95
Chapter 4 -- Modular Combinational Logic

Chapter 4 -- Modular Combinational Logic

  • Upload
    kenna

  • View
    39

  • Download
    2

Embed Size (px)

DESCRIPTION

Chapter 4 -- Modular Combinational Logic. Decoders. Decoder Realization. More complex decoders. Example 4.1 -- Realize f(Q,X,P) =  m (0,1,4,6,7) =  M (2,3,5). Example 4.1 (concluded). K-Channel multiplexing/demultiplexing. Figure 4.22. Four-to-one multiplexer design. - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 4 -- Modular Combinational Logic

Chapter 4 -- Modular Combinational Logic

Page 2: Chapter 4 -- Modular Combinational Logic

L S B

M S B

D eco d e rn - to -2 n

x 0

x 1

y 0

y 1

x n-1y 2n -1

Decoders

Page 3: Chapter 4 -- Modular Combinational Logic

m 0

m 1

m 2

m 3

(a ) (b )

(c )

L S B A

M S B Bm 0

m 1

m 2

m 3

m 1

m 0

m 2

m 3

L S B A

M S B B

L S B A

M S B B

Decoder Realization

Page 4: Chapter 4 -- Modular Combinational Logic

C AB

(a )

(b )

(c )

m 0 = C B A

m 1 = C B A

m 2 = C B A

m 3 = C B A

m 5 = C B A

m 4 = C B A

m 6 = C B A

m 7 = C B A

B

BA

A

m 0

m 1

m 2

m 3

m 4

m 5

m 6

m 7

C

D

ABL S B

M S B

k0

k1

k2

k3

m 0

m 4

m 8

m 1 2

2 -to -4

A

AA

A

A

AB

B

C

C

m 1

m 5

m 9

m 1 3

m 2

m 6

m 1 0

m 1 4

m 3

m 7

m 11

m 1 5

l0 l3l1

l2

2 -to -4

More complex decoders

Page 5: Chapter 4 -- Modular Combinational Logic

P

X

Q

(a ) (b )

A

B

C f(Q , X , P )

0

1

2

3

4

5

6

7

P

X

Q

A

B

C f(Q , X , P )

0

1

2

3

4

5

6

7

Example 4.1 -- Realize f(Q,X,P) = m(0,1,4,6,7) = M(2,3,5)

Page 6: Chapter 4 -- Modular Combinational Logic

(c ) (d )

f(Q , X , P )

A

B

C f(Q , X , P )

0

1

2

3

4

5

6

7

P

X

Q

A

B

C

0

1

2

3

4

5

6

7

P

X

Q

Example 4.1 (concluded)

Page 7: Chapter 4 -- Modular Combinational Logic

A in

B in

K in

S W 1 S W 2

(a )

(b )

S in g lech an n e l

A o u t

B o u t

K o u t

B o u t

K o u t

A o u t

a

b

k

M u ltip le x e r D e m u ltip le x e r

A in

B in

K in

a

b

k

S in g lech an n e l

ÉÉ

K-Channel multiplexing/demultiplexing

Figure 4.22

Page 8: Chapter 4 -- Modular Combinational Logic

(a )

Y4 -to -1

M u ltip le x e r

Y

B A

B

0011

A

0101

(b )

(c )

0 1 2 3

2 -to -4D e co d e r

D 0

D 1

D 2

D 3

Y

D 0D 1D 2D 3

D 0

D 1

D 2

D 3

B A

Y

(d )

D 0

D 1

D 2

D 3

B A

S elec t io n co d e

Four-to-one multiplexer design

Page 9: Chapter 4 -- Modular Combinational Logic

(a )

(b )

V C C

C AB Yfx 1 x 3x 2

x 1 x 3x 2

01234567

00001111

00110011

01010101

10110100

D 0 = 1D 1 = 0D 2 = 1D 3 = 1D 4 = 0D 5 = 1D 6 = 0D 7 = 0

C B A

YW

7 4 1 5 1 A

f(x 1 , x 2, x 3)

i D 0D 1D 2D 3D 4D 5D 6D 7G

S e lec tio n co d e

Use a 74151A multiplexer to Realizef(x1,x2,x3) = m(0,2,3,5)

Figure 4.30

Page 10: Chapter 4 -- Modular Combinational Logic

Half Adders

H A

(a )

(b )

(c )

x i y i

x i y i

c i s i

c i s i

0011

0101

0001

0110

y i

x i

s i

c i

Figure 4.35 (a) -- (c)

Page 11: Chapter 4 -- Modular Combinational Logic

Full Adders

(d )(e )

(f)

(g )

x i y i c i-1

00001111

00110011

01010101

00010111

01101001

c i s i

F A

x i y i

c i s i

c i-1

s i

c i

c i-1

y i

x i

c i-1

y i

x i

s i

Figure 4.35 (d) -- (g)

Page 12: Chapter 4 -- Modular Combinational Logic

Ripple Carry Adder

y n-1 c 1x 1 y 1 c 0 x 0 y 0

z 1 z0

c n-1

zn-1

(e n d ca rry )

F A H A

c n-2x n-1

F A

zn

Figure 4.36

Page 13: Chapter 4 -- Modular Combinational Logic

Addition Time for a Basic Ripple-Carry Adder

Let tgate = the propogation delay through a typical logic gate

Half adder propagation delays tadd = 3 tgate

tcarry = 2 tgate

Full adder propagation delaystadd = 3 tgate

tcarry = 2 tgate

Ripple-Carry Adder (n-bits) tadd = (n - 1)2 tgate + 3 tgate = (2n + 1) tgate

Page 14: Chapter 4 -- Modular Combinational Logic

SN7482 Two-Bit Pseudo Parallel Adder Module

1 4 1 3 1 2 11 1 0 9 8

7654321

A 2 B 2 S 2 G N D N C N CC 2

A 2B 2 S 2

S 1A 1 B 1 C 0

(a )A 1 B 1S 1 V C C N C N CC 0

C 2

Package Pin Configuration

Page 15: Chapter 4 -- Modular Combinational Logic

SN7482 Pseudo Parallel Adder -- Truth Table

A 2 A 1 C 2 S 2 S 1

LLLLLLLLHHHHHHHH

LLLLHHHHLLLLHHHH

LLHHLLHHLLHHLLHH

LHLHLHLHLHLHLHLH

LLLLLLLHLLHHLHHH

LLHHLHHLHHLLHLLH

LHLHHLHLLHLHHLHL

LLLHLLHHLHHHHHHH

LHHLHHLLHLLHLLHH

HLHLLHLHHLHLLHLH

B 2 B 1 C 2 S 2 S 1

W h en C 0 = HW h en C 0 = L

O u tp u tsIn p u ts

(b )

Page 16: Chapter 4 -- Modular Combinational Logic

SN7482 Pseudo Parallel Adder -- Logic DiagramC 0

A 1

B 1

A 2

B 2

C 1

C 2

S 2

S 1

(c )

Page 17: Chapter 4 -- Modular Combinational Logic

SN7482 Two-Bit Adder -- Logic Equations

C1 = C0A1 + C0B1 + A1B1 (4.20)

