95
Chapter 4 Hilbert Space

Chapter 4 Hilbert Space. 4.1 Inner product space

Embed Size (px)

Citation preview

Page 1: Chapter 4 Hilbert Space. 4.1 Inner product space

Chapter 4 Hilbert Space

Page 2: Chapter 4 Hilbert Space. 4.1 Inner product space

4.1 Inner product space

Page 3: Chapter 4 Hilbert Space. 4.1 Inner product space

Inner product

CEE :),(

0,0),()( xholdxxi

Exforlinearisxii ),()(

E : complex vector space

is called an inner product on E if

Eyxxyyxiii ,),(),()(

Page 4: Chapter 4 Hilbert Space. 4.1 Inner product space

Inner product space

),(

xxx ,

E : complex vector space

is an inner product on E

With such inner product E is called

inner product space. If we write

,then is a norm on E and hence

E is a normed vector space.

Show in next some pages

Page 5: Chapter 4 Hilbert Space. 4.1 Inner product space

Schwarz Inequality

Eyxyxyx ,,

E is an inner product space

Page 6: Chapter 4 Hilbert Space. 4.1 Inner product space

yxyxTherefore

yxyx

havewebyThenyxyxayax

andathenyx

yxaTaking

CaEyxyaxyax

EyxyxyxHence

xy

yx

y

yxx

y

yx

y

yxx

havewey

yxtTaking

ytyxtxtyxtyx

Rtanyfor

andyxthenyxIfCase

yxyxthenyxIfCase

),(

),(

(*).),(),(),(

1,),(

),(

(*),,),(Re

,),(Re

),(Re

),(Re),(Re),(Re20

,),Re(

),Re(2),(0

0,0,0),(:2

),(,0),(:1

222

222

222

2

2

2

2

22

2

2

2

22

2

222

Page 7: Chapter 4 Hilbert Space. 4.1 Inner product space

Triangular Inequality for ∥ .∥

Eyxyxyx ,

E is an inner product space

Page 8: Chapter 4 Hilbert Space. 4.1 Inner product space

yxyx

yx

InequalitySchwarzbyyyxx

yyxx

yyxx

yyxx

yxyxyx

EyxanyFor

2

22

22

22

22

2

2

,2

,Re2

,Re2

,

,

Page 9: Chapter 4 Hilbert Space. 4.1 Inner product space

Example 1 for Inner product space

nCE

nnn Cinzzzandzzz ,,,, 11

n

iiizzzz

1,

Let

For

Page 10: Chapter 4 Hilbert Space. 4.1 Inner product space

Example 2 for Inner product space

221

2 ;,,)(Ni

izzzNE

)(,, 22121 Nzzzandzzz

Ni

iizzzz,

Let

For

Page 11: Chapter 4 Hilbert Space. 4.1 Inner product space

Example 3 for Inner product space

),,(2 LE

),,(2 Lgandf

gdfgf ,

Let

For

Page 12: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 1.1 (i)

)(, 2 Nzz

summableiszzNjjj

zz ,

For Show that

and hence

is absolutely convergent

Page 13: Chapter 4 Hilbert Space. 4.1 Inner product space

Njj

Njj

Njjj

jNj

j

Njjj

zz

zz

zz

zz

22

22

2

1

2

1

Page 14: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 1.1 (ii)

)(2 NShow that is complete

Page 15: Chapter 4 Hilbert Space. 4.1 Inner product space

Nixz

sayCinsequenceconvergentaiszthen

CinsequenceCauchyaisz

Niforthen

Ninkmforzz

nkmforzz

nkmforzz

tsNnanyFor

zzz

zzz

withNinsequenceCauchyabezLet

inin

ni

ni

kimi

Nikimi

km

n

lim

,

,,

,

,

..,0

,,

,,

)(

22

22212

12111

2

Page 16: Chapter 4 Hilbert Space. 4.1 Inner product space

.)(

)(lim

2

,,

max

2..

0

2

2

2

0

21

10

completeisNTherefore

NinxzHence

xzxz

nnforthen

xxxLet

nnTake

nnxztsNn

andNiFor

nn

Nii

Niinin

ii

iiinii

Page 17: Chapter 4 Hilbert Space. 4.1 Inner product space

Hilbert space

),( E

.)(2 casespecialareCandN n

),,(2 L

An inner product space E is called

is complete Hilbert space if

is a Hilbert space of which

Page 18: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 1.2

Define real inner product space and

real Hilbert space.

