56
er 4. Chemical Structure and Polymer Proper 4.1 Introduction 4.2 Fabrication Methods. 4.3 Mechanical Properties 4.4 Thermal stability 4.5 Flammability and Flame Resistance. 4.6 Chemical Resistance. 4.7 Degradability 4.8 Electrical Conductivity 4.9 Nonlinear Optical Properties POLYMER CHEMISTRY

Chapter 4. Chemical Structure and Polymer Properties 4.1 Introduction 4.2 Fabrication Methods. 4.3 Mechanical Properties 4.4 Thermal stability 4.5 Flammability

Embed Size (px)

Citation preview

Chapter 4. Chemical Structure and Polymer Properties

4.1 Introduction

4.2 Fabrication Methods.

4.3 Mechanical Properties

4.4 Thermal stability

4.5 Flammability and Flame Resistance.

4.6 Chemical Resistance.

4.7 Degradability

4.8 Electrical Conductivity

4.9 Nonlinear Optical Properties

POLYMER CHEMISTRY

A. Relationship between chemical structure and polymer properties.   a. Chemical structure and morphology (Chapter 3).  b. Polymer properties : mechanical property, thermal property,     chemical property, electrical property, etc.

B. To tailor chemical structure for specialty polymer.

C. Additives - compounds to modify polymer property.

D. Fabrication method to make polymer articles.

4.1 Introduction

POLYMER CHEMISTRY

4.2 Fabrication Methods.

A. Molding   a. Compression molding : thermoset polymer.

FIGURE 4.1. Compression molding

POLYMER CHEMISTRY

b. Injection molding : thermoplastic polymer.

FIGURE 4.2. Injection molding. [Reprinted from V. Hopp and I. Hennig, Handbook of Industrial Chemistry, copyright 1938, courtesy of McGraw-Hill.]

POLYMER CHEMISTRY

c. Reaction injection molding (RIM)

FIGURE 4.3. Basic components of a reaction injection molding (RIM) process. [From Modern Plastics Encyclopedia, 1984-85. Reprinted with permission of Modern Plastics.]

newly developed molding.    polyurethane and other polymer system.

POLYMER CHEMISTRY

d. Reinforced reaction injection mold (RRIM) :     Modified RIM for fiber reinforcement. e. Blow molding : for bottles.

FIGURE 4.4. Blow molding. [Courtesy of the Society of the Plastics, Inc.]

POLYMER CHEMISTRY

A. Molding

B. Casting : for making film.   a. Solution casting and melting casting.   b. Calendering : thick film.

C. Extrusion : to make rods and pipe.

 a. Extruder : screw of injection mold + die instead of mold.   b. sometimes to make thin film by extrusion.    ex) PE film.

4.2 Fabrication Methods.

POLYMER CHEMISTRY

D. Spinning.

a. melt spinning : for molten polymer.

b. dry spinning

c. wet spinning : solvent soluble polymer.

Fig.4.5 Basic components for spinning.

v

 a. Physical blowing agent.

  1) Gas : air, nitrogen, carbon dioxide.

  2) Low-boiling liquid : pentane, CFC (not to be used now,       because of ozone depletion)

 b. Chemical blowing agent.    1) Byproduct CO2 for polyurethane synthesis.    2) Decompose on heating and give off nitrogen.

E. Blowing agent : for foamed plastic.

POLYMER CHEMISTRY

A. Molecular weight dependent mechanical properties.   a. For vinyl polymer, molecular weight : 105     For polyamide, molecular weight : 20,000 ~ 50,000   b. For small molecular weight, properties of end group : significant     In case of high molecular weight : negligible.   c. Properties and molecular weight.

4.3 Mechanical Properties

POLYMER CHEMISTRY

Property

Molecular weight

Mechanical

Working range

Nonmechanical

FIGURE 4.6. Dependence of properties on molecular weight (hypothetical polymer).

Viscosity

B. Type of mechanical properties.   a. Tensile strength, tensile modulus, elongation.   b. Compressive strength : reverse tensile strength.   c. Flexural strength : Impact resistance, abrasion resistance,     tear resistance, hardness

POLYMER CHEMISTRY

4.3 Mechanical Properties

C. Tensile strength.   a. Important and useful mechanical property.    1)  Tensile stress :    2)  Tensile strain :    3)  Tensile modulus :     b. Units of tensile strength :     1) CGS : dyne / cm2     2) SI : N / m2 (Pa)     3) pounds per square inch (psi)

=AF

=l

l

E =

c. Unit of modulus    same unit of tensile strength.  d. Unit of elongation : No dimension.