1 = C0C1 + A1C1 + B1C1 + A1B1C0 = C1(C0 + A1 + B1) + A1B1C0 = (C0+A1)(C0+B1)(A1+B1) (C0 +A1+B1) +A1B1C0 = (C0+ A1B1)(A1+B1)(C0 +A1+B1) +A1B1C0 (4.21) = [C0(A1+B1)+ C0A1B1](A1+B1)+A1B1C0 = C0A1B1+C0A1B1+C0A1B1+A1B1C0 = C0 A1 B1

Similarly

C2 = C1A2 + C1B2 + A2B2 (4.22)

2 = C1 A2 B2

Page 18: Chapter 4 -- Modular Combinational Logic

Add Time for SN7482 Adder Circuits

SN7482 propagation delays

t1 = 5 tgate

tC1 = 2 tgate

t2 = 6 tgate

tC2 = 4 tgate

SN7482-based ripple-carry adder (n-bits)

tadd = (2n + 2) tgate

Page 19: Chapter 4 -- Modular Combinational Logic

SN7483 Four-Bit Adder Module

1 6 1 5 1 4 1 3 1 2 11 1 0

7654321

9

8

B 4 S 4 C 4 G N DC 0

V C C

A 1B 1 S 1

A 3 S 2 A 2B 2S 3

(a )

B 3A 4

S 4 C 4 C 0 A 1B 1

A 3 S 2 B 2S 3 B 3

S 1

A 2A 4

B 4

Package Pin Configuration

Page 20: Chapter 4 -- Modular Combinational Logic

SN7483 Four-Bit Adder Module -- Logic Diagram

B 4

S 4

C 4

A 4

B 3

A 3

B 2

A 2

B 1

A 1

C 0

P 4

S 3

C 3

P 3

S 2

C 2

P 2

S 1

C 1

P 1

C 0

(b )

Page 21: Chapter 4 -- Modular Combinational Logic

SN7483 Four-Bit Adder -- Logic Equations

Pi = (BiAi)(Ai + Bi) = (Ai + Bi)(Ai + Bi) = Ai Bi (4.24)

i = Pi Ci-1 = Ai Bi Ci-1 (4.25)

C1 = [C0(A1B1) + (A1 + B1)] = [C0(A1B1)](A1 + B1) = (C0+(A1B1))(A1 + B1) = C0A1 + C0B1 + A1B1 (4.26)

Similarly

Ci = Ci-1Ai + Ci-1Bi + AiBi

Page 22: Chapter 4 -- Modular Combinational Logic

Add Times for SN7483 Adder Circuits

SN7483 propagation delays

t1 = 3 tgate

t2 = t3 = t4 = 4 tgate tC1 = tC2 = tC3 = tC4 = 3 tgate

SN7483-based Ripple-Carry Adder (n-bits)

tadd = (3m + 1) tgate

where m = n/4.

Page 23: Chapter 4 -- Modular Combinational Logic

Fully Parallel Three-Bit Adder c0 = x0y0 (4.30) s0 = x0 y0

c1 = x1y1c0’+x1y1c0+x1y1’c0+x1’y1c0

= x1y1+(x1y1)c0

= x1y1+(x1y1)(x0y0) (4.31)s1 = x1y1c0

= x1y1 x0y0

c2 = x2y2+(x2y2)c1

= x2y2+(x2y2)[x1y1+(x1y1)(x0y0)] = x2y2+(x2y2)(x1y1)+(x2y2)(x1y1)(x0y0) (4.32)s2 = x2y2c1

= x2y2[x1y1+(x1y1)(x0y0)]

Page 24: Chapter 4 -- Modular Combinational Logic

Add Time for a Fully Parallel Adder

Assuming a three-level realization

tadd = 3 tgate

However, the fan in requirements become impractical as n increases.

Page 25: Chapter 4 -- Modular Combinational Logic

Carry Look-Ahead Adders -- Basic Idea

Recall that ci = xiyi + xici-1 + yici-1

= xiyi + xiyici-1 + xiyici-1 + xiyici-1 + xi yici-1

= xiyi + xiyici-1 + xi yici-1

= xiyi + (xiyi + xi yi)ci-1

= xiyi + (xi yi)ci-1

Let gi = xiyi [carry generate] (4.33)

pi = xi yi [carry propagate] (4.34)

Then ci = gi + pi ci-1

si = pi ci-1 (4.38)

Page 26: Chapter 4 -- Modular Combinational Logic

Carry Look-Ahead Adders -- Three-Bit Example

c0 = g0 (4.35)s0 = p0

c1 = g1 + p1c0

= g1 + p1g0 (4.36)s1 = p1 c0

c2 = g2 + p2c1

= g2 + p2(g1 + p1g0) = g2 + p2g1 + p2p1g0 (4.37)s2 = p2 c1

Page 27: Chapter 4 -- Modular Combinational Logic

Carry Look-Ahead Adder Design

(a ) (b )

x i y i c i

g i p i s i

g 2 p 2 g 1 p 1 g 0

c 1 c 0

x 2 y 2

g 2 s 2

c 2 c 1 c 0

p 2 g 1 s1p 1 g 0 s 0

p 0

x 1 y 1 x 0 y 0 0

c 2

A d d er

C L A circu it

A d d er A d d er

(c)

Figure 4.39

Page 28: Chapter 4 -- Modular Combinational Logic

Add Times for Carry Look-Ahead Adders

Adder modules

tg = tp = ts = tgate

CLA module

tc = 2 tgate

Overall

tadd = tgate + 2 tgate + tgate

= 4 tgate

Page 29: Chapter 4 -- Modular Combinational Logic

Binary Subtraction Circuits

Recall that (R)2 = (P)2 - (Q)2

= (P)2 + (-Q)2

= (P)2 + [Q]2

= (P)2 + (Q)2 + 1

For an SN7483 adder

()2 = (A)2 + (B)2 + (C0)2 (4.39)

where = 4321, A = A4A3A2A1, and B = B4B3B2B1

If C0 = 0, A = P, and B = Q, then ()2 = (P)2 + (Q)2 .

If C0 = 1, A = P, and B = Q, then ()2 = (P)2 - (Q)2 .

Page 30: Chapter 4 -- Modular Combinational Logic

Two’s Complement Adder/SubtracterQ = (q 3 q 2 q 1 q 0)2

P = (p 3 p 2 p 1 p 0) 2

4 A 3 A 2 A 1 B4 B 2 B3 BSG

C 0C 4

S e lec t

R = (r 4 r 3 r 2 r 1)2

R = P + Q

R = P + Q + 1

0

1

S elec t F u n c tio n

1 A

1 Y2 Y3 Y4 Y

A 4 A 3 A 2 A 1 B 4 B 3 B 2 B 1

S 4 S 3 S 2 S 1

M U X (7 4 1 5 7 )

A D D E R (7 4 8 3 )

Figure 4.41

Page 31: Chapter 4 -- Modular Combinational Logic

Arithmetic Overflow Detection

an-1 bn-1 cn-2 cn-1 sn-1 V

0 0 0 0 0 00 0 1 0 1 10 1 0 0 1 00 1 1 1 0 01 0 0 0 1 01 0 1 1 0 01 1 0 1 0 11 1 1 1 1 0

Page 32: Chapter 4 -- Modular Combinational Logic

Overflow Detection Circuits

(a )

(b )