Page 19: Chapter 4 Hilbert Space. 4.1 Inner product space

4.2 Geometry for Hilbert space

Page 20: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 2.1 p.1

Ex

E: inner product space

M: complete convex subset of E

Let

then the following are equivalent

Page 21: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 2.1 p.2

zxyxsatisfiesMyMz

min

My

MzzyxysatisfiesMy 0),Re(

(1)

satisfing (1) and (2).

(2)

Furthermore there is a unique

Page 22: Chapter 4 Hilbert Space. 4.1 Inner product space

0),Re(

,0

),Re(2

)0()(0

)0(),Re(2

)()(

)1()(

10

)2()1(

2

222

2

2

zyxy

havewelettingBy

zyzyyx

ff

fzyzyyxyx

zyyx

zyxflet

andMzanyFor

Page 23: Chapter 4 Hilbert Space. 4.1 Inner product space

zxyxHence

zxyx

zxyxzxyxyx

xzyxyx

yxxzyx

yzyx

MzFor

Mz

min

),Re(

),Re(

),Re(

),Re(0

,

)1()2(

2

2

Page 24: Chapter 4 Hilbert Space. 4.1 Inner product space

21

122211

122211

21212

21

21

0

,Re,Re

,,

,0

),2()1(

:

yythen

yyxyyyxy

yyxyyyxy

yyyyyy

thenandsatisfyyandyIf

yofUniqueness

Page 25: Chapter 4 Hilbert Space. 4.1 Inner product space

nn

n

nm

nmnmnm

nmnmnm

nmnm

nmnm

n

nn

Mz

zxyxthen

nasyztsMycompleteisMSince

nmasnmnm

zz

xzz

zxzxzz

xzxzzxzxxzz

xzxzzxzx

zxxzzz

sequenceCauchyaiszClaimn

zxtsMzConsider

zxLet

yofExistence

lim

0..,

],011

241

21

2

2422

,Re22

4

,Re2

[

:

1..

.inf

:

2222

2222

222

22

22

222

Page 26: Chapter 4 Hilbert Space. 4.1 Inner product space

Projection from E onto M

MEt :

Mt

The map

of Thm 1 is called the projection from E onto M.

y is the unique element in M which satisfies (1)

defined by tx=y, where

and is denoted by

Page 27: Chapter 4 Hilbert Space. 4.1 Inner product space

Corollary 2.1

)()( 2 idempotentisttti

Mtt

)()( econtractivistyxtytxii

Let M be a closed convex subset of a Hilbert

has the following

properties:

space E, then

)(0),Re()( monotoneistyxtytxiii

Page 28: Chapter 4 Hilbert Space. 4.1 Inner product space

0),Re((*),)(

),Re(

(*)),Re(

)),(Re(0

0),Re(

,0),Re()(

.)(

2

2

2

tytxtytxyxByiii

yxtytx

tytxyx

tytxyxtytx

tytxtytxyx

tytxtytxyx

txtyyty

tytxxtxii

obviousisi

Page 29: Chapter 4 Hilbert Space. 4.1 Inner product space

Convex Cone

0, MxMx

A convex set M in a vector space is called

a convex cone if

Page 30: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (i)

tIs

MxxyEyN 0),Re(;

NM tsandtt

Let M be a closed convex cone in a Hilbert

Put

Show that

space E and let

I being the identity map of E.

Page 31: Chapter 4 Hilbert Space. 4.1 Inner product space

tIs

Xxtxxsx

txytxxtx

txyxtx

ytxxtx

ytxxxtxx

Mtxcetxy

Mcetxxtxtxxtx

NyandExanyFor

0),Re(),Re(

),Re(

),Re(

),Re(

sin,0),Re(

0sin,0)0,Re(),Re(

,

Page 32: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (ii)

0)( iftxxt

( t is positive homogeneous)

Page 33: Chapter 4 Hilbert Space. 4.1 Inner product space

txxtthen

Mzce

ztxxtx

ztxxtxztxxtx

thenIfCase

Mcexttxt

thenIfCase

MzandXxanyFor

)(

1sin,0

)1

,Re(

),Re(),Re(

,0:2

0sin),(0)0()(

,0:1

,

Page 34: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (iii)

