Chapter 4 biochemitry

  • Upload
    jas92

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 Chapter 4 biochemitry

    1/27

  • 8/12/2019 Chapter 4 biochemitry

    2/27

    Terminology

    Conformation spatial arrangementof atoms in a protein

    Native conformation conformationof functional protein

  • 8/12/2019 Chapter 4 biochemitry

    3/27

  • 8/12/2019 Chapter 4 biochemitry

    4/27

  • 8/12/2019 Chapter 4 biochemitry

    5/27

  • 8/12/2019 Chapter 4 biochemitry

    6/27

    Protein Classification Simple composed only of amino acid residues

    Conjugated contain prosthetic groups

    (metal ions, co-factors, lipids, carbohydrates)Example: Hemoglobin Heme

  • 8/12/2019 Chapter 4 biochemitry

    7/27

    Protein Classification One polypeptide chain - monomeric protein

    More than one - multimeric protein

    Homomultimer- one kind of chain

    Heteromultimer- two or more differentchains

    (e.g. Hemoglobin is a heterotetramer. It hastwo alpha chains and two beta chains.)

  • 8/12/2019 Chapter 4 biochemitry

    8/27

    Protein ClassificationFibrous 1) polypeptides arranged in long strands or

    sheets2) water insoluble (lots of hydrophobic AAs)3) strong but flexible

    4) Structural (keratin, collagen)

    Globular

    1) polypeptide chains folded into spherical orglobular form2) water soluble3) contain several types of secondary structure4) diverse functions (enzymes, regulatory

    proteins)

  • 8/12/2019 Chapter 4 biochemitry

    9/27

    keratin

    collagen

    catalase

  • 8/12/2019 Chapter 4 biochemitry

    10/27

    Protein Function

    Catalysis enzymes

    Structural keratin

    Transport hemoglobin

    Trans-membrane transport Na+/K+ ATPases Toxins rattle snake venom, ricin

    Contractile function actin, myosin

    Hormones insulin

    Storage Proteins seeds and eggs Defensive proteins antibodies

  • 8/12/2019 Chapter 4 biochemitry

    11/27

    4 Levels of Protein Structure

  • 8/12/2019 Chapter 4 biochemitry

    12/27

    Non-covalent forcesimportant in determining

    protein structure

    van der Waals: 0.4 - 4 kJ/mol hydrogen bonds: 12-30 kJ/mol

    ionic bonds: 20 kJ/mol

    hydrophobic interactions:

  • 8/12/2019 Chapter 4 biochemitry

    13/27

    1oStructure Determines 2o, 3o, 4oStructure

    Sickle Cell Anemia single aminoacid change in hemoglobin related todisease

    Osteoarthritis single amino acidchange in collagen protein causesjoint damage

  • 8/12/2019 Chapter 4 biochemitry

    14/27

    Classes of 2oStructure

    Alpha helix

    B-sheet

    Loops and turns

  • 8/12/2019 Chapter 4 biochemitry

    15/27

    2oStructure Related to Peptide Backbone

    Double bond nature of peptidebond cause planar geometry

    Free rotation at N - aC and aC-carbonyl C bonds

    Angle about the C(alpha)-N bondis denoted phi (f)

    Angle about the C(alpha)-C bond is

    denoted psi (y)

    The entire path of the peptidebackbone is known if all phi and psiangles are specified

  • 8/12/2019 Chapter 4 biochemitry

    16/27

    Not all f/yangles are possible

  • 8/12/2019 Chapter 4 biochemitry

    17/27

    Ramachandran Plots

    Describes acceptable f/yangles for individualAAs in a polypeptide chain.

    Helps determine what types of 2ostructure

    are present

  • 8/12/2019 Chapter 4 biochemitry

    18/27

    Alpha-Helix

    First proposed by Linus Pauling andRobert Corey in 1951

    Identified in keratin by Max Perutz A ubiquitous component of proteins

    Stabilized by H-bonds

  • 8/12/2019 Chapter 4 biochemitry

    19/27

    Alpha-HelixResidues per

    turn: 3.6

    Rise per residue:1.5 Angstroms

    Rise per turn(pitch): 3.6 x 1.5A= 5.4 Angstroms

    amino hydrogen

    H-bonds withcarbonyl oxygenlocated 4 AAsaway forms 13atom loop

    Right handedhelix

  • 8/12/2019 Chapter 4 biochemitry

    20/27

    Alpha-Helix

    All H-bonds in thealpha-helix areoriented in thesame directiongiving the helix adipole with the N-terminus being

    positive and theC-terminus beingnegative

  • 8/12/2019 Chapter 4 biochemitry

    21/27

    Alpha-Helix

    Side chain groupspoint outwards fromthe helix

    AAs with bulky side

    chains less common inalpha-helix

    Glycine and prolinedestabilizes alpha-

    helix

  • 8/12/2019 Chapter 4 biochemitry

    22/27

    Amphipathic Alpha-Helices

    +

    One side of the helix (dark) has mostly hydrophobicAAsTwo amphipathic helices can associate throughhydrophobic interactions

  • 8/12/2019 Chapter 4 biochemitry

    23/27

    Beta-Strands and Beta-Sheets Also first postulated by Pauling and

    Corey, 1951 Strands may be parallel or antiparallel

    Rise per residue: 3.47 Angstroms for antiparallelstrands

    3.25 Angstroms for parallel strands

    Each strand of a beta sheet may bepictured as a helix with two residuesper turn

  • 8/12/2019 Chapter 4 biochemitry

    24/27

    Beta-Sheets

    Beta-sheetsformed frommultiple side-by-side beta-strands.

    Can be in parallelor anti-parallelconfiguration

    Anti-parallel beta-sheets more stable

  • 8/12/2019 Chapter 4 biochemitry

    25/27

    Beta-Sheets Side chains point alternately above and below the

    plane of the beta-sheet 2- to 15 beta-strands/beta-sheet

    Each strand made of ~ 6 amino acids

  • 8/12/2019 Chapter 4 biochemitry

    26/27

    Loops and turns

    Loops

    Loops usually contain hydrophillic

    residues. Found on surfaces of proteins

    Connect alpha-helices and beta-sheets

    Turns Loops with < 5 AAs are called turns

    Beta-turns are common

  • 8/12/2019 Chapter 4 biochemitry

    27/27

    Beta-turns allows the peptide chain to reverse direction

    carbonyl C of one residue is H-bonded to theamide proton of a residue three residues away

    proline and glycine are prevalent in beta turns