F A

a n -1 b n -1 a n -2 b n -2

c n -2c n -1

s n -1 s n -2

V

c n -3F A

F A

a n -1 b n -1 a n -2 b n -2

c n -2

c n -1

s n -1 s n -2

V

c n -3F A

Figure 4.42

Page 33: Chapter 4 -- Modular Combinational Logic

T o p lev e l

L ev e l 2

L ev e l3

L ev e l4

B 11S en so rA

B 12S en so rB

B 21A +B

B 22A ÐB

B 23M in (A ,

B )

B 24M ax (A ,

B )

B 2 31C o m p areA &B

B 2 32S e lect

M in

B 2 41C o m p a reA &B

B 2 42S e lectM ax

(a )

*

* = L ea fn o d e

BD a ta acq u is itio n

sy stem

B 1In p u t sen so r d a ta

B 2C o m p u te v a lu es

B 3S e lec t o u tp u t

* **

** **

*

Page 34: Chapter 4 -- Modular Combinational Logic

(b )

S en so rs

F u n c tionse lect

B 3O u tp u tse lec t

BP ro cess co n tro lsy s tem

B 1 ÐIn p u t B 2 Ð

C o m p u ta tio n

O u tp u t

B 11C o n v e rtA

B 12C o n v e rtB

B 21B in a ryad d er

B 22B in arysu b trac tor

B 2 31C o m p are

B 2 32S e lect

A

s1

B

s2

B 23

M in im u m

B 2 41C o m p are

B 2 42S e lect

B 24M ax im u

m

Page 35: Chapter 4 -- Modular Combinational Logic

L S B

M S B

D eco d e rn - to -2 n

x 0

x 1

y 0

y 1

x n-1y 2n -1

Decoders

Page 36: Chapter 4 -- Modular Combinational Logic

m 0

m 1

m 2

m 3

(a ) (b )

(c )

L S B A

M S B Bm 0

m 1

m 2

m 3

m 1

m 0

m 2

m 3

L S B A

M S B B

L S B A

M S B B

Decoder Realization

Page 37: Chapter 4 -- Modular Combinational Logic

C AB

(a )

(b )

(c )

m 0 = C B A

m 1 = C B A

m 2 = C B A

m 3 = C B A

m 5 = C B A

m 4 = C B A

m 6 = C B A

m 7 = C B A

B

BA

A

m 0

m 1

m 2

m 3

m 4

m 5

m 6

m 7

C

D

ABL S B

M S B

k0

k1

k2

k3

m 0

m 4

m 8

m 1 2

2 -to -4

A

AA

A

A

AB

B

C

C

m 1

m 5

m 9

m 1 3

m 2

m 6

m 1 0

m 1 4

m 3

m 7

m 11

m 1 5

l0 l3l1

l2

2 -to -4

More complex decoders

Page 38: Chapter 4 -- Modular Combinational Logic

P

X

Q

(a ) (b )

A

B

C f(Q , X , P )

0

1

2

3

4

5

6

7

P

X

Q

A

B

C f(Q , X , P )

0

1

2

3

4

5

6

7

Example 4.1 -- Realize f(Q,X,P) = m(0,1,4,6,7) = M(2,3,5)

Page 39: Chapter 4 -- Modular Combinational Logic

(c ) (d )

f(Q , X , P )

A

B

C f(Q , X , P )

0

1

2

3

4

5

6

7

P

X

Q

A

B

C

0

1

2

3

4

5

6

7

P

X

Q

Example 4.1 (concluded)

Page 40: Chapter 4 -- Modular Combinational Logic

(a ) (b )

x 0

x 1

y 0

y 1

y 2

y 3

x 0

x 1

y 2

E

Ey 3

y 0

y 1

Page 41: Chapter 4 -- Modular Combinational Logic

I0

I1

I2

y 2

y 3

y 0

y 1

E

x 0

x 1

O 0

O 1

O 2

O 3

O 4

O 5

O 6

O 7

E

x 0

x 1

y 2

y 3

y 0

y 1

y 2

y 3

y 0

y 1

E

x 0

x 1

O 8

O 9

O 1 0

O 11

O 1 2

O 1 3

O 1 4

O 1 5

E

x 0

x 1

y 2

y 3

y 0

y 1

I0

I1

y 2

y 3

y 0

y 1

E

x 0

x 1

O 0

O 1

O 2

O 3

O 4

O 5

O 6

O 7

E

x 0

x 1

y 2

y 3

y 0

y 1

E

x 0

x 1

y 2

y 3

y 0

y 1

I2

I3

1

(a ) (b )

Page 42: Chapter 4 -- Modular Combinational Logic

1 6 1 5 1 4 1 3 1 2 1 1 1 0 9

(a )

G 1

A

B

C

(1 )

(2 )

(3 )

(4 )

(5 )

(6 )

G 2 AG 2 B

(1 5 )

(1 4 )

(1 3 )

(1 2 )

(1 1 )

(1 0 )

(9 )

(7 )

Y 0

Y 1

Y 2

Y 3

Y 4

Y 5

Y 6

Y 7

ABC

G 1G 2AG 2B

01234567

HHHHHHHHL

LLLLLLLLH´

LLLLHHHH

LLHHLLHH

LHLHLHLH

LHHHHHHHHH

HLHHHHHHHH

HHLHHHHHHH

HHHLHHHHHH

HHHHLHHHHH

HHHHHLHHHH

HHHHHHLHHH

HHHHH

HHLHH

E n ab le

S e lect

O u tp u ts

G 1G 2* ABC Y 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7

In p u ts

(c)

S e lect

E n ab le

B

V cc Y 0 Y 1 Y 2 Y 3 Y 4 Y 5

A CG 2B

G 2A G 1

7654321

Y 7O u tp ut

Y 6

8

G N D

Y 0 Y 1 Y 2 Y 3 Y 4 Y 5

Y 6

B CG 2A

G 2B G 1 Y 7

A

D atao u tp u ts

(b)

(d)

(e)

123

01234567

(1 )(2 )(3 )

(6 )(4 )(5 )

'1 3 8B IN /O C T

EN

A

B

C

G 1G 2

AG 2

B

&

(1 5 )(1 4

)

(1 3 )(1 2 )(1 1 )(1 0 )

(9 )(7 )

Y 0Y 1Y 2Y 3Y 4Y 5Y 6Y 7

G 2 * = G 2 A +G 2 B

Page 43: Chapter 4 -- Modular Combinational Logic

7654321 8

(b )

1 29 1 0 1 1

O u tp u tsG N D

V C CIn p u ts O u tp u ts

(a )

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

G 1G 2

A

B

C

D

2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3

A B C D G 2 1 2

1 1

1 2 3 4 5 1 0

0

G 1 1 5 1 4 1 3

6 7 8 9

A B C DA B C D

Page 44: Chapter 4 -- Modular Combinational Logic

O u tp u tsG 1 G 2 BCD A 0 1 2 3 4 5 6

In p u ts

(c)

