

2

1

1

1

o

o

o

nd

nq

nd

nq

nd

nq

c

b

a

c

b

a

c

b

a

rnabcirn

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

TVT

(4.97)

3

2

1

3

3

2

2

1

1

3

3

3

2

2

2

1

1

1

o

o

o

nd

nq

nd

nq

nd

nq

c

b

a

c

b

a

c

b

a

rnabcirnqdn

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

TiTi

(4.98)

The last term in the equation (4.96) which includes derivation can be expanded as:

279

qdnrnrnqdnrnrnqdnrnrn pTTpTTpTT 111

(4.99)

The first term of the equation (4.99) is:

qdnr

qdnrrqdnrnrn

VVVVVVWWWWWW

PpTTPpTT

654321654321

111

(4.100)

Substituting the P , 1P and r into the equation (4.100) and inserting zero sequences,

results in:

280

(4.101)

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

1

000000000

000000000

000000000

000000001

000000010

000000100

000001000

000010000

000100000

100000000

010000000

001000000

000111000

000000111

000210000

000000012

000111000

000000111

000000000

000000000

000000000

000010000

000100000

000000100

000001000

000000001

000000010

100000000

010000000

001000000

0006

10

3

10

6

10

0003

10

3

10

3

10

0002

1000

2

10

00002

1000

2

1

00003

10

3

10

3

1

00006

10

3

10

6

1

do

do

do

nd

nq

nd

nq

nd

nq

r

do

do

do

nd

nq

nd

nq

nd

nq

r

qdnrnrn pTT

281

The second part of the equation (4.100) is equal to:

3

2

1

3

3

2

2

1

1

1

100000000

010000000

001000000

000100000

000010000

000001000

000000100

000000010

000000001

do

do

do

nd

nq

nd

nq

nd

nq

qdnrnrn

p

p

p

p

p

p

p

p

p

pTT

(4.102)

The resistances of the machine in the new reference frame also can be presented as:

s

s

s

s

s

s

s

s

s

rsrsn

r

r

r

r

r

r

r

r

r

PTrTPr

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

11

(4. 103)

Substituting the different terms of the machine in the decoupled reference frame in to the

equation (4.96) and adding zero sequences of the machines to that, results in equation (4.104).

282

ndr 1

nqV 1

nqi 1

nqr 1

ndV 1

ndi 1

3Lmq

ndr 2

nqi 2

nqr 2

ndi 2

ndr 3

nqi 3

nqr 3

ndi 3

1oV

1oi

2oV

2oi

3oV

3oi

sr

sr

sr

sr

sr

sr

lsL

lsL

lsL

lsL

lsL

lsL

lsL lsL lsLsr sr sr

nqV 2 nqV 3

ndV 2 ndV 3

3Lmd

Figure 4.53: The equivalent circuit of the machine in the rotor reference frame.

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

00000000

00000000

00000000

00000000

000030000

00000000

00000000

000000030

00000000

0

0

0

0

0

0

0

0

00000000

00000000

00000000

00000000

000030000

00000000

00000000

000000030

00000000

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

mqls

ls

ls

mdls

ls

pm

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

mqls

ls

ls

mdls

ls

rn

o

o

o

nd

nq

nd

nq

nd

nq

sn

o

o

o

nd

nq

nd

nq

nd

nq

i

i

i

pi

pi

pi

pi

pi

pi

L

L

L

L

LL

L

L

LL

L

i

i

i

i

i

i

i

i

i

L

L

L

L

LL

L

L

LL

L

i

i

i

i

i

i

i

i

i

r

V

V

V

V

V

V

V

V

V

(4.104)

283

And finally the voltage equations of the machine can be represented as:

0

0

0

3

3

0

0

0

3

3

000000000

000000000

000000000

000000001

000000010

000000100

000001000

000010000

000100000

3

3

2

2

1

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

ndls

nqmqls

ndls

nqls

ndmdls

nqls

ndls

nqmqls

ndls

nqls

pmndmdls

nqls

r

o

o

o

nd

nq

nd

nq

nd

nq

sn

o

o

o

nd

nq

nd

nq

nd

nq

ipL

iLLp

ipL

ipL

iLLp

ipL

iL

iLL

iL

iL

iLL

iL

i

i

i

i

i

i

i

i

i

r

V

V

V

V

V

V

V

V

V

(4.105)

The flux linkages of the machines can be represented as:

0

0

0

0

0

0

0

0

00000000

00000000

00000000

00000000

000030000

00000000

00000000

000000030

00000000

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

pm

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

mqls

ls

ls

mdls

ls

o

o

o

nd

nq

nd

nq

nd

nq

i

i

i

i

i

i

i

i

i

L

L

L

L

LL

L

L

LL

L

(4.106)

The generated torque of the machine can be calculated using the co-energy equation. The

co-energy of the machine can be presented as function of the stator currents and the flux linkages

as [122]:

pm

t

ssss

t

sco IILIW 2

1

(4.107)

Where ssL and sI are the machine inductances and current, defined as:

284

333333232323131313

333333232323131313

333333232323131313

323232222222121212

323232222222121212

323232222222121212

313131212121111111

313131212121111111

313131212121111111

ccbcacccbcacccbcac

cbbbabcbbbabcbbbab

cabaaacabaaacabaaa

ccbcacccbcacccbcac

cbbbabcbbbabcbbbab

cabaaacabaaacabaaa

ccbcacccbcacccbcac

cbbbabcbbbabcbbbab

cabaaacabaaacabaaa

ss

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

LLLLLLLLL

L

(4.108)

From the torque and co-energy equation, the electromagnetic torque can be derived as

[122]:

rm

coe

WT

(4.110)

From the equation (4.110), the torque can be expressed as:

rm

pmt

ss

rm

sst

se IIL

IT

2

1

(4.111)

Since the previous equations are in term of the electrical angle, the mechanical angle needs

to be converted to the electrical angle as presented in equation (4.112).

3

3

3

2

2

2

1

1

1

c

b

a

c

b

a

c

b

a

s

i

i

i

i

i

i

i

i

i

I

(4.109)

285

rmr

P

2

(4.112)

Therefore, the torque equation changes to the equation (4.113):

r

pmt

ss

r

sst

se IP

IL

IP

T

22

1

2

(4.113)

Substituting the stator currents with their corresponding values in rotor reference frame

results in:

r

pm

rn

t

qdnqdnrn

r

ssrn

t

qdne TIP

ITL

TIP

T

)()(

22

3)()()(

22

3 1

(4.114)

This equation can be rewritten as:

286

0

0

0

0

0

0

0

0

22

3

00000000

00000000

00000000

00000000

000030000

00000000

00000000

000000030

00000000

22

3

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

pm

t

o

o

o

nd

nq

nd

nq

nd

nq

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

mqls

ls

ls

mdls

ls

t

o

o

o

nd

nq

nd

nq

nd

nq

e

i

i

i

i

i

i

i

i

i

P

i

i

i

i

i

i

i

i

i

L

L

L

L

LL

L

L

LL

L

i

i

i

i

i

i

i

i

i

PT

(4.115)

