246
Diodes 1

Chapter 3 Diode

Embed Size (px)

Citation preview

Page 1: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 1/246

Diodes

1

Page 2: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 2/246

Diode• Class of non-linear circuits

– having non-linear v-i Characteristics

• Uses

– Generation of :

• DC voltage from the ac power supply

• Different wave (square wave, pulse) form

generation – Protection Circuits

– Digital logic & memory circuits

Page 3: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 3/246

Creating a Diode

• A diode allows current to flow in one

direction but not the other.

• When you put N-type and P-type silicon

together gives a diode its unique

properties.

Page 4: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 4/246

Page 5: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 5/246

Diode

Equivalent circuit in the reverse direction

Equivalent circuit in the forward direction.

Page 6: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 6/246

Reverse Bias

• -ve voltage is applied to Anode• Current through diode = 0 (cut off

operation)

• Diode act as open circuit

Forward Bias+ve voltage applied to Anode

• Current flows through diode

• voltage Drop is zero (Turned on)

Operation

Page 7: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 7/246

The two modes of operation of ideal diodes

Forward biased

Forward Current 10

mA

Reverse biasedReverse Voltage 10 V

Page 8: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 8/246

x .

v D= 1.5v

i D=1. 5

1

= 1.5A

v D= 0

1.5v

v D

+

i P v

D

+

i D= 0

1.5v

Page 9: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 9/246

Rectifier circuit

Input waveformEquivalent circuit when v i 0

Equivalent circuit when v i ≤ 0

Waveform across diode

Output waveform.

Page 10: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 10/246

Exercise 3-3

i D=

10− 0

1k Ω = 10mA

v D=

1

t 2− t

1

∫t 1

t 2

vidt

v D=1

2π [∫0π

10 sinθ + ∫π

0dt ]v D= −

1

2π ∣10cosθ ∣0π

=−

10

2π (− 1− 1)=10

π = 3.18V

Page 11: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 11/246

Page 12: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 12/246

Page 13: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 13/246

Battery Charger

sin θ =1

2⇒θ = 30

0

Conduction Angle=

π −

2θ=

120

0

one− third of cycle

24sinθ = 12 V

Page 14: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 14/246

Figure 3.6 Circuits for Example 3.2. Diodes are ideal , Find the value of I and V

Page 15: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 15/246

Example 3.2.

Assumption Both Diodes are conducting

Page 16: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 16/246

V = 0, V B= 0

I D2=10− 0

10k = 1mA

I 5k Ω= I D1+ I D2=0− (− 10 )

5k = 2 mA

From

above

equation

I D1

should

be1

mA It is not possible

Node A

Node B

Assumption Both Diodes are conducting

Not Possible

Thus assumption of both diode

conducting is wrong

Page 17: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 17/246

Example 3.2(b). Assumption # 2Diodes 1 is not conducting Diodes 2 is conducting

I D2=10− (− 10)

15=

20

15= 1.33mA

V B= V A= 3.3 V , I D1= 0, I D2= 1.33mA

Assumption is correct

V A= 10− (1.33)(5k )= 3.3v

V B= (1.33)(10k )− 10= 3.3v

Page 18: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 18/246

Figure E3.4

Diodes are ideal , Find the value of I and V

Fi E3 4

Page 19: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 19/246

Figure E3.4

Diodes are ideal , Find the value of I and V

I= 2mA

V= 0V

I= 0A

V= 5VI= 0A

V= -5V

I= 2mA

V= 0V

Page 20: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 20/246

Figure E3.4 Diodes are ideal , Find the value of I and V

I= 3mAV= 3V

I= 4mAV= 1V

Page 21: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 21/246

Figure P3.2 Diodes are ideal , Find the value of I and V

Page 22: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 22/246

Figure P3.2 Diodes are ideal , Find the value of I and V

Diode is conducting

I = 0.6 mA

V = -3V

Diode is cut-off

I = 0 mA

V = 3VDiode is conducting

I = 0.6 mA

V = 3V Diode is cut-off

I = 0 mA

V = -3V

P bl 3 3

Page 23: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 23/246

D1 Cut-Off & D2 Conducting

I = 3mA

Problem 3-3

D1 Cut-Off & D2 Conducting

I = 1mA , V=1 V

Diodes are ideal , Find the value of I and V

Page 24: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 24/246

Figure P3.4

In ideal diodes circuits, v1 is a 1-kHz, 10V peak sine wave.