LLLLLLLLLLLLLLLLHL

H

LLLLLLLLLLLLLLLLLHH

LLLLLLLLHHHHHHHH

LLLLHHHHLLLLHHHH´

LLHHLLHHLLHHLLHH´

LHLHLHLHLHLHLHLH´

LHHHHHHHHHHHHHHHHHH

HLHHHHHHHHHHHHHHHHH

HHLHHHHHHHHHHHHHHHH

HHHLHHHHHHHHHHHHHHH

HHHHLHHHHHHHHHHHHHH

HHHHHLHHHHHHHHHHHHH

HHHHHHLHHHHHHHHHHHH

HHHHHHHLHHHHHHHHHHH

HHHHHHHHLHHHHHHHHHH

HHHHHHHHHLHHHHHHHHH

HHHHHHHHHHLHHHHHHHH

HHHHHHHHHHHLHHHHHHH

HHHHHHHHHHHHLHHHHHH

HHHHHHHHHHHHHLHHHHH

HHHHHHHHHHHHHHLHHHH

HHHHHHHHHHHHHHHLHHH

7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

A

B

C

D

G 1

G 2

0123456789

1 01 11 21 31 41 5

(d ) (e)

1

2

4

8

(2 3 )

(2 2 )

(2 1 )

(2 0 )

'154B IN /O C T

E N

A

B

C

D

G 1

G 2

&

(1 )(2 )(3 )(4 )(5 )(6 )(7 )(8 )(9 )

(1 0 )(1 1 )(1 3 )(1 4 )(1 5 )(1 6 )(1 7 )

01234567891 01 11 21 31 41 5

'154

(1 8 )

(1 9 )

0123456789

1 01 11 21 31 41 5

Page 45: Chapter 4 -- Modular Combinational Logic

É

n -B it a d d re ss

S = se le c t d e v ic e

D e v ice a c ce ssco n tro l sig n a l

A 0

A 1

A n Ð 1

x 0

x 1

x n Ð 1

E

y 0

y 1

y 2 n Ð 1

S D e v ice 0

S D e v ice 1

S D e v ice 2 n Ð 1

É É

Page 46: Chapter 4 -- Modular Combinational Logic

ABCD

G 1G 2

0123456789

1 01 11 21 31 41 5

4

56

8

7 4 2 0 /2

f2 = P M (6 , 9 )

f1 = å m (1 , 9 , 1 2 , 1 5 )

7 4 1 5 4

2 3

2 2

2 1

2 0

1 8

1 9

2

7

1 0

1 4

1 7

7 4 0 8 /4

91 01 21 3

Z

Y

X

W

Page 47: Chapter 4 -- Modular Combinational Logic

B C Din p u t

D e cim a lo u tp u ts

(a ) (b )

B C D c o d eD C B A D e cim a l d ig its

0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 1

0123456789

D

C

B

A

0

1

2

3

4

5

6

7

8

9

Page 48: Chapter 4 -- Modular Combinational Logic

B AD C

1

0 0 0 1 1 1 1 00 4 12 8

1 5 13 9

3 7 15 11

2 6 14 1 0

0 0

0 1

1 1

1 0

C

A

D

B

(a )

B AD C

0 0 0 1 1 1 1 00 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

0 0

0 1

1 1

1 0

C

A

D

B

(b )

B AD C

1

0 0 0 1 1 1 1 00 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

0 0

0 1

1 1

1 0

C

A

d

d

d d

d d

d

d

d d

d d

d

d

d d

d d

D

B

(c )

1 1

Page 49: Chapter 4 -- Modular Combinational Logic

f

(a ) (b )

Ð +a

f

b

g

e

c

d

g

d

a

b

ec

C o m m o na n o d e

f

a

f

b

g

e

c

d

g

d

a

b

ec

C o m m o nca th o d e

+ Ð

Page 50: Chapter 4 -- Modular Combinational Logic
Page 51: Chapter 4 -- Modular Combinational Logic

C DA B

0 0 0 1 1 1 1 00 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

0 0

0 1

1 1

1 0

B

D

A

C

(a )

1 1

1 0

1

1

1 0

0 1

C DA B

0 0 0 1 1 1 1 00 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

0 0

0 1

1 1

1 0

B

D

A

C

(b )

1 1

1 0

1

d d

d d

d

d

d d

d d

d

d 1

1 1

1 0

Page 52: Chapter 4 -- Modular Combinational Logic

A 0

0 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

X 2

X 0

X 3

X 1

(c )

1

10

0

d d

d d

d d

d

d

d d

d

d

A 1

0 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

x 2

x 0

x 3

x 1

0

11

0

d d

d d

d d

d

d

d d

d

d

4 -to -2E n co d e r

(a )

(b )

(d )

A 1 = X 2 + X 3

A 0 = X 1 + X 3

X 3 X 2 X 1 X 0 A 1 A 0

0000000011111111

0000111100001111

0011001100110011

0101010101010101

d00d1ddd1ddddddd

d01d0ddd1ddddddd

X 0

X 1

X 2

X 3

A 0

A 1

X 1

X 3

X 2

X 3

A 0

A 1

Page 53: Chapter 4 -- Modular Combinational Logic

A 1

0 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

x 3

x 1

x 4

x 2

(c )

1

1

A 0

0 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

x 3

x 1

x 4

x 2

1

14 -to -3

E n c o d e r

(a )

(b )

X 4 X 3 X 2 X 1 A 2 A 1

0000000011111111

0000111100001111

0011001100110011

0101010101010101

0000000010000000

0010100000000000

x 1

x 2

x 3

x 4

A 0

A 1

A 2

0100100000000000

A 0

A 2

0 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

x 3

x 1

x 4

x 2

1

(d )

A 0

x 3x 2

x 1

x 4

A 1

A 2

x 2x 1

x 3x 4

x 3x 2

x 1

x 4

x 2x 1

x 3x 4

x 3x 2

x 1

x 4

Page 54: Chapter 4 -- Modular Combinational Logic

A 0

0 0 0 1 1 1 1 00 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

0 0

0 1

1 1

1 0

x 2

x 0

x 3

x 1

(c )

1

1

1 1

1 1

1

1

1 1

A 1

0 4 1 2 8

1 5 1 3 9

3 7 1 5 11

2 6 1 4 1 0

x 2

x 0

x 3

x 1

11

1 1

1 1

1

1

1

1 11

4 -to -2P r io r ityen co d er

(a )

(b )

(d )

A 1 = X 2 + X 3

X 3 X 2 X 1 X 0 A 1 A 0

0000000011111111

0000111100001111

0011001100110011

0101010101010101

0000111111111111

0011000011111111

x 0

x 1

x 2

x 3

A 0

A 1

A 0 = X 3 + X 1 X 2

G SE O

G S E O

0111111111111111

1000000000000000

I n p u ts O u tp u ts

x 0

x 1

x 2

x 3A 0

G S

E O

A 1x 2

Page 55: Chapter 4 -- Modular Combinational Logic

54 6 87 C

7654321

B

8

G N D

In p u ts O u tp u ts

V cc 3 1 9

In p u ts

N C 2O u tp u ts

AO u tp u t

D

1 6 1 5 1 4 1 3 1 2 1 1 1 0 9

D 3 2 1 9

A

5 6 7 8 C B

4

(c )

HL

HLH

HLHH

HLHHH

HLHHHH

HLHHHHH

LLHHHHHHH

HHHLLLLHHH

HHHLLHHLLH

HLHHHHHH

HLHHHHHHH

LHHHHHHHH

HLHLHLHLHL

1 2 3 4 5 6 7 8 9 D C B A

In p u ts O u tp u ts

(b )