287

The electromagnetic torque of the machine can be represented as:

pmndndnqmqndnqmd

oolslsoolsls

oolslspmnqndnqlsmqls

ndnqlslsndnqlsmdlse

iiiLiiLP

iiLLP

iiLLP

iiLLP

iP

iiLLLP

iiLLP

iiLLLP

T

13311

3231

21133

2211

4

9

)(4

3)(

4

3

)(4

3

4

3)3(

4

3

)(4

3)3(

4

3

(4.116)

The dynamic equation governing rotor speed can also be derived using the electromagnetic

and load torque. In the equation (4.117) ‘P’ is the pole pairs of the machine, ‘𝜔𝑟’ is the rotor speed,

‘B’ is the friction coefficient and ‘𝑇𝐿’ is the mechanical load torque applied to the machine.

rLre BTpP

JT

2

(4.117)

In equation (4.104) the torque producing voltages (the voltages that have inductances

bigger than the leakage) are nqV 1 and ndV 3 . The rest of the voltages are not able to produce

electromagnetic torque. To generate a simpler model, the torque producing voltages need to be

shifted to the top rows of the model matrix. The model modification can be done by modifying the

diagonalizing matrix. The new diagonalizig matrix ( 1'P and 'P ) are presented in the equations

(4.118) and (4.119) respectively. This matrix has been generated by exchanging the first and fifth

rows of the original matrix and also multiplying the first and second row to ‘-1’.

288

(4.118)

(4.119)

Using the new diagonalzing matrix and inserting the zero sequences, the new

transformation matrix can be generated as equation (4.120).

6

10

3

10

6

10

06

10

3

10

6

12

1000

2

10

02

1000

2

1

03

10

3

10

3

13

10

3

10

3

10

1'P

1

0

2

0

1

0

0

1

0

2

0

1

1

0

0

0

1

0

0

1

0

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

'P

289

2

1

2

1

2

1000000

0002

1

2

1

2

1000

0000002

1

2

1

2

1666333666

666333666

222000

222

222000

222

333333333

333333333

3

2

2

1

2

1

2

1000000

0002

1

2

1

2

1000

0000002

1

2

1

2

1

000000

000000

000000

000000

000000

000000

100000000

010000000

001000000

0006

10

3

10

6

10

00006

10

3

10

6

1

0002

1000

2

10

00002

1000

2

1

00003

10

3

10

3

1

0003

10

3

10

3

10

3

2

333222111

333222111

333111

333111

333222111

333222111

333

333

222

222

111

111

'1''

rrrrrrrrr

rrrrrrrrr

rrrrrr

rrrrrr

rrrrrrrrr

rrrrrrrrr

rrr

rrr

rrr

rrr

rrr

rrr

rrn

SSSSSSSSS

CCCCCCCCC

SSSSSS

CCCCCC

CCCCCCCCC

SSSSSSSSS

SSS

CCC

SSS

CCC

SSS

CCC

TPT

(4.120)

290

And the inverse transformation can be represented as:

100

100

100

0102200

0102200

0102200

001

001

001

100000000

010000000

001000000

000101001

000010110

000200001

000020010

000101001

000010110

1000000

1000000

1000000

0100000

0100000

0100000

0010000

0010000

0010000

333333

333333

333333

2222

2222

2222

111111

111111

111111

33

33

33

22

22

22

11

11

11

'1'1'

rrrrrr

rrrrrr

rrrrrr

rrrr

rrrr

rrrr

rrrrrr

rrrrrr

rrrrrr

rr

rr

rr

rr

rr

rr

rr

rr

rr

rrn

SCSCCS

SCSCCS

SCSCCS

SCCS

SCCS

SCCS

SCSCCS

SCSCCS

SCSCCS

SC

SC

SC

SC

SC

SC

SC

SC

SC

PTT

(4.121)

291

Now the machine voltage equations can be transformed to the new reference frame using

the new transformation matrix. The machine equations in natural quantities can be expressed as:

abciabcisabci pirV

(4.122)

Substituting the currents and flux linkages by their equivalent in the decoupled reference

frame results in:

qdnrnqdnrnsabci pTiTrV 1'1'

(4.123)

Multiplying the rnT 'from the left hand side, the equation changes to:

qdnrnrnqdnrnsrnabcirn pTTiTrTVT 1''1'''

(4.124)

The different components of the equation (4.124) can be represented as:

3

2

1

3

3

2

2

1

1

3

3

3

2

2

2

1

1

1

o

o

o

nd

nq

nd

nq

nd

nq

c

b

a

c

b

a

c

b

a

rnabcirn

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

TVT

(4.125)

3

2

1

3

3

2

2

1

1

3

3

3

2

2

2

1

1

1

o

o

o

nd

nq

nd

nq

nd

nq

c

b

a

c

b

a

c

b

a

rnabcirnqdn

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

TiTi

(4.126)

292

The derivative part also is equal to:

qdnrnrnqdnrnrnqdnrnrn pTTpTTpTT 1''1''1''

(4.127)

The first part of the equation (4.127) is equal to:

qdnrqdnrrqdnrnrn PPPpTTPpTT '1''11'1''

(4.128)

Substituting the'P ,

1'P and r into the equation (4.128) results in:

293

(4.129)

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

1

000000000

000000000

000000000

000010000

000100000

000000100

000001000

000000001

000000010

100000000

010000000

001000000

000101001

000010110

000200001

000020010

000101001

000010110

000000000

000000000

000000000

000010000

000100000

000000100

000001000

000000001

000000010

100000000

010000000

001000000

0006

10

3

10

6

10

00006

10

3

10

6

1

0002

1000

2

10

00002

1000

2

1

00003

10

3

10

3

1

0003

10

3

10

3

10

do

do

do

nd

nq

nd

nq

nd

nq

r

do

do

do

nd

nq

nd

nq

nd

nq

r

qdnrnrn pTT

294

The second part of the equation (4.127) is equal to:

3

2

1

3

3

2

2

1

1

1

100000000

010000000

001000000

000100000

000010000

000001000

000000100

000000010

000000001

do

do

do

nd

nq

nd

nq

nd

nq

qdnrnrn

p

p

p

p

p

p

p

p

p

pTT

(4.130)

The flux linkages in the decoupled reference frame can be explained as:

3,2,1,' iiLTp Pmabciabcissrndqin

(4.131)

Substituting the iabci by their equivalents in the decoupled reference frame, the flux

linkage equation can change to:

Pmabcirnqdnrnssrndqin TiTLTp '1''

(4.132)

The first term of the equation (4.132) is equal to equation (4.133).