Sketch the waveform of vo

i

Page 25: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 25/246

In ideal diodes circuits, v1 is a 1-kHz, 10V peak sine wave.

Sketch the waveform of vo

Vp+ = 10V

Vp- = 0V

f = 1 K-Hz

Vp+ = 0V

Vp- = - 10V

f = 1 K-Hz

Vo = 0V

Page 26: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 26/246

Figure P3.4 In ideal diodes circuits, v1 s a 1-kHz, 10V peak sine wave.

Sketch the waveform of vo

Vp+ = 10V

Vp- = 0V

f = 1 K-Hz

Vp+ = 10V

Vp- = -10V

f = 1 K-Hz

Vp+ = 10V

Vp- = 0V

f = 1 K-Hz

Page 27: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 27/246

Figure P3.4 In ideal diodes circuits, v1 s a 1-kHz, 10V peak sine wave.

Sketch the waveform of vo

Figure P3 4

Page 28: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 28/246

Figure P3.4

In ideal diodes circuits, v1 s a 1-kHz, 10V peak sine wave.

Sketch the waveform of vo

Vp+ = 0V

Vp- = -10V

f = 1 K-Hz

V0 = 0V Vp+ = 10V

Vp- = -5V

f = 1 K-Hz

Page 29: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 29/246

Figure P3.4 In ideal diodes circuits, v1 s a 1-kHz, 10V peak sine wave.

Sketch the waveform of vo

Vp+ = 10V

Vp- = -5V

f = 1 K-Hz

P bl 3 4(k)

Page 30: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 30/246

Problem 3-4(k)

vi

⇒10 V peak @ frequency 1000 H z

v i= 10sin2000 πt

For Vi > 0 V D1 is cutoff D2 is conducting v o =1V For Vi < 0 V is conducting D2 is cutoff v o =v i +1V

- 9 V

P bl 3 4(k)

Page 31: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 31/246

Problem 3-4(k)

Page 32: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 32/246

Figure P3.6

X = A . BX = A + B

Page 33: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 33/246

Problem 3-4 (c)

vi⇒10Vpeak @frequency 1000 H z

vi= 10sin2000 πt

v o =zero

Problem 3 4(f)

Page 34: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 34/246

Problem 3-4(f)

+ve Half Cycle with 10 V peak

at 1 KHz

kHz 10-V peak sine wave.

Page 35: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 35/246

Problem 3-4(h)

vi⇒10Vpeak @frequency 1000 H z

vi= 10sin2000 πt v o =zero

Page 36: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 36/246

vi⇒10Vpeak @frequency 1000 H z

vi= 10sin2000 πt

Problem 3.5

vi is 10 V peak sine wave and I = 100 mA current source. B is battery of

4.5 V . Sketch and label the iB

4.5 v

100 mA

Page 37: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 37/246

Solution P3-5

vi> 4.5V ,D1 cutoff all current flows thru battery

Conduction angle

10sinθ = 4.5V⇒θ = sin− 1(0.45)= 26.70 ,153.30

Conduction angle= π − 2θ= 126.60

Fraction of cycle that i B of 100mA flows=126.6

360= 0.35

v i⇒10 Vpeak @ frequency 1000 H zv i= 10sin2000 πt B = 4 .5 V

vi< 4.5V , D

1 conducts D

2 cutoff

All current flows thru D1 , i

B= 0A4.5 v

100 mA

Page 38: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 38/246

Problem 3-5

100 mA

4.5 v

Page 39: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 39/246

Problem 3-5

4.5

10

100 mA

i Baverage=1

T ∫ i B dt =

1

T [100× 0.35 T ]= 35 mA

REVERSE PO ARITY

Page 40: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 40/246

REVERSE POLARITY

PROTECTOR

REVERSE POLARITY

Page 41: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 41/246

• The diode in this circuit protects a

radio or a recorder etc... In the event

that the battery or power source is

connected the wrong way round, thediode does not allow current to flow.