POLYMER CHEMISTRY

4.3 Mechanical Properties

Stress ()

Brittleplastic

Fiber

Elastomer

Strain ()

FIGURE 4.7. Characteristics of tensile stress-strain behavior.

FIGURE4.8. General tensile stress-strain curve for a typical thermoplastic.

Elongation at break

Elongationat yield

Stress ()

Yieldstress

Strain ()

Ultimatestrength

FIGURE 4.9. Effect of temperature on tensile modulus of an amorphous thermoplastic; log E, modulus scale; Tg, glass transition temperature.

Glassy

Rubbery

Flow

Temperature

log E(N/m2)

Tg3

6

9

D. Temperature dependent mechanical properties  a. The modulus of amorphous thermoplastic depend on temperature.

 b. Tensile modulus of crystalline and crosslink polymer depend on temperature.

FIGURE 4. 10. Effect of temperature on tensile modulus (log E scale) of various polymers. Tm, crystalline melting temperature. [Reprinted with permission from J. J. Aklonis, J. Chem. Educ., 58, 11 (1981).]

Temperature

log

E (

N/m

2 )

Crystalline

Highlycrosslinked

Lightlycrosslinked

Low molecularweight

Highmolecularweght3

6

9

Tm

E. Time dependent mechanical properties   a. viscoelastic property        b. creep stress relaxation   

F. General relationship between mechanical property and structure.   a. Flexible backbone : lower tensile property   b. Chain stiffness of backbone or bulky side group :  increase tensile property   c. Chain stiffness : lower impact strength.      cf) Table 4.1 and Table 4.2   d. Tensile strength of fiber     Tenacity= N/ tex ,   tex= gram / 1000meters of the fiber.

4.3 Mechnical Properties

disentanglement by stress like as temperature >

POLYMER CHEMISTRY

TABLE 4.1. Mechanical Properties of Common Homopolymersa

Polymer

Polyethylene, low densityPolyethylene, high densityPolypropylenePoly(vinyl chloride)PolystyrenePoly(methyl methacrylate)Polytetra- fluoroethyleneNylon 66Poly(ethylene terephthalate)Polycarbonate

Strengthb

(Mpa)

8.3-31

22-31

31-4141-5236-5248-76

14-34

76-8348-72

66

Modulusb

(Mpa)

172-283

1070-1090

1170-17202410-41402280-32802240-3240

400-552

-2760-4140

2380

Elongation(%)

100-650

10-1200

100-60040-801.2-2.52-10

200-400

60-30050-300

110

CompressiveStrengthb

(Mpa)

-

20-25

38-5555-9083-90

72-124

12

10376-103

86

FlexuralStrengthb

(Mpa)

-

-

41-5569-11069-10172-131

-

42-11796-124

93

ImpactStrengthc

(N/cm)

No break

0.23-2.3

0.23-0.570.23-1.3

0.20-0.260.17-0.34

1.7

0.46-1.20.14-0.37

9.1

Tensile Properties at BreakProperty

aValues taken from Aranoff,12a converted to SI units, and rounded off.bTo convert megapascals to pounds per square inch, multiply by 145.cIzod notched impact test (see Chap. 5). To convert newtons per centimeter to foot pounds per inch, multiply by 1.75.

TABLE 4.2. Fiber Propertiesa

Fiber Type

Natural Cotton WoolSynthetic Polyester Nylon Aromatic polyamide (aramid)c

Polybenzimidazole Polypropylene Polyethylene (high strength)Inorganicc

Glass Steel

Tenacityb

(N/tex)

0.26-0.440.09-0.15

0.35-0.530.40-0.711.80-2.0

0.270.44-0.792.65d

0.53-0.660.31

SpecificGravity

1.501.30

1.381.141.44

1.430.900.95

2.567.7

aUnless otherwise noted, data taken form L. Rebenfeld, in Encyclopedia of Polymer Science and Engineering (H. f. Mark,N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, Eds.), Vol. 6, Wiley-Interscience, New York, 1986,pp. 647-733.bTo convert newtons per tex to grams per denier, multiply by 11.3.cKevlar (see Chap. 3, structure 58.)dFrom Chem. Eng. New, 63(8), 7 (1985).eFrom V. L. Erlich, in Encyclopedia of Polymer Science and Technology (H.F. Mark, N. G. Gaylord, and N. M. Bikales, Eds.), Vol. 9, Wiley-Interscience, New Uork, 1968, p. 422.