295

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

'1''11'1''

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000030

000000003

100000000

010000000

001000000

000101001

000010110

000200001

000020010

000101001

000010110

00000000

00000000

00000000

000000

000000

000000

000000

000000

000000

100000000

010000000

001000000

0006

10

3

10

6

10

00006

10

3

10

6

1

0002

1000

2

10

00003

1000

2

1

00003

10

3

10

3

1

0003

10

3

10

3

10

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

ls

ls

ls

mqls

mdls

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

dmdmd

qmqmq

mddmd

mqqmq

mdmdd

mqmqq

qdnqdqdn

L

rssrqdnrnssrn

i

i

i

i

i

i

i

i

i

L

L

L

L

L

L

L

LL

LL

i

i

i

i

i

i

i

i

i

L

L

L

LLL

LLL

LLL

LLL

LLL

LLL

iPLPiPTLTPiTLT

qd

(4.133)

296

The second part of the equation (4.132) is equal to:

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100000000

010000000

001000000

0006

10

3

10

6

10

00006

10

3

10

6

1

0002

1000

2

10

00003

1000

2

1

00003

10

3

10

3

1

0003

10

3

10

3

10

1'

3

3

3

2

2

2

1

1

1

'

pm

pm

pm

pm

pmqd

pmc

pmb

pma

pmc

pmb

pma

pmc

pmb

pma

rpmqdn PT

(4.134)

The resistive term also can be transformed to decoupled reference frame as:

s

s

s

s

s

s

s

s

s

rsrsn

r

r

r

r

r

r

r

r

r

PTrTPr

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

'1''1'

(4.135)

Using the generated parts and by adding the zero sequence circuits to the model, the voltage

equation of the machine in the decoupled reference frame is presented in equation (4.136).

297

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000030

000000003

0

0

0

0

0

0

0

0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000030

000000003

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

ls

ls

ls

mqls

mdls

pm

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

ls

ls

ls

mqls

mdls

rn

o

o

o

nd

nq

nd

nq

nd

nq

sn

o

o

o

nd

nq

nd

nq

nd

nq

i

i

i

pi

pi

pi

pi

pi

pi

L

L

L

L

L

L

L

LL

LL

i

i

i

i

i

i

i

i

i

L

L

L

L

L

L

L

LL

LL

i

i

i

i

i

i

i

i

i

r

V

V

V

V

V

V

V

V

V

(4.136)

298

Where the term rn is defined as:

(4.137)

The flux linkages are also defined as:

0

0

0

0

0

0

0

0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000030

000000003

3

2

1

3

3

2

2

1

1

3

2

1

3

3

2

2

1

1

pm

o

o

o

nd

nq

nd

nq

nd

nq

ls

ls

ls

ls

ls

ls

ls

mqls

mdls

o

o

o

nd

nq

nd

nq

nd

nq

i

i

i

i

i

i

i

i

i

L

L

L

L

L

L

L

LL

LL

(4.138)

The equation for electromagnetic torque can be generated using the power balance between

the mechanical output power and the electrical input power. The equation (4.139) shows the

relationship between the input and the output power.

3

1

22

3

1

2

3

2

32

i

dindinqinqinrdinqinqindindinqins

i

dindinqinqinre

ipipiiiir

iViVP

T

(4.139)

000000000

000000000

000000000

000010000

000100000

000000100

000001000

000000001

000000010

rrn

299

ndr 1

nqV 1

nqi 1

nqr 1

ndV 1

ndi 1

3Lmq

ndr 2

nqi 2

nqr 2

ndi 2

ndr 3

nqi 3

nqr 3

ndi 3

1oV

1oi

2oV

2oi

3oV

3oi

sr

sr

sr

sr

sr

sr

lsL

lsL

lsL

lsL

lsL

lsL

lsL lsL lsLsr sr sr

nqV 2 nqV 3

ndV 2 ndV 3

3Lmd

Figure 4.54: The equivalent circuit of the machine in the decoupled reference frame.

The first term is the power loss and the derivative part is the changes of the stored energy which

are not effective on the electromagnetic torque. Therefore, using the average stored energy, the power

balance can be expressed equation (4.140).

3

1

3

1 22

3

2

3

i

dinqinqindinr

i

dindinqinqiner iiP

iViVT

(4.140)

By removing the term ‘ r ’ from the both sides of the equation (4.141) the torque equating

can be presented as:

nqpmnqndmqmd

nqndlsnqndlsnqndlsnqndls

ndnqmdlsnqpmnqndmqlse

iiiLLP

iiLiiLP

iiLiiLP

iiLLiiiLLP

T

111

33332222

11111

34

3

22

3

22

3

3322

3

(4.141)

300

4.7 Average Model of the Asymmetrical Double-Star Six-Phase IPM

In this section a double star asymmetrical six-phase IPM is modeled using the Fourier series

of the machine parameters. The modelling starts with the turn functions of the machine phases and

after generating the Fourier series of the turn function, winding function and the airgap function, the

Fourier series of the machine inductances are generated and the generated inductances are used to

derive the model of the machine in the rotor reference frame. Finally, the machine model is decoupled

to remove the coupling terms between different machines. The decoupling matrix and the new

transformation to the decoupled reference frame are generated and presented in this chapter.

4.7.1 Generating the Inductances of Six-Phase Double-Star IPM Machine

To generate the inductances of the machine the clock diagram is needed. The clock diagram of

the machine can be generated using the winding design method. The six-phase machine is composed

of two sets of three phase machines [149]. The machine totally has 24 slots and each machine covers

12 slots. Since the machine has four poles, the slot angular pitch can be calculated as:

)(3024

4180

24

180Degree

P

(4.142)

The slot between phases for each set can be calculated as:

430

120120

SBPH

(4.143)

The full coil pitch is:

122

2424

PFCP

(4.144)

301

Since the machine has concentrated windings then the belt is equal to 1. And also since the

machine is an asymmetrical one the slot between two adjacent machines is:

12

4

MSM

(4.145)

Where ‘M’ is the number of the machines sets. For the machine 1 the winding scheme is:

Table 4.3 The winding connections of set 1. C1- C1+ B1- B1+ A1- A1+

15 9 11 5 7 1

C1+ C1- B1+ B1- A1+ A1-

21 15 17 11 13 7

C1- C1+ B1- B1+ A1- A1+

3 21 23 17 19 13

C1+ C1- B1+ B1- A1+ A1-

21 15 17 11 13 7

The machine 2 has 1 slots shift from the machine 1, therefor the winding scheme for the

machine 2 is:

Table 4.4 The winding connections of set 2. C2- C2+ B2- B2+ A2- A2+

16 10 12 6 8 2

C2+ C2- B2+ B2- A2+ A2-

22 16 18 12 14 8

C2- C2+ B2- B2+ A2- A2+

16 10 24 18 20 14

C2+ C2- B2+ B2- A2+ A2-

22 16 6 24 2 20

Now using the Tables 4.3 and 4.4 the machine clock diagram can be presented as Figure 4.55.

The modeling can start from the turn functions of the machines. The turn functions for the machine 1

and 2 phases and the airgap function of the rotor are shown in the Figures 4.56, 4.57 respectively.

302

12

3

4

5

6

8

9

10

111213

14

15

16

17

18

19

20

21

22

2324

7

A1+

A1+

A1- A1-

A2+

A2+

A2-A2-

A1+

A1+

A2+

A2+

A1-A1-

A2-A2-

B2+ B2+

B1+B1+

B2-

B2-

B1-

B1-

B2+ B2+

B1+B1+

B1-

B1-

B2-

B2-

C1+C1+

C2+

C2+

C1-

C1-

C2-

C2-

C1+

C1+

C2+

C2+

C1-

C1-

C2-C2-

α1

α2

Figure 4.55: The clock diagram of the asymmetrical double star machine.

nA1

Ɵ (Degree)

50

50

-50

nB1

nC1

3601560 120 180 240 300

Figure 4.56: The turn functions of the machine 1 phases.