REVERSE POLARITY

PROTECTOR

Problem 3-9

Page 42: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 42/246

D1& D2 ConductingI 1=1mA

I 3=0.5 mA

I 2 =0.5 mA

V= 0 V

D1=off, D2=OnI 1= I 3=0.66 mA

V = -1.7 V

Problem 3-9

I1

I3

2

I1

I3

2

P bl 3 10

Page 43: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 43/246

Problem 3-10

D conductingI=0.225 mA

V=4.5V

D is not conducting

I=0A

V=-2V

P bl 3 16

Page 44: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 44/246

Problem 3-16

V RED GREEN

3V On Off D1 conducts0 V Off Off

-3 V Off On D2 conducts

Quiz No 3 DE 28 EE A

Page 45: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 45/246

Quiz No 3 DE 28 EE -A

Sketch vO if vi is 8 sin

Find out the conduction angle for the diode &

fraction of the cycle the diode is conducting

Solution Quiz No 3

Page 46: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 46/246

Solution Quiz No 3

8V

I1

I2

8= 4I1− 2I2

− 2= − 2I1

+ 3I2

2I2= 2⇒ I 2= 1mA

Vo= 1× 1+ 2= 3V

vi/2

I

I =

8

2

− 2

2 = 1 mA

Vo= 1× 1+ 2= 3V

10-10-07

Conduction angle⇒2θ= 60o

4sinθ = 2⇒θ = 30

Fraction of Cycle the diode conducts= π − 2θ2π

= 13= 33

Page 47: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 47/246

22-10-07

Sketch vO if vi is 10 sin

Find out the conduction angle for the diode &

fraction of the cycle the diode is conducts

D1

never conducts

Vi<5V D2 is cut-off, Vo=5V

Vi>5V D2 is conducts

V omax= 5+

10− 5

2= 7.5V

+12 V

5

D1

D2

Conduction angle⇒2θ= 60o

10sin θ = 5⇒θ = 30

Fraction of Cycle the diode conducts=π − 2θ

2π=

1

3= 33

Page 48: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 48/246

Quiz No 3 DE 27 CE -B

D1

never conducts

Vi<5V D2 is cut-off, Vo=Vi

Vi>5V D2 is conducts

Sketch vO if vi is 10 sin

Find out the conduction angle for the diode &

fraction of the cycle the diode is conducts

V omax= 5+

10− 5

2

= 7.5V

Conduction angle⇒2θ= 60o

10sin θ = 5⇒θ = 30

Fraction of Cycle the diode conducts=π − 2θ

2π=

1

3= 33

Page 49: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 49/246

Problem

• Assume the diodes are ideal,

sketch vo if the input is 10sin

(9)

• Find out the conduction angles for

Diode D1 & D2 (4) and the fractionof the cycle these diodes conduct. (2)

2< < 1

Page 50: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 50/246

− 2< vi< 1⇒vo= vi

vi> 1V⇒

v0=

vi− 1

4 × 1+ 1v

ipeak = 10V ⇒v

opeak = 4.25V

vi<− 2V⇒vo=− 2V

Page 51: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 51/246

− 2< vi< 1⇒vo= vi

vi

> 1V⇒v0

=v

i− 1

4× 1+ 1

vi= 2V⇒v

o= 1.25V

vi<− 2V⇒vo=− 2V v0=

vi− 1

4× 1+ 1V

-2V

Two-dimensional representation of the silicon crystal

Page 52: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 52/246

p y

14 Electrons

Silicon and Germanium

Page 53: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 53/246

Silicon Lattice

Page 54: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 54/246

Silicon Lattice

Page 55: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 55/246

At room temperature, some of the covalent bonds are broken by

thermal ionization.

Each broken bond gives rise to a free electron and a hole, both

of which become available for current conduction.

Intrinsic Semiconductor

Page 56: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 56/246

Electrons and holes

Semiconductor Current

Page 57: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 57/246

Semiconductor Current

The Doping of Semiconductors

Page 58: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 58/246

.