A. Chemical structure of thermally stable polymer:  to have aromatic repeating unit.

TABLE 4.3. Representative Thermally Stable Polymersa

Type

Poly(p-phenylene)

Polybenzimidazole

Polyquinoxaline

Polyoxazole

StructureDecomposition

Temperature (oC)b

660

650

640

620

4.4 Thermal stability

TABLE 4.3. Representative Thermally Stable Polymersa

Type

Polyimide

Poly(phenylene oxide)

Polythiadiazole

Poly(phenylene sulfide)

DecompositionTemperature (oC)b

585c

570

490

490

Structure

aData from Korshak17

bNitrogen atmosphere unless otherwise indicated.cHelium atmosphere. POLYMER CHEMISTRY

  a. Thermal stability : to bonds cleavage for degradation   b. Poor processability    1) High Tg or high Tm     2) High viscosity of molten polymer    3) Low solubility   c. Incorporation of inorganic material.   d. Seurcumvent of poor processability    1) Incorporation of flexible chain on backbone or side chain.    2) Insertion of heteroatom.    3) Symmetry→ asymmetry

POLYMER CHEMISTRY

B. Aromatic or cyclic repeating unit

C. Carl S. Marvel: polybenzimidazole fiber

                                                                                                                                                                                              a. Astronaut's space suits and firefighters' protective clothing.   b. Cardo polymer (from the Latin cardo, loop)   c. Cyclic aromatic groups that lie perpendicular to the planar aromatic backbone.   d. Improved solubility with no sacrifice of thermal properties.

NNH NNH

N

N

H

N

N

H

1

POLYMER CHEMISTRY

2

D. Cycloaddition to make cyclic repeating unit.

SCHEME 4.1. Increasing Tg of a polyquinoxaline by intramolecular cycloaddition.

Tg = 265oC

Tg = 215oC

E. Oligomers with reactive End Group.

TABLE 4.4. Some Reactive End Groups for Converting Oligomers to Network Polymers

Type Sturcture

C C

O C N

C CH

N

O

O

N

O

O

CyanateEthynyl

Maleimide

Nadimidea

PhenylethynylaCommon name for 5-norbornene-2,3-dicarboximide.

4.5 Flammability and Flame Resistance.

A. Process of flame propagation.   Solid polymer -(heat)→ Depolymerization to monomer(radical  formation) → Degradation to combustable gas → Flame formation.

FIGURE 4.11. Representation of polymer combustion. , gas diffusion; , heat flux. [Adapted from Factor.43]

Diffusionzone

Flamefront

Pyrolysiszone

Solidpolymer

B. The object of flame retardation.   a. Suppression of smoke and toxic gases.   b. Development of nonflammable polymer: self-extinguishing.

C. The strategies of flame resistance.   a. Retarding the combustion process in the vapor phase.   b. Causing "char" formation in the pyrolysis zone.   c. Giving nonflammable gas or cooling the pyrolysis zone.

POLYMER CHEMISTRY

4.5 Flammability and Flame Resistance.

D. Examples of flame resistance.   a. Halogen containing polymer: to suppress radical concentration.   b. Addition antimony oxide to be formed antimony halide.   c. Phosphorus-containing polymers: promotion char.   d. Aromatic and network polymers: to promote char.   e. Addition Al2O3 · 3H2O to evolve water.

POLYMER CHEMISTRY

4.5 Flammability and Flame Resistance.

A. Types of chemical reaction.   a. Free radical reaction by oxygen or UV-light.   b. Hydrolysis.   c. Ozonolysis.

POLYMER CHEMISTRY

4.6 Chemical Resistance.

B. Preventing hydrolysis.

a. Chemically resistant polyester formulations.

HOCH2C CH CHCH3

CH3CH3

CH3 OH

HOCHCH2O

CH3

C OCH2CHOH

CH3CH3

CH3

7

8 POLYMER CHEMISTRY

4.6 Chemical Resistance.

  b. End group blocking.

OH + NCO OCNH

O

CO2H + NCO CNH

O

+ CO2

POLYMER CHEMISTRY

4.6 Chemical Resistance.

B. Preventing hydrolysis.

 a. Fluorinated phosphazene.

b. Teflon and copolymer.

N P

Cl

Cl

N P

OCH2CF3

OCH2CF3

CF2CF2 CH2CF2CF2CF CH2CF2

CF3

9 10

11 12 13

POLYMER CHEMISTRY

C. Moisture resistance and chemical inertness: fluorinated polymer.

 a. Ozonolysis mechanism.

b. Preventing ozonolysis: to add cyclopentadiene.