Using the Figures 4.56 and 4.57 the Fourier series of the turn function can be derived as

[153]:

)(7sin)(5sin)(3sin)sin( 75310 kNkNkNkNNnx

n

NNicbax x

niii

4,

6,2,1,,,

(4.146)

303

Where k is defined in the Table 4.5.

Ɵ (Degree)

50

50

-50

nA2

nB2

nC2

36015 60 120 180 240 300

Figure 4.57: The turn functions of the machine 2 phases.

Table 4.5 The corresponding k for the phases.

x k x k

1a 0 2a 1

1b 4 2b 5

1c 8 2c 9

The machine has the same rotor shape as the nine phase one therefore the air gap function and

the Fourier series of the inverse of the airgap function will be the same. The equation (4.3) which

shows the Fourier series of the inverse airgap function is repeated here [83].

)(14cos)(10cos)(6cos)(2cos),( 43210

1

rrrrr aaaaag (4.147)

Where: 0a , 1a , 2a , 3a and 4a are the Fourier series amplitude of the inverse air gap

function. They are given as:

aa 0 , ba 1 , 3

2

ba ,

53

ba ,

74

ba

bb gga

11

2

1,

ab ggb

11

2

1

(4.148)

Using the Fourier series of the turn functions and the airgap function and equation (4.149) [74]

the winding function of each phase can be calculated as:

304

2

0

2

0

),(

1

),(

)(

)()(

dg

dg

n

nN

r

r

w

ww

(4.149)

The different parts of the equation (4.149) can be expressed as:

2

0

0

43

2102

0

2)(14cos)(10cos

)(6cos)(2cos

),(

1ad

aa

aaad

g rr

rr

r

(4.150)

The nominator integrator also is:

2

0

0000

2

0

432107

432105

432103

432101

432100

2

0 43210

753102

0

2

)(14cos)(10cos)(6cos)(2cos)(7sin

)(14cos)(10cos)(6cos)(2cos)(5sin

)(14cos)(10cos)(6cos)(2cos)(3sin

)(14cos)(10cos)(6cos)(2cos)sin(

)(14cos)(10cos)(6cos)(2cos

)(14cos)(10cos)(6cos)(2cos

)(7sin)(5sin)(3sin)sin(

),(

)(

aNdaN

d

aaaaakN

aaaaakN

aaaaakN

aaaaakN

aaaaaN

daaaaa

kNkNkNkNNd

g

n

rrrr

rrrr

rrrr

rrrr

rrrr

rrrrr

w

(4.151)

The equations (4.149) and (4.151) result in:

22

2

),(

1

),(

)(

10

0

00

2

0

2

0 NN

a

aN

dg

dg

n

r

r

w

(4.152)

Substituting the equation (4.152) into the equation (4.146) results in:

)(7sin)(5sin)(3sin)sin(

)(7sin)(5sin)(3sin)sin()(

7531

075310

wwww

wwwww

kNkNkNkN

NkNkNkNkNNN

(4.153)

Using the generated winding function, airgap function and turn function the mutual

inductances between each couple of the windings can be calculated according to the equation (4.154).

305

2

0

75310

7531

43210

2

0

)(7sin)(5sin)(3sin)sin(

)(7sin)(5sin)(3sin)sin(

)(14cos)(10cos)(6cos)(2cos

)()(),(

1

d

kNkNkNkNN

kNkNkNkN

aaaaa

rl

dNng

rlL

iiii

jjjj

rrrr

o

ij

r

oji

(4.154)

The equation (4.153) can be simplified according the following procedure:

The winding function terms can be multiplied to the turn function according to equation

(4.1155).

2

0

75

310

7

75

310

5

75

310

3

75

310

1

43210

2

0

)(7sin)(5sin

)(3sin)sin()(7sin

)(7sin)(5sin

)(3sin)sin()(5sin

)(7sin)(5sin

)(3sin)sin()(3sin

)(7sin)(5sin

)(3sin)sin()sin(

)(14cos)(10cos)(6cos)(2cos

)()()(),(

1

d

kNkN

kNkNNkN

kNkN

kNkNNkN

kNkN

kNkNNkN

kNkN

kNkNNkN

aaaaa

rl

dNng

rlL

ii

ii

j

ii

ii

j

ii

ii

j

ii

ii

j

rrrr

o

ij

r

oji

(4.155)

The non-zero terms are:

2

0

7770

5550

3330

1110

43210

2

0

)(7sin)(7sin)(7sin

)(5sin)(5sin)(5sin

)(3sin)(3sin)(3sin

)sin()sin()sin(

)(14cos)(10cos)(6cos)(2cos

)()(),(

1

d

kkNNkNN

kkNNkNN

kkNNkNN

kkNNkNN

aaaaa

rl

dNng

rlL

ijj

ijj

ijj

ijj

rrrr

o

ij

r

oji

(4.156)

306

2

0

2

770

2

550

2

330

2

110

43210

2

0

7cos27cos2

)(7sin

5cos25cos2

)(5sin

3cos23cos2

3sin

cos2cos2

sin

)(14cos)(10cos)(6cos)(2cos

)()(),(

1

d

kkkkN

kNN

kkkkN

kNN

kkkkN

kNN

kkkkN

kNN

aaaaa

rl

dNng

rlL

ijijj

ijijj

ijijj

ijijj

rrrr

o

ij

r

oji

(4.157)

2

0

2

770

2

550

2

330

2

110

43210

2

0

7cos27cos2

)(7sin

5cos25cos2

)(5sin

3cos23cos2

3sin

cos2cos2

sin

)(14cos)(10cos)(6cos)(2cos

)()()(),(

1

d

kkkkN

kNN

kkkkN

kNN

kkkkN

kNN

kkkkN

kNN

aaaaa

rl

dNng

rlL

jiijj

jiijj

jiijj

jiijj

rrrr

o

ij

r

oji

(4.158)

Again the non-zero terms are:

307

2

0

2

74

2

53

2

32

2

11

2

7

2

5

2

3

2

10

2

0

)(14cos27cos2

)(10cos25cos2

)(6cos23cos2

)(2cos2cos2

7cos2

5cos2

3cos2

cos2

)()()(),(

1

d

kkN

a

kkN

a

kkN

a

kkN

a

kkN

kkN

kkN

kkN

a

rl

dNng

rlL

rij

rij

rij

rij

jijijiji

o

ij

r

oji

(4.159)

2

0

2

74

2

53

2

32

2

11

2

7

2

5

2

3

2

10

2

0

714cos71428cos4

510cos51020cos4

36cos3612cos4

2cos24cos4

7cos2

5cos2

3cos2

cos2

)()()(),(

1

d

kkkkN

a

kkkkN

a

kkkkN

a

kkkkN

a

kkN

kkN

kkN

kkN

a

rl

dNng

rlL

ijrijr

ijrijr

ijrijr

ijrijr

jijijiji

o

ij

r

oji

(4.160)

ijrijr

ijrijr

jijijiji

o

ij

r

oji

kkN

akkN

a

kkN

akkN

a

kkN

kkN

kkN

kkN

a

rl

dNng

rlL

714cos4

510cos4

36cos4

2cos4

7cos2

5cos2

3cos2

cos2

2

)()()(),(

1

2

74

2

53

2

32

2

11

2

7

2

5

2

3

2

10

2

0

(4.161)