The Doping of Semiconductors

Page 59: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 59/246

Valence Electrons

N Type

Page 60: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 60/246

N Type

P Type

Page 61: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 61/246

P Type

Page 62: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 62/246

Page 63: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 63/246

p-n Junction

• P Junction

– Concentration of holes is high

– Majority charge carrier are hole

• N Junction

– Concentration of electron is high

– Majority charge carrier are electron

Page 64: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 64/246

Diffusion Current ID

• Hole diffuse across the junction from

the p side to the n side & similarly

electron

• Two current components add together

to form the diffusion current with

direction from p to n side

Drift Current I

Page 65: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 65/246

Drift Current Is

• Diffusion current due to majority carrier

diffusion

• A component due to minority carrier

drift exists across the junction

Page 66: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 66/246

(a)The pn junction with no applied voltage (open-circuited

terminals).

(b) The potential distribution along an axis perpendicular to the

F d Bi d C d ti

Page 67: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 67/246

Forward Biased Conduction

Page 68: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 68/246

• The polarity of applied voltage which can't produce any current is called

Reverse Bias.• The polarity of applied voltage which causes charge to flow through the

diode is called Forward Bias.

Page 69: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 69/246

Page 70: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 70/246

Terminal Characteristics

of

a Junction Diode

The diode i –

v relationship

Page 71: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 71/246

The diode i – v relationship with some scales

expanded and others compressed in order to reveal

details.

Terminal Characteristics of a

Page 72: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 72/246

Terminal Characteristics of a

Junction Diode

• Forward Biased Region v > 0

• Reversed Biased Region v < 0

• Breakdown Region v < -V ZK

Forward Biased Region

Page 73: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 73/246

Forward Biased Region

• Is Saturation current – Scale Current

– Is is constant at a given temperature

– Is is directly proportional to Cross-Sectional region of the diode, Is doubles if cross-sectional area is double

– Is is 10-15 A for small size diode

– Doubles in value for every 10OC rise in temperature

i= I s(e

v

nV T − 1)

Forward Biased Region

Page 74: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 74/246

• Thermal Voltage VT

– VT = kT/q• K = Boltzmann‟s constant = 1.38 X 10-23 Joules/Kelvin

• T = Absolute Temperature in Kelvin (273 +Temp in Co)

• q = Magnitude of charge = 1.6 X 10-19 Coulombs

– VT @ 20oC is 25.2mV, ~ 25 mV

• n is 1 or 2 depending on the material andthe physical structure of the diode

– n = 1 for Germanium Diode & n=2 for Silicon

Forward Biased Region

i= I s(ev

nV T −

1)

Forward Biased Region

Page 75: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 75/246

b Relationship of the current i to the voltage v

holds good over many decades of current

(seven decades, a factor of 107

i= I s

evnV

T

ln i= ln( I s e

v

nV T

)⇒v

nV T ln I s

v= nV T

lni

I s

Forward Biased Region

i= I s

(ev

nV T − 1)

i >> Is

Forward Biased Region

Page 76: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 76/246

I 1= I s e

v1

nV T

I 2= I s e

v2

nV T

I 2

I 1

= e

(v2− v

1)nV

T

(v2− v

1)= nV T

ln I

2

I 1

⇒2. 3 nV T

log I

2

I 1

Forward Biased Region

Forward Biased Region

Page 77: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 77/246

• for v drop changes by

for n = 1

for n = 2

0.8v≈ 0.7v

I 2 I

1

= 10

2.3nV T ≈ 60mV

120 mV

¿v< 0.5v⇒cut − in− voltage

v= 0.6v

Forward Biased Region(v2− v1)= 2 .3nV T log

I 2 I 1

Illustrating the temperature dependence of the diode forward characteristi

Page 78: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 78/246

At a constant current, the voltage drop decreases by

approximately 2 mV for every 1C increase in

temperature.

Figure E3.9

Page 79: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 79/246

If V=1V at 20o C, Find V at

400C and 00C

At 20o C Reverse current Is = 1V/1M Ω= 1μ A

Since the reverse leakage current doubles for every 100 C increase,

At 400 C I = 4*1 = 4 μ A V = 4 μ A * 1MΩ = 4.0 V

At 0 C I = ¼ μ A V = 0.25 V

Is

Forward biased Diode

Page 80: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 80/246

Characteristics

Example 3.3• A silicon diode displays a forward

voltage of 0.7 V at a current of 1mA.