(a )

4

5

6

7

8

9

A

B

C

D

1

2

3

Page 56: Chapter 4 -- Modular Combinational Logic

54 6 E 17 A 2

7654321

A 1

8

G N D

(c )In p u ts O u tp u ts

V cc 3 1 0

1 6 1 5 1 4 1 3 1 2 1 1 1 0 9

In p u ts

E O 2O u tp u t

A 0G S

G S 3 2 1 0

A 0

5 6 7 E l A 2 A 1

4

E O

LLLLLLLLL

L

HLH

HLHH

HLHHH

HLHHHH

HHLLLLHHHH

HHLLHHLLHH

HHLHLHLHLH

HLHHHHH

HLHHHHHH

HLHHHHHHH

HHLLLLLLLL

E I 0 1 2 3 4 5 6 7 A 2 A 1 A 0 G S

In p u ts O u tp u ts

(b )

(a )

4

5

6

7

E l

A 0

A 1

A 2

1

2

3

HLHHHHHHHH

E O

0

G S

E O

O u tp u ts

Page 57: Chapter 4 -- Modular Combinational Logic

A in

B in

K in

S W 1 S W 2

(a )

(b )

S in g lech a n n e l

A o u t

B o u t

K o u t

B o u t

K o u t

A o u t

a

b

k

M u ltip le x e r D e m u ltip le x e r

A in

B in

K in

a

b

k

S in g lech a n n e l

ÉÉ

K-Channel multiplexing/demultiplexing

Figure 4.22

Page 58: Chapter 4 -- Modular Combinational Logic

(a )

Y4 -to -1

M u ltip le x e r

Y

B A

B

0011

A

0101

(b )

(c )

0 1 2 3

2 -to -4D e co d e r

D 0

D 1

D 2

D 3

Y

D 0D 1D 2D 3

D 0

D 1

D 2

D 3

B A

Y

(d )

D 0

D 1

D 2

D 3

B A

S elec t io n co d e

Four-to-one multiplexer design

Page 59: Chapter 4 -- Modular Combinational Logic

Y

B A

I0

I1

I2

I3

D 0

D 1

D 2

D 3

Y

B A

I4

I5

I6

I7

D 0

D 1

D 2

D 3

Y

B A

I8

I9

I1 0

I11

D 0

D 1

D 2

D 3

Y

B A

I1 2

I1 3

I1 4

I1 5

D 0

D 1

D 2

D 3

Y

B A

D 0

D 1

D 2

D 3

In p u tlin e s

F irs tle v e l

O u tp u t lin e

S e co n dle v e l

S 3 S 2

S e le c tio n c o d e(h ig h er -o rd er b its)

Z

S 1 S 0

S elec tio n c o d e(lo w er-o rd e r b its)

Page 60: Chapter 4 -- Modular Combinational Logic

V cc 5 6 A B

D a ta se le c tD a ta in p u ts

4 7 C

1 6 1 5 1 4 1 3 1 2 1 1 1 0 9

23 1 Y0 W

7654321

S tro b eG

8

G N D

(a )

D a ta in p u ts O u tp u ts

(d )

'1 5 1 A

0

1

2

3

4

5

6

7

G ABC

Y

W

'1 5 1 A

E N

0

2

0

1

2

3

4

5

6

7

G 07

(7 )

(1 1 )

(1 0 )

(9 )

(4 )

(3 )

(2 )

(1 )

(1 5 )

(1 4 )

(1 3 )

(1 2 )

(e )

(5 )

(6 )Y

W

G

A

B

C Ê

D 0

D 1

D 2

D 3

D 4

D 5

D 6

D 7

S tro b e

In p u ts O u tp u ts

S e lec t

C GAB´LLHHLLHH

´LHLHLHLH

HLLLLLLLL

LD 0D 1D 2D 3D 4D 5D 6D 7

Y WH

D 0D 1D 2D 3D 4D 5D 6D 7

´LLLLHHHH

(b )

D 4 D 5 D 6 D 7 A B

C

D 2 D 1 D 0 Y W S

D 3

O u tp u t YO u tp u t W

GS tro b een a b le

CA BA B C

D 0

D 1

D 2

D 3

D 4

D 5

D 6

D 7

(c )

A

B

C

Page 61: Chapter 4 -- Modular Combinational Logic

(c )

´LLLLLLLLHHHHHHHH

´LLLLHHHHLLLLHHHH

´LLHHLLHHLLHHLLHH

´LHLHLHLHLHLHLHLH

HLLLLLLLLLLLLLLLL

D C B A

In p u ts

(b )

G W

HE 0E 1E 2E 3E 4E 5E 6E 7E 8E 9

E 1 0E 1 1E 1 2E 1 3E 1 4E 1 5

S e lec t S tro b e O u tp u t

G 1

D

C

B

A

S tr o b ee n a b le

O u tp u t

AA B C

W

E 0

E 1

E 2

E 3

E 4

E 5

E 6

E 7

E 8

E 9

E 1 0

E 1 1

E 1 2

E 1 3

E 1 4

E 1 5

DB C D

V C C

2 4 2 3 2 2 2 1 2 0 1 9 1 8

7654321 8

D a ta In p u ts

(a )

1 7 1 6 1 5 1 4 1 3

1 29 1 0 1 1

E 8 E 9 E 1 0 E 1 1 E 1 2 B

C

E 6 E 5 E 4 E 3 E 2 D

E 7

E 1 3 E 1 4 E 1 5 A

E 1 E 0 S W

D a ta se lec t

D a ta in p u tsG N D

8 9 1 0 1 1 1 2 1 3 1 4 1 5 A B C

7 6 5 4 3 2 1 0 WO u t-p u t

DD a tase lec t

S tro b eG

Page 62: Chapter 4 -- Modular Combinational Logic

(d ) (e )

'1 5 0

W

'1 5 0

G

D C B A

E 0E 1E 2E 3E 4E 5E 6E 7E 8E 9

E 1 0E 1 1E 1 2E 1 3E 1 4E 1 5

01234567891 01 11 21 31 41 5

E 0

E 1E 2

E 3E 4

E 5

E 6E 7

E 8

E 9E 1 0

E 1 1E 1 2

E 1 3

E 1 4E 1 5

G

ABCD

E N

0

3

G 01 5

W

(9 )

(1 5 )(1 4 )(1 3 )(1 1 )

(8 )(7 )(6 )(5 )(4 )(3 )(2 )(1 )(2 3 )(2 2 )(2 1 )(2 0 )(1 9 )(1 8 )(1 7 )(1 6 )

(1 0 )

Page 63: Chapter 4 -- Modular Combinational Logic

'153

1 G

1 C 01 C 11 C 21 C 3

2 G

2 C 02 C 12 C 22 C 3

(1 )(6 )(5 )(4 )(3 )

(1 5 )(1 0 )(1 1 )(1 2 )(1 3 )

(4 )

(7 )

(e )

(1 4 )

(2 )B

M U X

A

1 Y

2 Y

E N

0

1

2

3

0

1G 0

3

1 Y

2 Y

O u tp u tp a ir

A (L S B )B

P a ir 0

P a ir 1

P a ir 2

P a ir 3

S e lec tio n c o d eP o sitio n

1 C 0

2 C 0

1 C 1

2 C 1

1 C 2

2 C 2

1 C 3

2 C 3

(b )

