60
Chapter 32 Maxwell’s Equations and Electromagnetic Waves

Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

  • Upload
    others

  • View
    9

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

Chapter 32

Maxwell’s Equations and

Electromagnetic Waves

Page 2: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 2

Maxwell’s Equations and EM Waves

• Maxwell’s Displacement Current

• Maxwell’s Equations

• The EM Wave Equation

• Electromagnetic Radiation

Page 3: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 3

µ µ∫ ∫� �� �i i� o o C

C S

B dl = J dA = I

Something is Missing From Ampere’s Law

The surface S in the integral above can be

any surface whose boundary is C.

If the surface S2 is chosen for

use in the above integral the

result will be that the magnetic

field around C is zero. But there

is current flowing through the

wire so we know there is a

magnetic field present.

Page 4: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4

µ µ∫ ∫� �� �i i� o o C

C S

B dl = J dA = I

Something is Missing From Ampere’s Law

The surface S2 has the same boundary as S1 but there is no current

passing through S2. The charge is accumulating on the capacitor .

Maxwell noticed this deficiency in

Ampere’s law and fixed it by

defining the Displacement Current Id.

He began by taking surfaces S1 and

S2, putting them together and treating

them like one closed surface S

Page 5: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 5

µ µ∫ ∫� �� �i i� o o C

C S

B dl = J dA = I

The Displacement Current

Charge is building up on the disk within the closed surface S.

Therefore there are electric field lines, E, that are crossing the

surface S. We can use Gauss’s Law here.

∂ ∂

∂ ∂

∫��i�

enclosed

e

S o

e

d

o o

e

d o

Qφ = E dA =

ε

φ 1 Q 1 = = I

t ε t ε

φI =ε

t

Page 6: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 6

∫ ∫� �� �i i� o o C

C S

B dl = µ J dA = µ I

The Displacement Current

Maxwell fixed the problem with Ampere’s law by adding

another current to the right hand side of the equation below

∂e

d o

φI =ε

t

∂∫ ∫� �� �i i�

e

o o C o d o C o 0

C S

φB dl = µ J dA = µ I + µ I = µ I + µ ε

t

Page 7: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 7

Displacement Current Example

In calculating the displacement

current we will be making the

approximation that the electric

field is everywhere uniform.

This requires that the plate

separation be much smaller than

R, the radius of the plate.

The surface S must not extend

past the edge of the capacitor

plates. So r must be less than R.

Page 8: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 8

Displacement Current Example

In calculating the displacement

current we will need to compute

the electric flux across the

surface S.e

d o

dφI =ε

dt

ˆ∫�ie

S

φ = E ndA = EA

o o o

Qσ QAE = = =ε ε ε A

( )

d o o o

o

d EA dE d Q dQI = ε = ε A = ε A =

dt dt dt ε A dt

Page 9: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 9

B-Field from the Displacement Current

In calculating the B-Field from the

displacement current we will be

making the same approximations

that were made in the last example:

the electric field is everywhere

uniform.

∂∫��i�

e

o C o 0

C

φB dl = µ I + µ ε

t

( )∫��i�

C

B dl = B 2πr

There is no current through S so IC is zero

( )∫��i�

eo o

C

dφB dl = B 2πr = 0 + µ ε

dt

Page 10: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 10

B-Field from the Displacement Current

( )∫��i�

eo o

C

dφB dl = B 2πr = 0 + µ ε

dt

2 2

e

o

σφ = AE = πr E = πr

ε2

2 2

e 2 2

o o o

σ Q Qrφ = πr = πr =

ε ε πR ε R

The size of S will vary so φe will depend on r

( )

=

2 2

o o o2 2

o

o o

2 2

d Qr r dQB 2πr = µ ε = µ

dt dt ε R R

µ µr dQ rB = I

2π dt 2πR R

Page 11: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 11

Maxwell’s Equations

Page 12: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 12

Maxwell’s Equations

( )∂

∂∫��i�

e

o C d o C o 0

C

φB dl = µ I + I = µ I + µ ε

tAmpere’s Law

Faraday’s Law

∫� insiden

0S

QE dA =

εGauss’s Law

∫� n

S

B dA = 0 No name - there are no

magnetic monopoles

[ ] [ ]∂ ∂

∂ ∂∫ ∫��i�

m n

C

φ B= E dl = 0 - = 0 - dA

t tε

Page 13: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 13

Maxwell’s Equations

( )∂

∂∫ ∫��i�

n

o C d o C o 0

C S

EB dl = µ I + I = µ I + µ ε dA

tAmpere’s Law

Faraday’s Law

∫ ∫� �inside

n

S V0 0

Q1E dA = ρdV =

ε εGauss’s Law

∫� n

S

B dA = 0 No name - there are no

magnetic monopoles

∂ ∂

∂ ∂∫ ∫��i�

m n

C

φ B= E dl = - = - dA

t tε

Page 14: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 14

EM Wave Equation

Page 15: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 15

Conservative Forces and Potentials

from Vector Analysis

Work around a closed loop = 0

Stokes Theorem

Therefore a potential function V exists for a conservative force.