Exsxtxx ,222

Page 35: Chapter 4 Hilbert Space. 4.1 Inner product space

222

22

22

22

),Re(2

,

]0),Re(

0)0,Re(

sin,),Re(

sin,),Re(0[

0),Re(:

,

txsxx

txsx

txsxtxsx

txsxxtxsxx

tsItIsSince

sxtxthen

txxtx

tIscetxxtx

NsxandMtxcesxtx

sxtxClaim

ExanyFor

Page 36: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (iv)

0; txExN

0; sxExM

Page 37: Chapter 4 Hilbert Space. 4.1 Inner product space

0;

0

)2(

0;

0

)1(

sxExMHence

sx

txsxtx

xtxMx

txExNHence

tx

txsxsx

xsxNx

Page 38: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (v)

sxztxy ,

;0),Re( sxtxxandsxtx

,0),Re(,, zyandNzMyzyx

then

conversely if

Page 39: Chapter 4 Hilbert Space. 4.1 Inner product space

sxzSimilarly

txythen

zw

zwywyzwyxy

Mwanyforthen

zyandNzMyzyxifConversly

sxtx

sxtxsxtxsxtxsxtx

sxtxxandsxtxxSince

sxtxxtxxsx

ExanyfortIsSince

,

0),Re(

),Re(),Re(),Re(

,

0),Re(,,,,

0),Re(

),Re(2

,

22222

222

Page 40: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (vi)

MxxyEyMN 0),(::

M is a closed vector subspace of E. Show that

In the remaining exercise, suppose that

Page 41: Chapter 4 Hilbert Space. 4.1 Inner product space

Mz

Myyzhence

Myyz

yz

My

yz

yz

yz

yz

subspacevectorclosedaisMce

My

iyz

iyz

yz

yz

MyyzNz

obviousisIt

0),(

0),Im(

0),Re(

0),Im(

0),Im(

0),Re(

0),Re(

sin

,

0),Re(

0),Re(

0),Re(

0),Re(

0),Re(""

.""

Page 42: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (vii)

both t and s are continuous and linear

Page 43: Chapter 4 Hilbert Space. 4.1 Inner product space

.

,

.

)(

)(

)()(

)()(

,,

222

22112211

22112211

22112211

221122112211

222111

2121

continuousaresandtthen

xsxandxtxsxtxxSince

lineararesandt

sxxsxxs

andtxxtxxt

NsxxsandMtxxtwhere

sxxstxxtxx

sxtxxandsxtxx

CandExxanyFor

Page 44: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (viii)

tsENstEM ker;ker

Page 45: Chapter 4 Hilbert Space. 4.1 Inner product space

tsENhaveweSimilarly

KersysyMy

sMthatshowTo

MytEy

tEyytyMy

tEMthatshowTo

ker,

0

ker)2(

""

"''

)1(

Page 46: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (ix)

Eyxtyxytx ,),(),(

Page 47: Chapter 4 Hilbert Space. 4.1 Inner product space

),(),(

),(),(),(

),(),(),(

tyxytx

tytxtysxtxtyx

tytxsytytxytx

Page 48: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 2.2 (x)

MzandMy

such that x=y+z

tx and sx are the unique elements

Page 49: Chapter 4 Hilbert Space. 4.1 Inner product space

zsxSimilarly

ytx

tNMzcetytx

linearistcetztytx

MzandMywherezyx

,

kersin,

sin,

,

Page 50: Chapter 4 Hilbert Space. 4.1 Inner product space

4.3 Linear transformation

Page 51: Chapter 4 Hilbert Space. 4.1 Inner product space

We consider a linear transformation from

vector space Y over the same field R or C.

a normed vector space X into a normed

Page 52: Chapter 4 Hilbert Space. 4.1 Inner product space

Exercise 1.1

T is continuous on X if and only if

T is continuous at one point.

Page 53: Chapter 4 Hilbert Space. 4.1 Inner product space

.

)(

,

)(

..0,0

.""

.""