0

1

2

3

S e le c tio n c o d e(B A )2

(a )

1 Y

2 Y

(c)

Y

B A

C 0

C 1

C 2

C 3

2

2

2

2

2

2

S tr o n g(e n a b le )

D a ta 1

D a ta 2

S e le ct

O u tp u t1 Y

S tr o b e(e n a b le )

1 G

B

A

O u tp u t2 Y

1 C 0

1 C 1

1 C 2

1 C 3

2 C 0

2 C 1

2 C 2

2 C 3

2 G (d )

1 C 02 C 0

1 C 12 C 1

1 C 22 C 2

1 C 32 C 3

Page 64: Chapter 4 -- Modular Combinational Logic

1 AS e le ct 1 B 2 A1 CO u tp u t

2 B

7654321

2 YO u tp u t

8

G N D

In p u ts In p u ts

V cc S tro b e 4 Z A 4 BO u tp u t

4 Y 3 A 3 B

1 6 1 5 1 4 1 3 1 2 1 1 1 0 9

In p u tsIn p u tsO u tp u t

3 Y

G 4 A 4 B 4 Y 3 A 3 B

3 Y

1 A 1 B 1 Y 2 A 2 B 2 Y

S

(a )

In p u ts O u tp u t

D a taS tro b eG

S e le c tS

HLLLL

´LLHH

´LH

´´

LH

LLHLH

A B Y

(b )

'157

1 A1 B2 A2 B3 A3 B4 A4 B

(2 )(3 )(5 )(6 )

(1 1 )(1 0 )(1 4 )(1 3 )

(4 )

(7 )

(9 )

(1 2 )

1 Y

2 Y

3 Y

4 Y

(d )

(1 5 )

(1 )A /B

E N

M U X

G 1

1

1

G

S tr o b e GS e le c t S

(c )

1 Y

2 Y

3 Y

4 Y

1 A

1 B

2 A

2 B

3 A

3 B

4 A

4 B

Page 65: Chapter 4 -- Modular Combinational Logic

1 AS e le ct 1 B 2 A1 CO u tp u t

2 B

7654321

2 YO u tp u t

8

G N D

In p u ts In p u ts

V cc S tro b e 4 Z A 4 BO u tp u t

4 Y 3 A 3 B

1 6 1 5 1 4 1 3 1 2 1 1 1 0 9

In p u tsIn p u tsO u tp u t

3 Y

G 4 A 4 B 4 Y 3 A 3 B

3 Y

1 A 1 B 1 Y 2 A 2 B 2 Y

S

(a )

In p u ts O u tp u t

D a taS tro b eG

S e le c tS

HLLLL

´LLHH

´LH

´´

LH

LLHLH

A B Y

(b )

'157

1 A1 B2 A2 B3 A3 B4 A4 B

(2 )(3 )(5 )(6 )

(1 1 )(1 0 )(1 4 )(1 3 )

(4 )

(7 )

(9 )

(1 2 )

1 Y

2 Y

3 Y

4 Y

(d )

(1 5 )

(1 )A /B

E N

M U X

G 1

1

1

G

S tr o b e GS e le c t S

(c )

1 Y

2 Y

3 Y

4 Y

1 A

1 B

2 A

2 B

3 A

3 B

4 A

4 B

Page 66: Chapter 4 -- Modular Combinational Logic

(b )

4

S o u r c e XD 7 Ð D 0

S o u r c e WD 7 Ð D 0

0

D 7 Ð D 4 D 3 Ð D 0

4 A Ð 1 A 4 B Ð 1 B

4 Y Ð 1 Y

G

S

S e lec t0 = X1 = W

D 7 Ð D 0D estin a tio n

7 4 1 5 7

S o u r c e MD 3 Ð D 0

S o u r c e ND 3 Ð D 0

D 0D 1D 2D 3

4 Y 3 Y 2 Y 1 Y

S 0 S 1

S 0 S 1 S o u rc e0011

0101

MNOP

4 A Ð 1 A 4 B Ð 1 BG

S7 4 1 5 7

S o u r c e OD 3 Ð D 0

S o u r c e PD 3 Ð D 0

4 Y 3 Y 2 Y 1 Y

444

(a )

4

4 A Ð 1 A 4 B Ð 1 BG

S7 4 1 5 7

4 A Ð 1 A 4 B Ð 1 BG

S7 4 1 5 7

444

0

88 D 3 Ð D 0

D 7 Ð D 4

8

44

4 Y Ð 1 Y

D 7 Ð D 4 D 3 Ð D 0

D estin a tio n

Page 67: Chapter 4 -- Modular Combinational Logic

(a )

(b )

V C C

C AB Yfx 1 x 3x 2

x 1 x 3x 2

01234567

00001111

00110011

01010101

10110100

D 0 = 1D 1 = 0D 2 = 1D 3 = 1D 4 = 0D 5 = 1D 6 = 0D 7 = 0

C B A

YW

7 4 1 5 1 A

f(x 1 , x 2, x 3)

i D 0D 1D 2D 3D 4D 5D 6D 7G

S e lec tio n co d e

Use a 74151A multiplexer to Realizef(x1,x2,x3) = m(0,2,3,5)

Figure 4.30

Page 68: Chapter 4 -- Modular Combinational Logic

(c )

(d )

0011

0101

M U X In p u ts

S e le c tio n c o d e

D 0D 1D 2

D 3

AB

Yf(a , b , c ) f(a , b , c )

01aa

D 0 = 0D 1 = 1D 2 = aD 3 = a

b c

01aa

b c

(a )

(b )

0011

0101

M U X In p u ts

S e le c tio n c o d e

D 0D 1D 2

D 3

AB

Yf(a , b , c ) f(a , b , c )

c0c1

D 0 = cD 1 = 0D 2 = cD 3 = 1

a b

c0c1

a b

Page 69: Chapter 4 -- Modular Combinational Logic

(a ) (b )

C B A Y

i fX 1 X 2 X 3 X 4

0000000011111111

0000111100001111

0011001100110011

0101010101010101

1111100001000111

D 0 = 1

D 1 = 1

D 2 = X 4

D 3 = 0

D 4 = X 4

D 5 = 0

D 6 = X 4

D 7 = 1 S e lec tio n co d e

YW

D 0

D 1

D 2

D 3

D 4

D 5

D 6

D 7G

C B A

V CC

f(x 1 , x 2 , x 3 , x 4 )

x 1 x 2 x 3

7 4 1 5 1 A

x 4

0

1

2

3

4

5

6

7

1

1

X 4

0

X 4

0

X 4

1

f

Page 70: Chapter 4 -- Modular Combinational Logic

Y 0

Y 1

Y 2

Y 3

Y n Ð 1

Y 0

Y 1

m 0 m 1 m 2 m 3

AB

DE

(a )(b )

In p u t

E n a b le

S e lec tio nco d e

2 -to -4D e c o d e r

1 2 É

1 -to -nD e m u lt ip le x e r

S

In p u tÉ O u tp u ts

S e lec tio nco d e

Page 71: Chapter 4 -- Modular Combinational Logic

1 6 lin e s

5 l in e s

S in g le d a tach a n n e l (Q )