In the equation (4.161) the terms ik and jk can be defined as:

1, NumberSlotingCorrespondk ji (4.162)

308

Now using the transformation matrix of equation (4.163), the inductances can be transformed

to the rotor reference frame. The self-inductances of the machine 1 can be transformed to the rotor

reference frame as:

000

0

0

2

3

000

0

0

2

3

1

1

1

2

1

2

1

2

13

2

112110112110

1121101121102

1

112110112110

112110112110

0101101101

1011111

1011111

11

11

11

111111

111111

111111

111

111

1

11111

CaCaSaSa

SaSaCaCarlN

CLCLSLSL

SLSLCLCL

LLL

LLL

LLL

SC

SC

SC

LLL

LLL

LLL

SSS

CCC

TLTL

o

dq

dddqd

qdqqq

rr

rr

rr

ccbcac

cbbbab

cabaaa

rrr

rrr

rrqd

(4.163)

Similarly, the self-inductances of the machine 2 can be transformed to the rotor reference frame

as:

000

0

0

2

3

000

0

0

2

3

1

1

1

2

1

2

1

2

13

2

222220222220

2222202222202

1

222220222220

222220222220

0202202202

2022222

2022222

22

22

22

222222

222222

222222

222

222

1

22222

CaCaSaSa

SaSaCaCarlN

CLCLSLSL

SLSLCLCL

LLL

LLL

LLL

SC

SC

SC

LLL

LLL

LLL

SSS

CCC

TLTL

o

dq

dddqd

qdqqq

rr

rr

rr

ccbcac

cbbbab

cabaaa

rrr

rrr

rrqd

(4.164)

309

Also, the mutual inductances between the machine 1 and 2 can be transformed to the rotor

reference frame as:

000

06666

06666

2

3

000

06666

06666

2

3

1

1

1

2

1

2

1

2

13

2

212210212210

212210212210

2

1

212210212210

212210212210

0102201201

1022121

1022121

22

22

22

212121

212121

212121

111

111

1

212112

CaCaSaSa

SaSaCaCa

rlN

CLCLSLSL

SLSLCLCL

LLL

LLL

LLL

SC

SC

SC

LLL

LLL

LLL

SSS

CCC

TLTL

o

dq

dddqd

qdqqq

rr

rr

rr

ccbcac

cbbbab

cabaaa

rrr

rrr

rrqd

(4.165)

000

06666

06666

2

3

000

06666

06666

2

3

1

1

1

2

1

2

1

2

13

2

212120122120

122120122120

2

1

212120122120

122120122120

0201102102

2011212

2011212

11

11

11

121212

121212

121212

222

222

1

121221

CaCaSaSa

SaSaCaCa

rlN

CLCLSLSL

SLSLCLCL

LLL

LLL

LLL

SC

SC

SC

LLL

LLL

LLL

SSS

CCC

TLTL

o

dq

dddqd

qdqqq

rr

rr

rr

ccbcac

cbbbab

cabaaa

rrr

rrr

rrqd

(4.166)

310

To remove the mutual between q and d axis the non-diagonal terms of the inductance matrixes

in the rotor reference frame should be zero. By setting the non-diagonal terms of the matrixes in the

equations (4.165) and (4.166) to zero, the initial angels of the transformations can be calculated as:

6,0

066

066

11

212210

122120

SaSa

SaSa

(4.167)

Substituting the initial angles of the equation (4.167) in to the equations (4.163) to (4.166), the

final transformation to rotor reference frame can be expressed as:

2

1

2

1

2

1000

3

2

63

2

66000

3

2

63

2

66000

0002

1

2

1

2

1

0003

2

3

2

0003

2

3

2

3

2

rrr

rrr

rrr

rrr

r

SinSinSin

CosCosCos

SinSinSin

CosCosCos

T

(4.168)

311

a1

b1

c1

a2

b2

c2

β

Figure 4.58: The asymmetrical double star machine connection.

13

2

63

2

6000

13

2

63

2

6000

166

000

00013

2

3

2

00013

2

3

2

0001

1

rr

rr

rr

rr

rr

rr

r

SinCos

SinCos

SinCos

SinCos

SinCos

SinCos

T

(4.169)

By adding the leakage inductances to the self-inductances of the machine, the terms of the

matrix in the equation (4.169) can be defined as:

312

lsqlsqq

lsdlsdd

lsqlsqq

lsdlsdd

LLLLLL

LLLLLL

LLLLLL

LLLLLL

2022

2022

2011

2011

2

3

2

3

2

3

2

3

,

qqq

ddd

qqq

ddd

LLLL

LLLL

LLLL

LLLL

2012

2012

2021

2021

2

3

2

3

2

3

2

3

(4.170)

ls

dddd

qqqq

ls

dddd

qqqq

qd

L

LL

LL

L

LL

LL

L

00000

0000

0000

00000

0000

0000

2212

2212

2111

2111

(4.171)

4.7.2 Modelling of the Asymmetrical Six Phase Double Star IPM Machine

Now, the inductances and the transformation are generated so the model of the machine can

be generated. The modeling can start from the voltage equations of the stator. According to the Figure

4.58, the voltage Equations of the stator can be expressed as equation (4.172).

In this equation ‘𝐼𝑥𝑖’ is the current of phase ‘x’ and ‘𝑝𝜆𝑥’ is the derivation of the flux linkage

seen from the phase ‘x’ of the machine ‘i’ and the term ‘𝑟𝑠’ represents the stator resistance for each

phase of the stator.

cicisci

bibisbi

aiaisai

pirV

ipirV

pirV

2,1,

(4.172)

Therefore, for machine 1 the voltage equations are presented as equation (4.173).

313

111

111

111

ccsc

bbsb

aasa

pirV

pirV

pirV

(4.173)

And for machine 2, the voltage equations are:

222

222

222

ccsc

bbsb

aasa

pirV

pirV

pirV

(4.174)

The flux linkages of each phase of the stator can be expressed as:

12212212211111111111

12212212211111111111

12212212211111111111

pmccccbbcaaccccbbcaacc

pmbccbbbbaabccbbbbaabb

pmaccabbaaaaccabbaaaaa

iLiLiLiLiLiL

iLiLiLiLiLiL

iLiLiLiLiLiL

(4.175)

And for the machine 2, the flux linkages are:

22222222221121121122

22222222221121121122

22222222221121121122

pmccccbbcaaccccbbcaacc

pmbccbaabbbbccbbbbaabb

pmaccabbaaaaccabbaaaaa

iLiLiLiLiLiL

iLiLiLiLiLiL

iLiLiLiLiLiL

(4.176)

The flux linkage for each phase has four components:

1- The flux linkage due to it’s current.

2- The flux linkage due to the mutual inductances between the phase of the same machine.

