41
C C hapter 4 hapter 4 Atomic Absorption Atomic Absorption Spectroscopy 4.1. Theoretical Concepts 4.2. Atomic Absorption Instrumentation 4.3. Graphite Furnace Atomic Absorption 4.4. Control of Analytical Interferences

Chapter 4 atomic absorption spectroscopy

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Chapter 4 atomic absorption spectroscopy

CChapter 4 hapter 4 Atomic Absorption Atomic Absorption Spectroscopy

4.1. Theoretical Concepts 4.2. Atomic Absorption Instrumentation 4.3. Graphite Furnace Atomic

Absorption 4.4. Control of Analytical Interferences

Page 2: Chapter 4 atomic absorption spectroscopy

4.1. Theoretical Concepts

1. The Atomic Absorption Process

2. Theoretical Concepts

3. Quantitative Analysis

4. Characteristic Concentration

5. Detection Limits

Page 3: Chapter 4 atomic absorption spectroscopy

1. The Atomic Absorption Process

Page 4: Chapter 4 atomic absorption spectroscopy

Fig 4-3Grotrian diagrams for NaFig4-2 Grotrian diagrams for K

Page 5: Chapter 4 atomic absorption spectroscopy

2. Theoretical Concepts

Integral Formula of AAS⑴

Fig 4-4 Typical Shape of A Atomic Absorption line

Page 6: Chapter 4 atomic absorption spectroscopy

Integral Absorption FormulaBy atomic theory

0

2

fNdvk mce

v

Dv vkdvk

02ln0 21

02ln2

0

2

fNk mce

vD

By Line Shape Function ( the Nature distribute )

The Peak Absorption Coefficient k0 is:

(4.1)

(4.2)

(4.3)

Page 7: Chapter 4 atomic absorption spectroscopy

⑵ Peak Absorption Theoryby Lambert-Beer’s Law:

lkvv

veII 0

dveIdvIP lkv

v

v

vv

0

0

0

dvIPv

v

0

00

(4.4)

(4.5)

(4.6)

Page 8: Chapter 4 atomic absorption spectroscopy

dvI

dveI

PP

vv

lvkvvA

0

00

0

0lglg

lkdvI

dvIe

dvI

dveIA v

v

vv

lk

vv

lkvv

v

0

00

00

00

00

4343.0lglg0

002ln2 2

4343.0 KNflNA mce

vD

The Absorbance is:

When va>> ve, then kv≈k0,

(4.7)

(4.8)

(4.9)

Page 9: Chapter 4 atomic absorption spectroscopy
Page 10: Chapter 4 atomic absorption spectroscopy

3. Quantitative Analysis

KCA (4.10)

Page 11: Chapter 4 atomic absorption spectroscopy

4. Characteristic Concentration

The ‘‘characteristic concentration’’ ( sometimes called ‘‘sensitivity’’) is a convention for defining the magnitude of the absorbance signal which will be produced by a given concentration of analyte. For flame atomic absorption, this term is expressed as the concentration of an element in milligrams per liter ( mg/L ) required to produce a 1% absorption ( 0.0044 absorbance ) signal.

(4.11)

Page 12: Chapter 4 atomic absorption spectroscopy

5. Detection Limit

Having obtained the data, make the calculation as follows:1. Average the two blank readings taken immediately before

and after each standard and subtract from the standard reading.

2. Calculate the mean and standard deviation for the set of corrected high-standard readings. Do the same for the set of corrected low standard readings.

3. If the ratio of the means does not correspond to the ratio of the concentration prepared to within statistical error, reject the data.

4. If the data pass the ratio-of-the-means test, calculate theconcentration detection limit as follows:

(4.12)

Page 13: Chapter 4 atomic absorption spectroscopy
Page 14: Chapter 4 atomic absorption spectroscopy

4.2. Atomic Absorption Instrumentation

Page 15: Chapter 4 atomic absorption spectroscopy

1. Photometers for AAS

Page 16: Chapter 4 atomic absorption spectroscopy

A New Type Photometer for AAS

Page 17: Chapter 4 atomic absorption spectroscopy

2. line source (Hollow Cathode Lamp )

Fig 4-13

Page 18: Chapter 4 atomic absorption spectroscopy

Hollow Cathode Lamp Emission Process

Fig 4-14

Page 19: Chapter 4 atomic absorption spectroscopy

3. Atomizer for AAS (Pre-Mix Burner System)

Page 20: Chapter 4 atomic absorption spectroscopy
Page 21: Chapter 4 atomic absorption spectroscopy
Page 22: Chapter 4 atomic absorption spectroscopy
Page 23: Chapter 4 atomic absorption spectroscopy
Page 24: Chapter 4 atomic absorption spectroscopy

Fig 4-19 Tree Type Burner Head for different Type Flame

Page 25: Chapter 4 atomic absorption spectroscopy

4. Control of Analytical Interferences

Ionization Interference

Matrix Interference

Chemical Interference

Background Interference

Page 26: Chapter 4 atomic absorption spectroscopy

Ionization Interference

Page 27: Chapter 4 atomic absorption spectroscopy

Matrix Interference

Page 28: Chapter 4 atomic absorption spectroscopy

Chemical Interference

Page 29: Chapter 4 atomic absorption spectroscopy

The Method Of Standard Additions

No.Sample

Added

ml

Standard

Added

ml

Concentr.of standard

mg/L

Last

Concentriation mg/L

1

Vx

0

Cs

Vx

VL

2 VsVx+CsVs

VL

3 2VsVx+2CsVs

VL

4 3VsVx+3CsVs

VL

Page 30: Chapter 4 atomic absorption spectroscopy
Page 31: Chapter 4 atomic absorption spectroscopy

Background Interference

Page 32: Chapter 4 atomic absorption spectroscopy

AD2=Ab,

AHCL= Aa+ Ab

Aa = AHCL- AD2

(4.13)

(4.14)

(4.15)

Page 33: Chapter 4 atomic absorption spectroscopy
Page 34: Chapter 4 atomic absorption spectroscopy

4.3. Graphite Furnace Atomic Absorption

1. Graphite furnace atomizer components

2. The Graphite Furnace Power Supply and

Programmer

3. Quantitative analysis GFAAS 4. Effect of Matrix on Height and Area

Page 35: Chapter 4 atomic absorption spectroscopy

1. Graphite furnace atomizer components

The Graphite Furnace Atomizer

A basic graphite furnace atomizer is comprised of the following components:

graphite tube

electrical contacts

enclosed water cooled housing

inert purge gas controls

Page 36: Chapter 4 atomic absorption spectroscopy

THGA graphite tube

Fig 4-27

Page 37: Chapter 4 atomic absorption spectroscopy

2. The Graphite Furnace

Power Supply and

Programmer

A Graphite Furnace Temperature Program

1) Drying

2) Pyrolysis

3) Cool Down(optional)

4) Atomization

5) Clean Out

6) Cool Down

Page 38: Chapter 4 atomic absorption spectroscopy
Page 39: Chapter 4 atomic absorption spectroscopy
Page 40: Chapter 4 atomic absorption spectroscopy
Page 41: Chapter 4 atomic absorption spectroscopy