2 32 22 12 0

1 9

1 8

1 0Y

G 1

G 2

D C AB

E 0E 1E 2E 3E 4E 5E 6E 7

E 8E 9E 1 0E 11E 1 2

E 1 3E 1 4E 1 5G

C 3C 2C 1C 0

x 0

x 1

x 2

x 3

x 4

x 5

x 6

x 7

x 8

x 9

x 1 0

x 11

x 1 2

x 1 3

x 1 4

x 1 5

0123456789

1 01 11 21 31 41 5

1234567891 01 11 31 41 51 61 7

D e c o d e r / d e m u lt ip le x e rM u lt ip le x e r

7 4 1 5 47 4 1 5 0x 0x 1x 2x 3x 4x 5x 6x 7x 8x 9

x 1 0

x 11x 1 2x 1 3

x 1 4x 1 5

D C AB

1 51 41 31 1

876543212 32 22 12 01 91 81 71 69

Page 72: Chapter 4 -- Modular Combinational Logic

1 4 1 3 1 2 11 1 0 9 8

7654321

A 2 B 2 S 2 G N D N C N CC 2

A 2B 2 S 2

S 1A 1 B 1 C 0

(a )

A 2 A 1 C 2 S 2 S 1

C 0

A 1

B 1

A 2

B 2

C 1

C 2

LLLLLLLLHHHHHHHH

LLLLHHHHLLLLHHHH

LLHHLLHHLLHHLLHH

LHLHLHLHLHLHLHLH

LLLLLLLHLLHHLHHH

LLHHLHHLHHLLHLLH

LHLHHLHLLHLHHLHL

LLLHLLHHLHHHHHHH

LHHLHHLLHLLHLLHH

HLHLLHLHHLHLLHLH

S 2

S 1

A 1 B 1S 1 V C C N C N CC 0

C 2

B 2 B 1 C 2 S 2 S 1

W h en C 0 = HW h en C 0 = L

O u tp u tsIn pu ts

(b )

(c )

Page 73: Chapter 4 -- Modular Combinational Logic

1 6 1 5 1 4 1 3 1 2 1 1 1 0

7654321

9

8

B 4 S 4 C 4 G N DC 0

V C C

A 1B 1 S 1

A 3 S 2 A 2B 2S 3

(a)

B 3A 4

S 4 C 4 C 0 A 1B 1

A 3 S 2 B 2S 3 B 3

S 1

A 2A 4

B 4

Page 74: Chapter 4 -- Modular Combinational Logic

B 4

S 4

C 4

A 4

B 3

A 3

B 2

A 2

B 1

A 1

C 0

P 4

S 3

C 3

P 3

S 2

C 2

P 2

S 1

C 1

P 1

C 0

(b )

Page 75: Chapter 4 -- Modular Combinational Logic

(a ) (b )

(c )

x i y i ci

g i p i si

g 2 p 2 g 1 p 1 g 0

c 1 c 0

x 2 y2

g 2s2

c 2 c 1 c 0

p 2 g 1s1

p 1 g 0s0

p 0

x 1 y1 x 0 y0 0

c 2

A d d er

C L A c ircu it

A d d er A d der

Page 76: Chapter 4 -- Modular Combinational Logic

V cc

1 6 1 5 1 4 1 3 1 2 1 1 1 0

7654321

9

8

G N D

In p u ts O u tp u ts

P 2 G 2 C n C n + x C n + y G C n + z

G 1 P 1 G 0 P 0 G 3 P 3

(a )

(b )

(e)

(c )

(f)

In p u ts O u tp u t

G 0 P 0 C n C n + x

L

L

H

HH

LA ll o th er

co m b in a tion s

P 2

C n C n + z

L

L

L

L

LL

LL

´L

L

L

LL

H

HHHL

L

L

L

H

P

In pu ts O u tp u t

P 2 G 2 C n C n + x C n + y G

P 1 G 0 P 0 G 3 P 3 P

G 1 C n + z

In p u ts O u tp u t

A ll o th er co m b in a tio n s

P 1P 3G 3 G 2 G 1 G 0

LLLLH

G

P 0

L

In p u ts O u tp u t

A ll o th er co m b in a tio n s

P 1G 0G 1 C n + y

P 2

In p u ts O u tp u t

A ll o th er co m b in a tio n s

P 1 P 0G 2 G 1 G 0

HHHHL

LL

´L

L

P 2

In pu ts O u tp u t

A ll o th ercom b in a tio n s

P 1 P 0

H

PP 3

L L L L

(d )

C n

Page 77: Chapter 4 -- Modular Combinational Logic

P o r X

G o r Y

P 3 or X 3G 3 or Y 3

P 2 or X 2G 2 or Y 2

P 1 or X 1G 1 or Y 1

P 0 or X 0G 0 or Y 0

C n or C n

(g )

C n+ zorC n+ z

C n+ yorC n+ y

C n+ xorC n+ x

Page 78: Chapter 4 -- Modular Combinational Logic

Q = (q 3 q 2 q 1 q 0 )2

P = (p 3 p 2 p 1 p 0 )2

4 A 3 A 2 A 1 B4 B 2 B3 BSG

C 0C 4

S elec t

R = (S 4 S 3 S 2 S 1 )2

R = P + Q

R = P + Q + 1

0

1

S elec t Fu n c tion

1 A

1 Y2 Y3 Y4 Y

A 4 A 3 A 2 A 1 B 4 B 3 B 2 B 1

S 4 S 3 S 2 S 1

M U X (7 4 1 5 7 )

A D D E R (7 4 8 3 )

Page 79: Chapter 4 -- Modular Combinational Logic

(a )

(b )

F A

a nÐ 1 b nÐ 1 a n Ð 2 b n Ð 2

c nÐ 2cn Ð 1

sn Ð 1 sn Ð 2

V

cn Ð 3F A É

F A

a n Ð 1 b n Ð 1 a n Ð 2 bn Ð 2

c n Ð 2

c n Ð 1

sn Ð 1 sn Ð 2

V

c nÐ 3F A É

Page 80: Chapter 4 -- Modular Combinational Logic

0 4 1 2 8

1 5 1 3 9

3 7 1 5 1 1

2 6 1 4 1 0

1

1 1 1

1 1

A

B

2

M agn itu d ecom p ara to r

f1 , A < B

f2 , A = B

f3 , A > B

i A 1 A 0

0123456789

1 01 11 21 31 41 5

0000000011111111

0000111100001111

0011001100110011

0101010101010101

0111001100010000

1000010000100001

0000100011001110

f1 , A < B

B 1

A 1

A 0

B 0

0 4 1 2 8

1 5 1 3 9

3 7 1 5 1 1

2 6 1 4 1 0

f2 , A = B

B 1

A 1

A 0

B 0

0 4 1 2 8

1 5 1 3 9

3 7 1 5 1 1

2 6 1 4 1 0

1

f3 , A > B

B 1

A 1

A 0

B 0

1

1

1

1

11

1 1

1

2

B 1 B 0 f1 f2 f3

(a )

(b )

(c )

Page 81: Chapter 4 -- Modular Combinational Logic

A 1

B 1

A 0

B 0

f1

f3

f2

Page 82: Chapter 4 -- Modular Combinational Logic

V cc

1 6 1 5 1 4 1 3 1 2 11 1 0

7654321

9

8

G N D

D a ta in p u ts

A 3 B 2 A 2 B 1A 1 B 0

B 3

A 0

(a )