CF3

C CO3

C

O O

C

OH2O

C O + CO

14 POLYMER CHEMISTRY

D. Ozonolysis

 Monomers containing ultraviolet-absorbing chromophore.

F. Morphology

a. Crystallinity                        to prevent penetration.   b. Crosslinking

POLYMER CHEMISTRY

E. Sunlight protection.

4.6 Chemical Resistance.

O OH

OH15

A. Application for polymer degradability.   a. Polymer waste treatment.    1) Photodegradable polymer containing carbonyl functional group.       Norrish type II degradation reaction.    2) Biodegradable polymer by microbiology.       Poly(α-hydroxybutanoic acid), starch+PE

POLYMER CHEMISTRY

4.7 Degradability

FIGURE 4.12. Schematic of a typical procedure for producing (a) negative resists and (b) positive resists in the manufacture of integrated circuits.

b. Photoresist for IC.   1) Positive resists: radiation promotes degradation of the resist                     exposed by the mask.    2) Negative resists: radiation makes insoluble network.

A. Application for polymer degradability.

c. Agricultural degradable mulches.    1) Starch-graft-poly(methylacrylate).    2) Block copolymers of amylose or cellulose with polyester.  

d. Surgical sutures and implanted polymeric matrix devices.

POLYMER CHEMISTRY

A. Application for polymer degradability.

B. Controlled release: penetration rather than degradation.   a. Microencapsulation.   b. Strip.

FIGURE 4.13. Membrane-controlled release devices: (a) microencapsulation, and (b) strip.

POLYMER CHEMISTRY

c. 2,4-Dichlorophenoxyacetic acid(2,4-D): herbicide.    Vinyl polymer with hydroyzable pendant group, chelate with iron.  d. Pheromone release strips: insecticides.

e. Transdermal patches.    1) Nitroglycerin to treat angina.    2) Scopolamine to treat combat motion sickness.

POLYMER CHEMISTRY

B. Controlled release: penetration rather than degradation.

f. Phosphazene polymer.           R= amino acids, esters, steroids  

g. Poly(N-isopropylacrylamide)    1)         

2) To shrink reversibly in response to temperature increase.    3) Incorporation with IPN.

N P

R

R

CH2CH

C NHCH(CH3)2O

POLYMER CHEMISTRY

B. Controlled release: penetration rather than degradation.

A. Classification of electrical conductivity.

 a. Insulator : σ < 10-8 S/ cm

 b. Semiconductor: 10-7 < σ < 10-1 S/ cm

c. Conductor: σ > 102 S/ cm     (σ=conductivity,  S (simen)= 1/Ω)

POLYMER CHEMISTRY

4.8 Electrical Conductivity

B. Theory of electrical conductivity for polyacetylene.

a. Soliton.

  1) Delocalization regions of conjugated double bond.

  2) Extend about 15 bond lengths.

  3) Energy gain arising for stabilization.

  4) Electron transfer via positive or negative solitons

FIGURE4.14. Proposed conducting unit of polyacetylene. Soliton may be neutral (radical), positive (carbocation), or negative (carbanion).

Soliton

b. Doping: incorporation dopant much as AsF5, I2, Lewis acid, etc.                                        

 + dopant : 1.5×105 S/cm

22 23

2 CH CH[ ] + 3 I2 2 CH CH[ ] +·

+ 2 I3-

CH CH[ ] CH CH[ ] -·

+ Na + Na+

POLYMER CHEMISTRY

B. Theory of electrical conductivity for polyacetylene.

      

 a. Poly(N-vinyl-carbazole) 1) Photoconducting: conduct small degree of      electricity under the light.  2) Electrophotography(photocopying)

 b. Poly(sulfur nitride): Super conductor

S N 20 POLYMER CHEMISTRY

  C. Example of conducting polymers.

19

CH2CH

 c. Polyaniline          Polypyrrole         Polythiophene                          

     Poly(p-phenylene)      Poly(p-phenylenevinylene)                         

 

d. Conducting polymers to be used as light emitting diode.