0

00

0

XoncontinuosisTHence

TsTx

sxTsx

Xsanyforhence

xxT

TxTxxx

tsanyforthen

xatcontinuousisTthatAssume

obviousisIt

Page 54: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 3.1

XxxcTx

0c

T is continuous if and only if there is a

such that

Page 55: Chapter 4 Hilbert Space. 4.1 Inner product space

XxxcTx

thencchoosewe

xTx

xx

Txx

XxanyFor

Txxts

xatcontinuousisT

continuousisT

XoncontinuousisTExerciseBy

xatcontinuousisTthatobviousisIt

,1

1

1

0

1..0

0

""

.,1.3

.0""

Page 56: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 3.3Riesz Representation Theorem

Xy 0

X

Xxxyx ,)( 0

Let X be a Hilbert space and

Furthermore the map

such that then there is

0y

is conjugate linear and 0y

Page 57: Chapter 4 Hilbert Space. 4.1 Inner product space

)(),(

,)(

)()(),)(

(

),(),(

)()()(

.

,

,

.dim,ker

0

0

020

00

0020

0

20000

00

0

0

xxy

havewethenxx

xyletweifHence

xxxxx

x

xxvxxx

xxvx

scalaraand

MinelementnonzerofixedaisxMvwhere

xvxwritecanweXxanyFor

ensionaloneisMthenMLet

thatassumemayWe

Page 58: Chapter 4 Hilbert Space. 4.1 Inner product space

4.4 Lebesgue Nikondym Theorem

Page 59: Chapter 4 Hilbert Space. 4.1 Inner product space

Indefinite integral of f

fd

,,

AfdAA

)(

Let

Suppose that

and f a Σ –measurable function on Ω

be a measurable space

has a meaning;

then the set function defined by

is called

the indefinite integral of f.

Page 60: Chapter 4 Hilbert Space. 4.1 Inner product space

Property of Indefinite integral of f

nA0)(

0)(0)( AwheneverA

ν is σ- additive i.e. if

nn

nn AA )(

is a disjoint sequence, then

Page 61: Chapter 4 Hilbert Space. 4.1 Inner product space

Absolute Continuous

,,,,, spacesmeasurebeandLet

0)(0)( AwheneverA

ν is said to be absolute continuous

w.r.t μ if

Page 62: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 4.1Lebesgue Nikodym Theorem

and

spacesmeasurebeandLet ,,,,

AhdAA

,)(

with

),,(1 Lh

Suppose that νis absolute continuous w.r.t.

μ, then there is a unque

such that

Furthermore ..0 eah

Page 63: Chapter 4 Hilbert Space. 4.1 Inner product space

)1.4()1(

)(

..

Re,

)(

1)(

,)(

),,(

,

)(2

1

212

12

2

2

Xffgddgf

fgdfgdfgdfdf

tsXg

ThmonpresentatiRieszbyX

f

ddfdffSince

Xffdfbydefined

Xonfunctionallineartheconsiderand

LXspaceHilbertrealtheConsider

Let

L

Page 64: Chapter 4 Hilbert Space. 4.1 Inner product space

0)(

0)(

0)(

0)()1(0

),1.4(

0)(0)(0)(

)1()(0

),1.4(

1)(;0)(;[

..1)(0:1

2

2

2

2

111

1

21

22

2

11

1

A

A

A

Adgdg

haveweinfTake

AAA

dgdgA

haveweinfTake

xgxAandxgxALet

onxeaxgClaim

AA

A

AA

A

Page 65: Chapter 4 Hilbert Space. 4.1 Inner product space

]lim)1(lim)1(

)1.4(

0)1()1(0

.,.001

,2,1

[

..

)1.4(:2

fgdgdfdgfdgf

andThmeConvergencMonotonefromthen

fggfandgfgf

eagandgSince

nnfflet

andfunctionasuchbefLet

functionsenonnegativea

andfunctionmeasurableallforholdClaim

nn

nn

nn

n

Page 66: Chapter 4 Hilbert Space. 4.1 Inner product space

.

),,(

,)(

)(

),1.4(,

..0,1

1

),1.4(1

,..