3- The flux linkage due to the mutual inductances between the phases of one machine and the

phases of the other machine.

4- The flux linkage due to the permanent magnets of the rotor.

314

In this equations the terms ‘𝐿𝑥𝑖𝑥𝑖’ represents the self-inductance of the phase ‘x’ of the machine

‘i’ and ‘𝐿𝑥𝑖𝑦𝑗’ represents the mutual inductance between phase ‘x’ and of the machine ‘i’ and phase

‘y’ of the machine ‘j’. Also the term ‘𝜆𝑝𝑚𝑥𝑖’ represents the flux linkage due to the permanent magnets

of the rotor seen from the phase ‘x’ of the machine ‘i’. The flux linkages can be represented in the

matrix form as:

2

2

2

1

1

1

2

2

2

1

1

1

222222121212

222222121212

222222121212

212121111111

212121111111

212121111111

pmc

pmb

pma

pmc

pmb

pma

c

b

a

c

b

a

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

pmabciabcissabci

i

i

i

i

i

i

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

iL

(4.177)

The equation (4.177) can be transformed to the rotor reference frame according to the below

procedure:

2,1, ipirV abciabcisabci (4.178)

The abc currents and the flux linkage of the equation (4.178) can be replaced by their

corresponding values in the rotor reference frame to get the equation (4.179).

2,1,11 ipTiTrV qdoirqdoirsabci (4.179)

By multiplying the rT from the left side of the equation the equation (4.179) changes to:

2,1,11 ipTTiTrTVT qdoirrqdoirsrabcir (4.180)

The different parts of the equation (4.180) can be represented as:

315

2

2

2

1

1

1

2

2

2

1

1

1

2

1

2

1

2

1000

3

2

63

2

66000

3

2

63

2

66000

0002

1

2

1

2

1

0003

2

3

2

0003

2

3

2

3

2

o

d

q

o

d

q

c

b

a

c

b

a

rrr

rrr

rrr

rrr

abcir

V

V

V

V

V

V

V

V

V

V

V

V

SinSinSin

CosCosCos

SinSinSin

CosCosCos

VT

(4.181)

The resistive part is:

s

srsr rTrT

100000

010000

001000

000100

000010

000001

1

(4.182)

The term with derivation can be expanded as:

qdoirrqdoirrqdoirr pTTpTTpTT 111

(4.183)

The first part of the equation (4.184) is expanded as:

316

qdoi

rr

rr

rr

rr

rr

rr

rrr

rrr

rrr

rrr

qdoirr

SinCos

SinCos

SinCos

SinCos

SinCos

SinCos

p

SinSinSin

CosCosCos

SinSinSin

CosCosCos

pTT

13

2

63

2

6000

13

2

63

2

6000

166

000

00013

2

3

2

00013

2

3

2

0001

2

1

2

1

2

1000

3

2

63

2

66000

3

2

63

2

66000

0002

1

2

1

2

1

0003

2

3

2

0003

2

3

2

3

2

1

(4.184)

317

By applying the derivative part and simplifying equation (4.184), it results in equation (4.185).

qdoirqdoi

rr

rr

rr

rr

rr

rr

r

rrr

rrr

rrr

rrr

qdoirr

CosSin

CosSin

CosSin

CosSin

CosSin

CosSin

SinSinSin

CosCosCos

SinSinSin

CosCosCos

pTT

000000

001000

010000

000000

000001

000010

03

2

63

2

6000

03

2

63

2

6000

066

000

00003

2

3

2

00003

2

3

2

0000

2

1

2

1

2

1000

3

2

63

2

66000

3

2

63

2

66000

0002

1

2

1

2

1

0003

2

3

2

0003

2

3

2

3

2

1

(4.185)

And the second part of the equation (4.183) is expanded as equation (4.186).

318

qdoiqdoi

rr

rr

rr

rr

rr

rr

rrr

rrr

rrr

rrr

qdoirr

pp

SinCos

SinCos

SinCos

SinCos

SinCos

SinCos

SinSinSin

CosCosCos

SinSinSin

CosCosCos

pTT

100000

010000

001000

000100

000010

000001

13

2

63

2

6000

13

2

63

2

6000

166

000

00013

2

3

2

00013

2

3

2

0001

2

1

2

1

2

1000

3

2

63

2

66000

3

2

63

2

66000

0002

1

2

1

2

1

0003

2

3

2

0003

2

3

2

3

2

1

(4.186)

319

The flux linkage of the machine can also be presented as below.

abcipmrabcissrqdoi TiLT _

(4.187)

Substituting the currents by their corresponding currents in the rotor reference frame results

in:

abcipmrqdorssrqdoi TiTLT _

1

(4.188)

The flux linkage due to the permanent magnet of the machine in the stator phases can be

transformed to the rotor reference frame according to equation (4.189). In this equation since the d

axis of the machine 1 and 2 are aligned with the flux linkage of the permanent magnet seen from the

machine 1 and 2, the flux linkage of the permanent magnet in the q axis will be zero.

0

0

0

0

2

1

2

1

2

1000

3

2

63

2

66000

3

2

63

2

66000

0002

1

2

1

2

1

0003

2

3

2

0003

2

3

2

3

2

2

2

1

1

2

2

2

1

1

1

_

pm

pm

pmo

pmd

pmq

pmo

pmd

pmq

pmc

pmb

pma

pmc

pmb

pma

rrr

rrr

rrr

rrr

abcipmr

SinSinSin

CosCosCos

SinSinSin

CosCosCos

T

(4.189)

The equation (4.188) also has a term which includes ‘𝐿𝑠𝑠’ and represents the inductances of

the stator of the machine. The inductances can be transformed to the rotor reference frame as equation

(4.190).

320

ls

dddd

qqqq

ls

dddd

qqqq

rr

rr

rr

rr

rr

rr

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

rrr

rrr

rrr

rrr

rssr

L

LL

LL

L

LL

LL

SinCos

SinCos

SinCos

SinCos

SinCos

SinCos

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

SinSinSin

CosCosCos

SinSinSin

CosCosCos

TLT

00000

0000

0000

00000

0000

0000

13

2

63

2

6000

13

2

63

2

6000

166

000

00013

2

3

2

00013

2

3

2

0001

2

1

2

1

2

1000

3

2

63

2

66000

3

2

63

2

66000

0002

1

2

1

2

1

0003

2

3

2

0003

2

3

2

3

2

2212

2212

2111

2111

222222121212

222222121212

222222121212

212121111111

212121111111

212121111111

1

(4.190)

321

Then, using the permanent magnet flux linkages and the inductances of the machine in the

rotor reference frame, the flux linkages of the machines in equation (4.188), can be represented in

rotor reference frame as below:

22

21122222

1122222

11

12211111

2211111

olso

pmdddddddd

qqqqqqq

olso

pmdddddddd

qqqqqqq

iL

iLiL

iLiL

iL

iLiL

iLiL

(4.191)

Also the voltages and the currents of the machines can be transformed to the rotor reference

frame as:

2

2

2

1

1

1

12

2

2

2

1

1

1

c

b

a

c

b

a

rsr

o

d

q

o

d

q

i

i

i

i

i

i

TiT

i

i

i

i

i

i

(4.192)

Using the different components of the machines the voltage equations of the machine can be

presented as equation (4.193).