( )

( )

( )

⋅ = ∇ ⋅

∇ ⋅ ⇒ ∇

∇ ∇ ∇

∫ ∫

��

�� � � �

� � � ��

� � � �

C

C S

S

W = F dl = 0

F dl × F da

× F da = 0 × F = 0

F = - V since × V = 0

Page 16: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 16

Vector Analysis

ψ��

φ and are scalar functions

F and G are vector functions

∇ ⋅

� � � �

� � � �

φ= grad φ= gradient of φ

F = div F = divergence of F

× F = curl F = curl of F

Page 17: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 17

Vector Analysis

Gradient

Divergence

Curl

ˆˆ ˆφ φ φ∂ ∂ ∂

∇∂ ∂ ∂

�φ= i + j + k

x y z

∂∂ ∂∇ ⋅

∂ ∂ ∂

� �yx z

FF FF = + +

x y z

ˆˆ ˆ

∂ ∂ ∂∇ ×

∂ ∂ ∂

� �

x y z

i j k

F =x y z

F F F

Page 18: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 18

Vector Identities

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

∇ ∇ ∇

∇ ∇ ∇ ∇ ∇

∇ ∇ ∇

� � �

� � � � �� � � � � � � � � �i i i

� � �� � �i i i

fg = f g + g f

A B = B A+ A B + B× × A + A× × B

fA = f A+ f A

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( )

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇

� � �� � � � � �i i i

� � �� � �

� � � � �� � � � � � � � � �i i i i

� � �� � � �i

2

A× B = B × A - A × B

× fA = f × A+ f × A

× A× B = B A - A B + B A - A B

× × A = A - A

Page 19: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 19

Vector Identities

( ) ˆ

ˆ

ˆ

∂ ∂ ∂∇ ∂ ∂ ∂

∂ ∂ ∂ + ∂ ∂ ∂

∂ ∂ ∂+ ∂ ∂ ∂

� � �i

x x xx y z

y y y

x y z

z z zx y z

B B BA B = A + A + A i

x y z

B B BA + A + A j

x y z

B B BA + A + A k

x y z

Page 20: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 20

Maxwell’s Equations:

Integral Form to Differential Form

Stokes Theorem

Divergence Theorem

ˆ∇∫ ∫�� � �i i�

C S

E dl = × E ndA

ˆ ∇∫ ∫� � �i i�

S V

F ndA = FdV

Page 21: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 21

Maxwell’s Equations

∂∫ ∫��i�

n

o C o 0

C S

EB dl = µ I + µ ε dA

tAmpere’s Law

Faraday’s Law

∫ ∫� �n

S V0

1E dA = ρdV

εGauss’s Law

∫� n

S

B dA = 0 No name - there are no

magnetic monopoles

∂∫ ∫��i�

n

C

BE dl = - dA

t

Page 22: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 22

Maxwell’s Equations

ˆ =∫ ∫ ∫�i� � �n

S S V0

1E dA = E ndA ρdV

εGauss’s Law

Use the Divergence Theorem to recast the surface

integral into a volume integral

ˆ ρ∇ =∫ ∫ ∫� � �i i�

oS V V

1E ndA = EdV dV

ε

ρ

ρ

∇ =

∇ =

∫� �i

� �i

oV

o

E - dV 0ε

E - 0ε

Page 23: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 23

Maxwell’s Equations

∂∫ ∫��i�

n

o C o 0

C S

EB dl = µ I + µ ε dA

tAmpere’s Law

Faraday’s Law

∫ ∫� �n

S V0

1E dA = ρdV

εGauss’s Law

∫� n

S

B dA = 0

∂∫ ∫��i�

n

C

BE dl = - dA

t

ρ∇� �i

o

E =ε

∇ =� �iB 0

∂∇ ×

�� � B

E + = 0t

0 0µ ε

∂∇ ×

�� � �

o m

1 EB - = µ J

t

Integral form Differential form

Page 24: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 24

Wave Eqn from Maxwell’s Eqn

The differential form of Maxwell’s equations brings out

the symmetry and non-symmetry of the E and B fields

We will use the following vector identity with the E-field

( )∇ ∇ ∇ ∇ ∇� � �� � � �

i2

× × A = A - A

( )∇ ∇ ∇ ∇ ∇� � � � � � �

i2

× × E = E - E ∂∇ ×

�� � B

E + = 0t

( ) ∂∇ ∇ ∇ ∇

� � � � � �i

2E - E = × B

t

( ) ∂ ∂

∇ ∇ ∇ + ∂ ∂

�� � � � �

i2

f

EE - E = µJ εµ

t t

Page 25: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 25

Wave Eqn from Maxwell’s Eqn

( ) ∂ ∂

∇ ∇ ∇ + ∂ ∂

�� � � � �

i2

f

EE - E = µJ εµ

t t

These are the source

terms

ρ

ε

∂∂ ∇ + ∇

∂ ∂

��� �2

f2

2

JEE -εµ = µ

t t

∂∇

∂∇

��

��

22

o o 2

22

2 2

o o

EE - ε µ = 0

t

1 E 1E - = 0; where c =

c t ε µ

In free space there are no sources

This is the form of a wave equation

is the speed of light

Page 26: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 26

Solutions of the Wave Equation

In free space the solutions of the wave equations show

that E and B are in phase.

These equations describe plane waves that are uniform

through out any plane perpendicular to the x-axis.

( )

x xo

y yo

E E= sin kx -ωt

B B

2π 2πk = ; ω= = 2πf

λ T

Page 27: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 27

Plane Polarized Waves

( )

x xo

y yo

E E= sin kx -ωt

B B

2π 2πk = ; ω= = 2πf

λ T

Examining the E and B components

show that this represents a plane

polarized wave.

The E vector is oriented in the x

direction and the B vector is

oriented in the y direction.

Page 28: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 28

Relationships Between E and B Vectors

oo o o

Ek 1B = E = E =

ω c c

E = cB

The Poynting Vector describes the propagation of the

electromagnetic energy � ��

o

E× BS =

µ

With E in the x-direction and B in the y-direction the

energy flows in the z-direction.

Page 29: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 29

Relationships Between E and B Vectors

The Poynting Vector describes the propagation of the

electromagnetic energy � ��

o

E× BS =

µ

( ) ( )

( )

ˆ ˆ

ˆ

� �

� �

o o

2

o o

E× B = E sin kx -ωt i× B sin kx -ωt j

E × B = E B sin kx -ωt k

The energy is proportional to E and B and is flowing

in the z-direction, perpendicular to E and B.

Page 30: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 30

The Principle of Invariance

The laws of Physics should be the same for all

non-accelerated observers.

Einstein’s fundamental postulate of relativity can be stated:

“It is physically impossible to detect the uniform motion of a

frame of reference from observations made entirely within

that frame.”

Page 31: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 31

The Principle of Invariance

The laws of Physics should be the same for all

non-accelerated observers.

If two observers watch the motion of an object from

two different inertial reference systems (no

acceleration), moving at a relative velocity v, they

should find the same laws of Physics

F1 = m1a1 and F2=m2a2

Page 32: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 32

Galilean and Lorentz Transformations

Page 33: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 33

Galilean and Lorentz Transformations

The inertial reference frames are related by a Galilean transformation.

Newton’s laws are invariant under these transformations but not Maxwell’s

Equations

Prior to Einstein’s Theory of Special Relativity it was determined that a

Lorentz transformation kept Maxwell’s equation invariant. However, no one

knew exactly what they meant.

Page 34: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 34

Galilean and Lorentz Transformations

Page 35: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 35

Electromagnetic Radiation

Page 36: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 36

Page 37: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 37

These are all different forms of

electromagnetic radiation.

Anytime you accelerate or

decelerate a charged particle it

gives off electromagnetic radiation.

Electrons circulating about their

nuclei don't give off radiation

unless they change energy levels.

Thermal motion gives off continuous EM radiation. Example –

Infrared radiation which peaks below the visible spectrum.

Electromagnetic Radiation

Page 38: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 38

Electric Dipole Radiation

Page 39: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 39

Electric Dipole Radiation

Page 40: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 40

Dipole Antenna - Radiation Distribution

Note the different orientation

of the angle measurement∝2

2

sinθI(θ)

r

Page 41: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 41

Dipole Antenna - Radiation Distribution

2

o 2

sin θI(θ) = I

r

In these problems you will need to determine the value of

Io or else take a ratio so that the Io factor will cancel out.

Page 42: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 42

Dipole Antenna - Radiation Distribution

2

o 2

sin θI(r,θ) = I

r

(a.) Find I1 at r1 = 10m and θ = 90o

(b.) Find I2 at r2 = 30m and θ = 90o

(c.) Ratio of I2 / I1

=2

o o1 o 2

I1I = I(r = 10,θ = 90 ) = I

10 100

=2

o o2 o 2

I1I = I(r = 30,θ = 90 ) = I

30 900

(a.)

(b.)