A < BIn

A = BIn

A > BIn

A < BO u t

A = BO u t

A > BO u t

C asca d e in p u ts C asca d e ou tp u ts

A < BIn

A = BIn

A > BIn

A < BO u t

A = BO u t

A > BO u t

A 3 B 2 A 2 B 1A 1 A 0

B 3 B 0

D atain p u t

(b )

A > B A < B A = B

C om p a rin gin p u ts

C asca d in gin p u ts O u tp u ts

A 3 , B 3 A 2 , B 2 A 1 , B 1 A 0 , B 0 ´

A 2 > B 2A 2 < B 2A 2 = B 2A 2 = B 2A 2 = B 2A 2 = B 2A 2 = B 2A 2 = B 2A 2 = B 2A 2 = B 2A 2 = B 2A 2 = B 2

A 3 > B 3A 3 < B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3A 3 = B 3

´´

A 1 > B 1A 1 < B 1A 1 = B 1A 1 = B 1A 1 = B 1A 1 = B 1A 1 = B 1A 1 = B 1A 1 = B 1A 1 = B 1

´

´

A 0 > B 0A 0 < B 0A 0 = B 0A 0 = B 0A 0 = B 0A 0 = B 0A 0 = B 0A 0 = B 0

HLLHL

LHLHL

LLHLL

HLHLHLHLHLLLLH

LHLHLHLHLHLLLH

LLLLLLLLLLHHLL

A > B A < B A = B

Page 83: Chapter 4 -- Modular Combinational Logic

B 1A 1

B 0A 0

(c)

A 3B 3

B 2A 2

A < B

A = B

A > B

A < B

A = B

A > B

Page 84: Chapter 4 -- Modular Combinational Logic

4

C ascad ein p u ts

D ata

A < B

A = BA > B

A

f2 f1f3

0 1 0

7 4 8 5

C ascad ed in p u ts

A < B

A = BA > B

C ircu itou tp u ts

c 2 c 1c 3

B 1

B 0

B 2

B 3

A 1

A 0

A 2

A 3

(a )

(b )

f2 f1f3

c 2 c 1c 3

B 5

B 4

B 6

B 7

A 5

A 4

A 6

A 7

7 4 8 5

f2 f1f3

c 2 c 1c 3

B 9

B 8

B 1 0

B 1 1

A 9

A 8

A 1 0

A 1 1

7 4 8 5

f2

f1

f3

c 2 c 1c 3

B 1 3

B 1 2

B 1 4

B 1 5

A 1 3

A 1 2

A 1 4

A 1 5

7 4 8 5

C ascad ed in p u ts

C ascad ed in p u ts

A < BA = BA > B

f2

f1

f3

c 2

c 1

c 3

7 4 8 5

4BD ata

Page 85: Chapter 4 -- Modular Combinational Logic

A L UC -G E N

C i

a i b i

fi

C iÐ 1

S 2S 1S 0

C n Ð 1

b n Ð 1an Ð 1

C n Ð 2

fn Ð 1 f1 f0

a 1 b 1 a 0 b 0

C 0C 1 C Ð 1

(a )

(b )

A LUA L U

A L U S 2

S 1S 0

Page 86: Chapter 4 -- Modular Combinational Logic

LU A U

M U X

x y

f

s

y

a i b i

C iÐ 1

C i

S 2

S 1

S 0

c o ut

c in

fL U i fA U i

f

x y

fi

x 1 x 0

Page 87: Chapter 4 -- Modular Combinational Logic

s

y

x 1 x 0

Page 88: Chapter 4 -- Modular Combinational Logic

(a) (b)

(c)

(d)

MUX

x y

x 1x 0 x2 x 3

s1

s0

S 1 S 0

f

S 1

S 0

x y

x AND y

x OR y

NOT x

x XOR y

F LU

0000000011111111

0000111100001111

0011001100110011

0101010101010101

x y

s1

s0

0001011111000110

y

f

xys1 s0

0

00 01 11 100 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

0 0 1

0 1 1 1

1 1 0 0

0 1 1 0

Page 89: Chapter 4 -- Modular Combinational Logic

b i

S 1 S 0

0

0 0 01 11 1 00 2 6 4

1 3 7 5

0

1

1 1 0

1 0 1 0

yib iS 1 S 0

00001111

00110011

01010101

01100011

A d d

S u b trac t

In c rem en t

D ecrem en t

b i

y i

S 1

S 0

(a )

(b )

(c )

Page 90: Chapter 4 -- Modular Combinational Logic

S 0

S 1

0

0 10 2

1 3

0

1

1

1 0

S 1 S 0

0011

0101

0110

A d dS u b trac tIn c rem en tD ec rem en t

(a )

(b ) (c )

C Ð 1

C Ð 1

S 1 S 0

Page 91: Chapter 4 -- Modular Combinational Logic

a i b i

S 1S 0

fL Ui

fA Ui

fi

C iÐ 1

S 2

Y -G E N

F A

L U

A U

M U X

C i

Page 92: Chapter 4 -- Modular Combinational Logic

S to rag ereg ister

M od u le: SR

FA 4M o d u led es ign

s0

s1

s2

s3

a0

a1

a2

a3

b 0

b 1

b 2

b 3

gn d

N ,C .

ad d 1M od u le :

FA 1

ad d 0M od u le :

FA 1

ad d 2M od u le :

FA 1

ad d 3M od u le :

FA 1

ab

FA 1M od u led esig n

c in

co ut

a3

a2

X 1

a1

R 1

X 2

A 2

A 1

A 3

s

D isp layd riv er

A d d er

M od u le: FA 4

K eyp adin p u t

x1

Page 93: Chapter 4 -- Modular Combinational Logic

a2

ab

c in

c o ut

a3

X 1

a1

R 1

X 2

A 2

A 1

A 3

s

M o d u le: F A 1

H iera rch ica lcon n ec tors

a

b

c in

c o ut

s

(a )

(b )

x 1

Page 94: Chapter 4 -- Modular Combinational Logic

(a )

(b )

A (3 :0 )

B (3 :0 )

A (3 :0 )

B (3 :0 )P in B (3 :0 )

FA 4

A (0 )A (1 )A (2 )A (3 )

B (0 )B (1 )B (2 )B (3 )

S (0 )S (1 )S (2 )S (3 )

S (3 :0 )

FA 4

P in A (3 :0 )

P in S (3 :0 )S (3 :0 )

A 0A 1A 2A 3

B 0B 1B 2B 3

S 0S 1S 2S 3

Page 95: Chapter 4 -- Modular Combinational Logic

T im e

057

1012

0 0 0 00 11 00 11 00 11 00 11 0

0 0 0 00 1 0 10 1 0 10 0 0 10 0 0 1

0 0 0 00 0 0 01 0 1 11 0 1 10 11 1

(a )

(b )

0 1 1 0

0 1 0 1 0 0 0 1

1 0 11

a (3 :0 )

b (3 :0 )

s (3 :0 )

0 5 1 0 15

0 0 0 0

0 0 0 0

0 0 0 0 0 1 1 1

T im e

a(3 :0 ) b (3 :0 ) s(3 :0 )