1

obviousisuniqueishsuchThat

Lhhence

hdknowweSince

hdhddA

theninztakeweAanyFor

hdzdz

andeahtheng

ghLet

dg

gzdz

thening

zfChoose

zfunctionenonnegativeaandmeasurableaFor

AAA

A

Page 67: Chapter 4 Hilbert Space. 4.1 Inner product space

4.5 Lax-Milgram Theorem

Page 68: Chapter 4 Hilbert Space. 4.1 Inner product space

Sesquilinear p.1

),(),(),( 22112211 xxBxxBxxxB

CXxxxfor 2121 ,,,,

CXXB :),(

Let X be a complex Hilbert space.

),(),(),( 22112211 xxBxxBxxxB

is called sesquilinear if

Page 69: Chapter 4 Hilbert Space. 4.1 Inner product space

Sesquilinear p.2

EyxyxryxB ,),(

B is called bounded if there is r>0 such that

XxxxxB 2),(

B is called positive definite if there is ρ>0 s.t.

Page 70: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 5.1The Lax-Milgram Theorem p.1

1S

XyxySxByx ,),(),(

Let X be a complex Hilbert space and B a

a bounded, positive definite sesquilinear

functional on X x X , then there is a unique

bounded linear operator S:X →X such that

and

Page 71: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 5.1 The Lax-Milgram Theorem p.2

1S

rS 1

Furthermore

exists and is bounded with

Page 72: Chapter 4 Hilbert Space. 4.1 Inner product space

1

1

2

*

*2

*1

*2

*1

2*2

*1

*2

*1

*2

*1

*2

*1

*2

*1

*

**

,,

,

,

0

),(0

0),(

),(),(

mindet)0(

),(),(..;

S

xSx

SxxSxxSxSxBSx

DonlinearisS

andsubspacelinearisDarsesquilineisBSince

xSxletDxFor

xxxx

xxxxxxB

XyyxxB

XyyxByxB

atederuniquelyisxandDDthen

XyyxByxtsXxXxDLet

Page 73: Chapter 4 Hilbert Space. 4.1 Inner product space

*

*

*

**

*

),(),(lim),(lim,

0

),(),(),(

)(

.[

:

xSxandDxthen

yxBySxByxyxHence

nasyxSxr

yxSxByxBySxB

xSxthen

XinCauchyisSxboundedisS

xxSxxSSxSx

XxxandDxLet

closedisDthatshowtoFirst

XDClaim

nn

nn

n

nn

n

n

mnmnmn

nn

Page 74: Chapter 4 Hilbert Space. 4.1 Inner product space

ioncontradictay

yyyByx

Dx

XxxyBxxxtsXx

ThmonpresentatiRieszBy

X

XxxyBx

bydefinedbeletandDyLet

DthenXDthatSuppose

,0

),(,0

),()(,..

,Re

),()(

0,

0

200000

0

000

0

0

Page 75: Chapter 4 Hilbert Space. 4.1 Inner product space

rSxrxS

xSxr

xSxBxSxSSBxSxSxS

andexistSHence

XxxyBxx

tsXxbeforeasXy

ontoisSthatshowTo

xxBxx

thenSxIf

isSthatshowTo

11

1

1111121

1

00

00

,,,

),(),(

..

00),0(),(

,0

11

Page 76: Chapter 4 Hilbert Space. 4.1 Inner product space

4.7 Bessel Inequality and parseval Relation

Page 77: Chapter 4 Hilbert Space. 4.1 Inner product space

Propositions p.1

kEk tt

ne

neLet

Ut

be an orthogonal system in a

Hilbert space X, and let U be the closed vector

subspace generated by

Let be the orthogonal projection onto U

and where kk eeE ,,1

Page 78: Chapter 4 Hilbert Space. 4.1 Inner product space

Proposition (1)

Xxexextk

jjjk

1),(

Page 79: Chapter 4 Hilbert Space. 4.1 Inner product space

k

jjjk

ikikkii

i

k

jjjiki

k

jjjk

exextHence

xtextxtexeBut

eexte

kiFor

thenextLet

1

1

1

,

),(1,,

),(),(

,,1

,

Page 80: Chapter 4 Hilbert Space. 4.1 Inner product space

Proposition (2)

xtxtXxFor Ukk

lim,

Page 81: Chapter 4 Hilbert Space. 4.1 Inner product space

kUkUk

k

UUkk

U

kk

kk

kkk

k

N

iii

tttcextxt

xtxtt

UxtExanyFor

Uyifyytthen

yzzy

yzztyt

yzztytyyt

zztNk

zytsezncombinatiolinearaisthere

andUyanyFor

sin,lim

lim

,

lim

2

..