322

0

0

0

0

00000

0000

0000

00000

0000

0000

0

0

0

0

00000

0000

0000

00000

0000

0000

2

2

2

1

1

1

2212

2212

2111

2111

2

2

2

1

1

1

2212

2212

2111

2111

2

2

2

1

1

1

2

2

2

1

1

1

pm

pm

o

d

q

o

d

q

ls

dddd

qqqq

ls

dddd

qqqq

pm

pm

o

d

q

o

d

q

ls

dddd

qqqq

ls

dddd

qqqq

r

o

d

q

o

d

q

s

o

d

q

o

d

q

i

i

i

i

i

i

L

LL

LL

L

LL

LL

p

i

i

i

i

i

i

L

LL

LL

L

LL

LL

i

i

i

i

i

i

r

V

V

V

V

V

V

(4.193)

The equivalent circuit if the machine for different axis are shown in the Figures 4.59 to 4.61.

rs

Lq1q1

Lls

1dr

1qV

1qi rsLls2qr

2qV

2qi

Lq2q221qqL

Figure 4.59: The equivalent circuit of the q axis.

1qr

1dV

Ld2d2

rsLls

2qr

2dV

2di

Ld1d1

rs Lls 1di

21ddL

Figure 4.60: The equivalent circuit of the d axis.

323

1oV

rs Lls1oi

2oV

rs Lls2oi

Figure 4.61: The equivalent circuit of the zero sequence.

The equation for electromagnetic torque can be generated using the power balance between

the mechanical output power and the electrical input power. The equation (4.194) shows the

relationship between the input and the output power [152].

2

1

22

2

1

2

3

2

32

i

didiqiqirdiqiqididiqis

i

didiqiqire

ipipiiiir

iViVP

T

(4.194)

The first term is the power loss and the derivative part is the changings of the stored energy

which are not effective on the electromagnetic torque, therefore using the average stored energy, the

torque can be expressed as equation (4.195).

324

31122222112222

12211111221111

31122222112222

12211111221111

2

1

2

1

22

3

22

3

22

3

22

3

2

3

dqqqqqqqpmdddddd

dqqqqqqqpmdddddd

dqqqqqqqpmdddddd

dqqqqqqqpmdddddd

i

diqiqidi

i

didiqiqie

iiLiLiiLiL

iiLiLiiLiLP

iiLiLiiLiLP

iiLiLiiLiLP

iiP

iViVT

(4.195)

4.8 Decoupling the Model

From equation (4.193) it can be seen that there are coupling terms between different machines

q and d axis (The off-diagonal terms are not zero). To remove the couplings, a new transformation is

needed. The new transformation is a combination of two different transformations, the rotor reference

frame and decoupled reference frame transformation. The decoupled transformation can be derived

by diagonalzing the matrix of the machine inductances in the rotor reference frame. The diagonalizing

procedure can be done by finding the matrix P such that the equation (4.196) is diagonal. It should be

noted that the zero sequence inductances need to be neglected to let the inductance matrix have distinct

eigen values to be diagonalizable [144].

P

LL

LL

LL

LL

PPTLTPL

dddd

qqqq

dddd

qqqq

L

rssrqdn

qd

2212

2212

2111

2111

111

00

00

00

00

(4.196)

The matrix P is built from the eigen vectors of the inductance matrix.

4321 VVVVP (4.197)

325

To obtain the eigen vectors, the eigen values are needed, the eigen values can be calculated

according to the equation (4.198).

0

00

00

00

00

0

1000

0100

0010

0001

00

00

00

00

0

1212

1111

2111

2111

2212

2212

2111

2111

dddd

qqqq

dddd

qqqq

dddd

qqqq

dddd

qqqq

qd

LL

LL

LL

LL

LL

LL

LL

LL

IL

(4.198)

The eigen values of the last matrix in the equation (4.198) are equal to:

lsqqqqqq LLLLLLLLLL 1120202021111 232

3

2

3

lsdddddd LLLLLLLLLL 1120202021112 232

3

2

3

lsqqqq LLLLLLL 2020211132

3

2

3

lsdddd LLLLLLL 2020211142

3

2

3

(4.199)

Using the eigen values, the eigen vectors of the matrix can be obtained as:

0 ii VIA (4.200)

Therefore, the eigenvectors corresponding to each of the eigen values are presented in equation

(4.201).

326

1

0

1

0

1V

0

1

0

1

2V

1

0

1

0

3V

0

1

0

1

4V

(4.201)

Using the eigen vectors, the matrix P can be formed as:

0101

1010

0101

1010

P

(4.202)

From the P the matrix, 1P also can be obtained as:

0101

1010

1010

0101

2

11P

(4.203)

Now using the generated P, the new transformation matrix can be developed as equation

(4.204).

327

3

2

63

2

663

2

3

2

3

2

63

2

663

2

3

2

3

2

63

2

663

2

3

2

3

2

63

2

663

2

3

2

3

1

3

2

63

2

66000

3

2

63

2

66000

0003

2

3

2

0003

2

3

2

0101

1010

1010

0101

3

1

1

rrrrrr

rrrrrr

rrrrrr

rrrrrr

rrr

rrr

rrr

rrr

rrn

CosCosCosCosCosCos

SinSinSinSinSinSin

SinSinSinSinSinSin

CosCosCosCosCosCos

SinSinSin

CosCosCos

SinSinSin

CosCosCos

TPT

(4.204)

328

3

2

63

2

63

2

63

2

6

3

2

63

2

63

2

63

2

6

6666

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

0101

1010

0101

1010

3

2

63

2

600

3

2

63

2

600

6600

003

2

3

2

003

2

3

2

00

11

rrrr

rrrr

rrrr

rrrr

rrrr

rrrr

rr

rr

rr

rr

rr

rr

rrn

CosSinCosSin

CosSinCosSin

CosSinCosSin

CosSinCosSin

CosSinCosSin

CosSinCosSin

SinCos

SinCos

SinCos

SinCos

SinCos

SinCos

PTT

(4.205)

329

Now using the new transformation, the machine voltage equation can be transformed to

the decoupled reference frame. The machine equations are presented in equation (4.172). By

substituting currents and flux linkages by their corresponding values in the decoupled reference

frame (equation (4.206)), the voltage equation changes to the equation (4.207).

qdnrnabciqdnrnabci TiTi 11 ,

(4.206)

2,1,11

ipTiTrV qdnrnqdnrnsabci (4.207)

By multiplying rnT from the left side of the equation (4.207), this equation changes to:

qdnrdnrnqdnrnsrnabcirn pTTiTrTVT 11

(4.208)

The different parts of the equation (4.208) can be expanded following:

The voltages in decoupled reference frame are:

nd

nq

nd

nq

c

b

a

c

b

a

rnabcirn

V

V

V

V

V

V

V

V

V

V

TVT

2

2

1

1

2

2

2

1

1

1

(4.209)

The currents in decoupled reference frame are:

nd

nq

nd

nq

c

b

a

c

b

a

rnabcirn

i

i

i

i

i

i

i

i

i

i

TiT

2

2

1

1

2

2

2

1

1

1

(4.210)

The resistive part of the equation (4.208) presented in equation (4.211).