 (PPV)

NHNH S

CH CH

CH CH

e. Conducting polymers much lower density than metal.     polymer=1g/cm3, copper=8.92g/cm3, Gold=19.3g/cm3

24 25 26

27 28

POLYMER CHEMISTRY

  C. Example of conducting polymers.

TABLE 4.5. Conductivities of Metals and Doped Polymersa

Material

CopperGoldPolyacetylenePoly(sulfur nitride)Poly(p-phenylene)Poly(p-phenylenevinylene)PolyanilinePolypyrrolePolythiophene

5.8 105

4.1 105

103 – 105

103 – 104

103

103

102 – 103

102 – 103

102

Conductivity (S/cm)b

aData from J. R. Reynolds, A. D. Child, and M. B. Gieselman, in Encyclopedia of Chemical Technology, 4th ed. (J. I. Kroschwitz and M. Howe-Grant, Eds.), Wiley, New York, 1994; and Chem. Eng. News, Jume 22, 1987, p. 20.bI siemen (S) = I ohm-1. POLYMER CHEMISTRY

D. Polyelectrolytes for solid battery.                 

CH2CH2O P N

(OCH2CH2)2OCH3

(OCH2CH2)2OCH3

29 30

POLYMER CHEMISTRY

4.8 Electrical Conductivity

4.9 Nonlinear Optical Properties

A. Photonics device.

 a. Information and image processing.

 b. To operate higher rate.

 c. To store information much more densely.  

POLYMER CHEMISTRY

B. NLO materials a. Inorganic and low molecular weight organic compounds.   b. Polymeric materials    1) Conjugated double bond like conducting polymer:      Third order harmonic generation.     2) Asymmetric strong dipole aromatic molecule:       Second order harmonic generation    3) Containing strong electrowithdrawing and donating group:       Second order chromophore.

4) Dipole molecules must be poled at Tg.    5) Stabilizing poled molecule to avoid relaxation.

POLYMER CHEMISTRY

4.9 Nonlinear Optical Properties

CH3CH2

NCH2CH2 CH C C

CN

O

O

N

O

O

CF3

N

O

O

N

N

N

NO2

F3C

31

32

C. Producing NLO polymeric material.  

a. Host-Guest combination.     Host: matrix polymer.     Guest: NLO chromophore.

 b. Incorporating chromophore in the polymer backbone or side     chain covalently.

POLYMER CHEMISTRY

4.9 Nonlinear Optical Properties

4.10 Additives

A. Purpose of using additives.   a. To alter the properties of the polymer.   b. to enhance processability.

B. Types of polymer additives.

C. Examples of polymer additives.   a. Plasticizer.   1) Internal plasticizer, to have covalent bonds between polymer       and plasticizer.  2) External plasticizer, physical mixture with plasticizer.

POLYMER CHEMISTRY

TABLE 4.6. Polymer Additives

Type

Mechanical property modifiers Plasticizers Impact modifiers Reinforcing fillers Nucleating agents

Surface property modifiers Slip and antiblocking agents Lubricants Antistatic agents Coupling agents Wetting agents Antifogging agents

Chemical property modifiers Flame retardants Ultraviolet stabilizers Antioxidants Biocides

Aesthetic property modifiers Dyes and pigments Odorants Deodorants Nucleating agents

Processing modifiers Plasticizers Slip agents and lubricants Low-profile additives Thickening agents

Heat stabilizers Defoaming agents Blowing agents Emulsifiers Crosslinking (curing) agents Promoters

Increase flexibilityImprove impact strengthIncrease strength propertiesModify crystalline morphology

Prevent film and sheet sticking Prevent sticking to machineryPrevent static charge on surfacesImprove bonding between polymer and fillerStabilize dispersions of fillerDisperse moisture droplets on films

Reduce flammabilityImprove light stabilityPrevent oxidative degradationPrevent mildew

Impart colorAdd fragrancePrevent development of odorImprove light transmission

Reduce melt viscosityPrevent sticking to processing machineryPrevent shrinkage and warpageIncrease viscosity of polymer solutions or dispersionsPrevent degradation during processingReduce foamingManufacture stable foamsStabilize polymer emulsionsCrosslink polymerSpeed up crosslinking (curing)

Function

 b.

TABLE 4.7. Commonly Used Plasticizers

Aromatic Di-2-ethylhexyl phthalate Di-n-octyl phthalate Di-i-octyl phthalate Di-i-decyl phthalate Di-n-undecyl phthalate Di-n-tridecyl phthalate Tri-2-ethylhexyl trimellitate

Aliphatic Di-2-ethylhexyl adipate Di-2-ethylhexyl sebacate Di-2-ethylhexyl azelate

Epoxy Epoxidized linseed oil Epoxidized soya oil

Polymeric Poly(alkylene adipates, sebacates, or azelates)

Fire retardant Chlorinated paraffins Phosphate esters POLYMER CHEMISTRY

c. Reinforcing material: Composite.    1) Carbon black for tire.    2) Glass fiber for FRP.    3) Aromatic polyamide or graphite fiber for high performance       engineering plastic.

POLYMER CHEMISTRY

C. Producing NLO polymeric material.