,0

1

Page 82: Chapter 4 Hilbert Space. 4.1 Inner product space

Proposition (3)

).,(),(),(1

yexeytxt j

k

jjkk

For each k and x,y in X

Page 83: Chapter 4 Hilbert Space. 4.1 Inner product space

),(),(

),(,),(

),(,),(),(

1

11

11

xexe

exeexe

exeexeytxt

j

k

jj

k

iiij

k

jj

k

iii

k

jjjkk

Page 84: Chapter 4 Hilbert Space. 4.1 Inner product space

Proposition (4)

).,(),(),(1

yexeytxt jj

jUU

For any x,y in X

Page 85: Chapter 4 Hilbert Space. 4.1 Inner product space

),(),(

),(),(lim

),(lim),(

0

),(),(

),(),(

),(),(),(

),(),(

),(),(

1

1

yexe

yexe

ytxtytxtthen

kasytytxyxtxt

ytytxtytxtxt

ytytxtytxtxt

ytxtytxtytxtxt

ytxtytxtxtxt

ytxtytxt

ii

i

i

k

ii

k

kkk

UU

kUkU

kUkUkU

kUkUkU

kkUkUkU

kkUkkU

kkUU

Page 86: Chapter 4 Hilbert Space. 4.1 Inner product space

Proposition (5)

Xxxxei

i

,),(

2

1

2

Bessel inequality

Page 87: Chapter 4 Hilbert Space. 4.1 Inner product space

22

1

2),( xxtxe U

jj

Page 88: Chapter 4 Hilbert Space. 4.1 Inner product space

Proposition (6)

XUXxxxei

i

,),(

2

1

2

An orthonormal system ne

is called complete if U=X

( Parseval relation)

Page 89: Chapter 4 Hilbert Space. 4.1 Inner product space

XUHence

oncontraditiaxext

xtxtx

xxttsXx

thenXUthatSuppose

xxtxe

thenXUIf

iiU

UU

U

Ui

i

,),(

)1(

..

,""

),(

,""

1

2

222

22

1

2

Page 90: Chapter 4 Hilbert Space. 4.1 Inner product space

Separable

A Hilbert space is called separable

if it contains a countable dense subset

Page 91: Chapter 4 Hilbert Space. 4.1 Inner product space

Theorem 7.1

2

A saparable Hilbert space is isometrically

nCisomorphic either to for some n

or to

Page 92: Chapter 4 Hilbert Space. 4.1 Inner product space

.inf.inf

.,

,

.

.

1

initeisxthatassumeweHenceiniteis

xwhencasetheofthatofimitationeasyanis

xofycardinalittheisnwhereCtoisometric

llyisometricaisXthatproofthefiniteisxIf

xzthatsuchxesubsequenc

tindependenanzfromextractcanOne

Xindenseiswhich

elementsofsequenceabezLet

spaceHilbertseparableabeXLet

k

k

kn

k

kkk

k

kk

Page 93: Chapter 4 Hilbert Space. 4.1 Inner product space

..

,),6(),(

),(

:

,)1.7(),(),(),(

)4(,

;,,

,

2

1

22

12

1

1

obviousislinearisThatisometryisso

xxbyxexSince

xewhere

xlettingbyXmaptheDefine

tIbecauseyexeyx

fromhaveweXinyxforthus

XUtheneUletbeforeAs

exthatsuche

systemorthonomalanxfromconstructcanwe

procedurelizationorthonormaSchmidtGramFrom

jj

kk

kk

Uj

jj

k

kkkk

k

Page 94: Chapter 4 Hilbert Space. 4.1 Inner product space

)1.7(

.

,lim,

,lim.

0

.

int,

.

2

11

1

22

1

21

2

fromfollowsisomophismanisThat

ontoisTherefore

xhenceandeexethen

xxLetsequenceCauchyaisxHence

mastotendswhich

xxhavewemnFor

sequenceCauchyaisxthatclaimwe

exlet

negerpositiveeachforLet

ontoisthatnowshowWe

kki

n

jjji

ni

nn

n

n

mjjmn

n

n

jjjn

kk

Page 95: Chapter 4 Hilbert Space. 4.1 Inner product space