330

s

s

s

s

rsrrnsrnsn

r

r

r

r

PTrTPTrTr

000

000

000

000

111

(4.211)

The last term in the equation (4.208), which includes derivation, can be expanded as:

qdnrnrnqdnrnrnqdnrnrn pTTpTTpTT 111

(4.212)

The first term of the equation (4.212) is:

qdnr

qdnr

qdnrrqdnrnrn

r

pTTPpTT

0100

1000

0001

0010

0101

1010

0101

1010

0100

1000

0001

0010

0101

1010

1010

0101

2

111

(4.213)

Also, the second term of the equation (4.212) is:

qdnqdnrnrn ppTT

1000

0100

0010

0001

1

(4.214)

The flux linkage in the decoupled reference frame can be obtain according to equation

(4.215).

331

Pmabciabcissrnabcirnqdn iLTT (4.215)

By substituting the currents from the equation (4.214) in to the equation (4.215) flux

linkages can be expressed as:

Pmabcirnqdnrnssrnabcirnqdn TiTLTT 1 (4.216)

The first term of the equation (4.216) is equal to:

qdnrn

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

rn

qdnrnssrn

iT

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

T

iTLT

1

222222121212

222222121212

222222121212

212121111111

212121111111

212121111111

1

(4.217)

The inductance matrix in the decoupled reference frame is equal to:

ls

ls

lsdd

lsqq

rn

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

ccbcacccbcac

cbbbabcbbbab

cabaaacabaaa

rn

L

L

LL

LL

T

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

T

000

000

0020

0002

11

11

1

222222121212

222222121212

222222121212

212121111111

212121111111

212121111111

(4.218)

332

The second part of equation (4.216) (permanent magnet flux linkages seen from the stator phases, transformed to the decoupled

reference frame) can be expanded as:

0

0

0

0

0

0101

1010

1010

0101

2

1

0101

1010

1010

0101

2

1

3

2

63

2

66000

3

2

63

2

66000

0003

2

3

2

0003

2

3

2

0101

1010

1010

0101

3

1

2

2

1

1

2

2

2

1

1

1

2

2

2

1

1

1

1

2

2

2

1

1

1

pm

pm

pm

pmd

pmq

pmd

pmq

pmc

pmb

pma

pmc

pmb

pma

rrr

rrr

rrr

rrr

pmc

pmb

pma

pmc

pmb

pma

r

pmc

pmb

pma

pmc

pmb

pma

rnpmn

SinSinSin

CosCosCos

SinSinSin

CosCosCos

TPT

(4.219)

333

Therefore, the total flux linkage of the machines in the decoupled reference frame can be

represented as:

0

0

0

000

000

0020

0002

2

2

1

1

11

11

2

2

1

1

pm

nd

nq

nd

nq

ls

ls

lsdd

lsqq

nd

nq

nd

nq

i

i

i

i

L

L

LL

LL

(4.220)

Substituting the generated parts into the machine voltage equation and inserting the zero

sequence circuits to that results in:

2

1

2

2

1

1

11

11

2

1

2

2

1

1

11

11

2

1

2

2

1

1

2

1

2

2

1

1

00000

00000

00000

00000

000020

000002

0

0

0

0

0

00000

00000

00000

00000

000020

000002

000000

000000

000100

001000

000001

000010

o

o

nd

nq

nd

nq

ls

ls

ls

ls

lsdd

lsqq

pm

o

o

nd

nq

nd

nq

ls

ls

ls

ls

lsdd

lsqq

r

o

o

nd

nq

nd

nq

sn

o

o

nd

nq

nd

nq

pi

pi

pi

pi

pi

pi

L

L

L

L

LL

LL

i

i

i

i

i

i

L

L

L

L

LL

LL

i

i

i

i

i

i

r

V

V

V

V

V

V

(4.221)

334

The equivalent circuit of the machine in the decoupled reference frame is shown in Figure

4.62.

ndr 1

nqV 1

nqi 1

nqr 1

ndV 1

ndi 1

2Ld1d1

nqi 2

ndi 2

1oV

1oi

2oV

2oi

sr

sr

sr

sr

lsL

lsL

lsL

lsL

lsL lsLsr sr

nqV 2

ndV 2

2Lq1q1

ndr 2

nqr 2

Figure 4.62: The equivalent circuit of the six phase machine in decoupled reference frame.

The equation for electromagnetic torque can be generated using the power balance between

the mechanical output power and the electrical input power. The bellow equation shows the

relationship between the input and the output power.

2

1

22

2

1

2

i

dindinqinqinrdinqinqindindinqins

i

dindinqinqinre

ipipiiiir

iViVP

T

(4.222)

335

The first term is the power loss and the derivative part is the changings of the stored energy

which are not effective on the electromagnetic torque generation, therefore, using the average

stored energy, the torque can be expressed as:

nqpmnqndqqddnqndlsnqndls

nqndqqlsnqpmndnqddls

i

dinqinqindinre

iiiLLPiiLiiLP

iiLLiiiLLP

iiP

T

11111112222

111111111

2

1

2

222

2

(4.223)

New transformation matrix for the new reference frame is presented as equation (4.224).

336

2

1

2

1

2

1000

0002

1

2

1

2

13

2

63

2

663

2

3

2

3

2

63

2

663

2

3

2

3

2

63

2

663

2

3

2

3

2

63

2

663

2

3

2

3

1

rrrrrr

rrrrrr

rrrrrr

rrrrrr

rn

CosCosCosCosCosCos

SinSinSinSinSinSin

SinSinSinSinSinSin

CosCosCosCosCosCos

T

(4.224)

The inverse of the transformation matrix is also presented as:

103

2

63

2

63

2

63

2

6

103

2

63

2

63

2

63

2

6

106666

013

2

3

2

3

2

3

2

013

2

3

2

3

2

3

2

01

1

rrrr

rrrr

rrrr

rrrr

rrrr

rrrr

rn

CosSinCosSin

CosSinCosSin

CosSinCosSin

CosSinCosSin

CosSinCosSin

CosSinCosSin

T

(4.225)

337

4.9 Conclusion

In this chapter first an average model for a triple-star nine phase IPM is derived for the

symmetrical and asymmetrical connections. In this model the Fourier series of the machines

parameters are used to generate the Fourier series of the machines inductances. After calculating

the inductances of the machine, the model is simulated using MATLAB Simulink and the

simulation results are presented. Finally, the model is decoupled to remove the coupling terms

between the q and d axis of the different machines. The decoupled model is also derived and

essential transformations are presented for the both symmetrical and asymmetrical machines.

Finally, an asymmetrical six phase machine is modeled using the Fourier series of the machine

parameters. The average model of the machine is presented and the model is decoupled to remove

the coupling terms between different sets of three phase machines. The essential transformation

matrixes for the new transformation are also presented in this chapter. The major contribution of

this chapter is the generation of decoupled models that can be used for designing controllers for

the multiple star machines without facing the complexities that are raised by the coupling between

different machine sets.