(c.)o

2

o1

II 1900= =

II 9100

Page 43: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 43

Page 44: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 44

Electric - Dipole Antenna

http://www.austincc.edu/mmcgraw/physics_simulations.htm

Page 45: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 45

http://www.falstad.com/mathphysics.html

Oscillating Ring Antenna

Page 46: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 46

http://www.falstad.com/mathphysics.html

Oscillating Ring Pair Antenna

Page 47: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 47

Electric - Dipole Antenna

Plane wave – Far from source antenna - “Far Field”

Page 48: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 48

Magnetic - Loop Antenna

Plane wave – Far from source antenna - “Far Field”

Page 49: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 49

Magnetic - Loop Antenna

( )

( )

( )

( )

∂ ∂

2m

2

rms

o

o

o

o rmsrms

rms

rms

d BAdφ B= - = - = - πr

dt dt t

B= πr

t

B = B sin kx -ωt

B= -ωB cos kx -ωt

t

ωBB= ωB -cos kx -ωt = = ωB

t 2

ε

ε

c

∂=

= =

2 2

rms

rms

22 2 2rms

rms rms

rms

rms

B= πr πr ωB

t

E 2π= πr ωB πr ω r fE

c

ε

ε

Find εrms ?Find εrms ?

Page 50: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 50

Magnetic - Loop Antenna

22

rmsrms

2π= r f E

rms

r = 10.0cm

N = 1

E = 0.150 V/m

f : (a.) 600 kHz; (b.) 60.0 MHz

( ) ( ) =2

2 3

rms

2π= 0.10 600x10 0.150 59.2µV

cε(a.)

(b.) ( ) ( ) =2

2 6

rms

2π= 0.10 60x10 0.150 5.92mV

Page 51: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 51

Energy and Momentum in an

Electromagnetic Wave

Page 52: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 52

Energy and Momentum in an

Electromagnetic Wave

Page 53: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 53

The Poynting Vector describes the propagation of the

electromagnetic energy � ��

o

E× BS =

µ

avg avg

avg avg

avg

avg

U u LAP = = = u Ac

∆t L c

P I = = u c

A

Uavg is the total energy and uavg is the energy density.

I is the intensity, the average power per unit area.

E-M Energy and Momentum

Page 54: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 54

E-M Energy and Momentum

22

e o m

o

1 Bu = ε E and u =

2 2µ

These are the electric and magnetic energy densities

Since E = cB

( )2

2 22

m o e2

o o o

E cB E 1u = = = = ε E = u

2µ 2µ 22µ c

Therefore the energy density can be expressed in different ways.

=2

2

e m o

o o

B EBu = u + u = ε E =

µ µ c

Page 55: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 55

E-M Energy and Momentum

The energy density

=2

2

e m o

o o

B EBu = u + u = ε E =

µ µ c

�rms rms o o

avg avg

o o

E B E B1I = u c = = = S

µ 2 µ

The intensity I is the energy/(m2 sec) = power/m2;

� ��

o

E× BS =

µ

This is the Poynting vector, its magnitude is the intensity.

Page 56: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 56

Radiation Pressure pr

=

ir avg

2 2

o o rms rms o or 2

o o o o

Momentum Ip = = u

Unit Area Unit Time c

E B E B E BIp = = = = =

c 2µ c µ c 2µ c 2µ

Page 57: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 57

Radiation Pressure pr - Example

A lightbulb emits spherically symmetric electromagnetic waves in al

directions. Assume 50W of electromagnetic radiation is emitted. Find (a)

the intensity, (b) the radiation pressure, (c) the electric and magnetic field

magnitudes at 3.0m from the bulb.

The energy spreads out uniformly over a sphere of radius r.

The surface area of the sphere is 4πr2.

2 2

Power 50 WI = Intensity = = = 0.442

Area 4πr m(a.)

(b.)-9

r 8

I 0.442p = = = 1.47x10 Pa

c 3.0x10

Page 58: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 58

Radiation Pressure pr - Example

A lightbulb emits spherically symmetric electromagnetic waves in al

directions. Assume 50W of electromagnetic radiation is emitted. Find (a)

the intensity, (b) the radiation pressure, (c) the electric and magnetic field

magnitudes at 3.0m from the bulb.

(c.) Remember

2 2

o or o o2

o o

E BIp = = = and E = cB

c 2µ c 2µ

( )( )( )

( )

-9 -7

o o r

-8

o

8 -8

0 o

0

B = 2µ p = 1.47x10 2 4πx10

B = 6.08x10 T

E = cB = 3.0x10 6.08x10

VE = 18.2

m

Page 59: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 59

Extra Slides

Page 60: Chapter 32 Maxwell’s Equations and Electromagnetic Wavess Eqn.pdf · MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 4 ∫ ∫µ µ i i o o C C S B dl = J dA= I Something

MFMcGraw-PHY 2426 Chap32-Maxwell's Eqn-Revised: 6/24/2012 60