Find Is at n=1 & 2

i= I s e

v

nV T ⇒ I s= ie

−vnV

T

η= 1 I s= 10− 3

e

− 0 . 7

25× 10− 3

= 6 . 9× 10− 16

A

η= 2 I s= 10− 3 e

− 0. 7

2× 25× 10− 3

= 8 .3× 10− 10

A

Ex 3.7

Page 81: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 81/246

Ex 3.7

Silicon Diode with n=1 has VD=0.7V @

i=1mA. Find voltage drop at i=0.1mA &10mA

i= I s e

vnV

T ⇒ I s= ie

− vnV

T

η= 1 I s= 10− 3 e

− 0 . 7

25× 10− 3

= 6 . 9× 10− 15

A

For i= 0 .1 mA⇒V 1= ηV T ln i I s

= 25× 10− 3 ln 10

− 4

6 .9× 10− 16 ==0.64 V

For i= 10 mA⇒V 1= ηV T lni

I s= 25× 10− 3 ln

10− 2

6 . 9× 10− 16= 0.76 V

Solution P3-18

Page 82: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 82/246

(a )

η= 2, Diode current = i= 1000IS

i= I S e

v

nV T ⇒1000 I S = I s e

v

2× 25× 10− 3

v= 0.345 V

(a) At what forward voltage does a diode for which n=2 conduct acurrent equal to 1000Is?

(b) In term if Is what current flows in the same diode when its

forward voltage is 0.7 V

(b)v= 0.7V

i= I S

e

vnV

T = I se0 .7

0 .05 = 1 . 2× 106 I S

P bl 3 23

Page 83: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 83/246

Problem 3-23

• The circuit shown utilizes threeidentical diodes having n=1 andIs= 10 -14 A. Find the value of the

current I required to obtain an

output voltage Vo=2 V. Assume n=1

• If a current of 1mA is drawn away

from the output terminal by a

load, what if the change in theoutput voltage. Assume n=1

Solution 3-23

Page 84: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 84/246

(b) Load current = 1mA, therefore I

DY = 2.81mA

I DY

I DX

= e

(v DY

− v DX

)

0.025 = e

(v DY

− 2 /3 )

0.025

ΔvoY = vO2− v01= 22.8mV

Info available n= 1 , I S = 10− 14 A,V o= 2V

The voltage across each diode isvo

3= v

DX =

2

3

I DX

= I S e

v DX

ηV T = 10− 14

e

2

3

0.025 = 3.81mA

The circuit shown utilizes three identical diodes

having n=1 and Is= 10 -14 A. Find the value of

the current I required to obtain an output voltage

Vo=2 V.

If a current of 1mA is drawn away from the output terminal

by a load, what if the change in the output voltage.

P bl 3 25

Page 85: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 85/246

Problem 3-25

• In the circuit shown,both diode haven=1, but D1 has 10times the junction

area of D2. Whatvalue of V results?

Solution 3-25(a)In the circuit shown, both diode

have n=1, but D1 has 10 times the junction area of D2. What value of

Page 86: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 86/246

V 0= V D2− V D1= ηV T ln10 I D2

I D1

. . . . . . . . . . . . . . . . .2

I D1= 10 I S2 e

V D1

ηV T

I D2

I D1=

I S2 e

V D2

ηV T

10 I S2 e

V D1

ηV T

= 0. 1 e

V D2

− V D2

ηV

T . . . . . . . . . . . . . .1

I D1

= I S1

e

V D1

ηV T I D2= I S2 e

V D2

ηV T

I S1= 10 I S2

V 0= V D2− V D1= 0.025× ln80

2

= 92.2 mV

I 1= I D2+ I D1⇒ I D2= I 1− I D1..........3

⇒ I D1= 2mA , I D2= 10− 2= 8mA

V results?

solution 2-25 (b) To obtain a value of 50 mV, what current I2 id needed.

Page 87: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 87/246

V o= 50mA , Find ID1 , I D2

I D2= 0.01− I D1

I D2

I D1

= 0 . 1e

V D2

− V D2

ηV T =

I D2

0.01− I D2

= 0 .1e2

I D2

= 4.25mA

I D1=(10− 4.25)= 5.75mA

P bl 3 26

Page 88: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 88/246

Problem 3-26

• For the circuit shown,both diodes are

identical, conducting

10mA at 0.7 V and 100

mA at 0.8 V.

• Find „n‟

• Find the value of R for which V = 80 m V.

Solution 3-26 (a)

Page 89: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 89/246

Diodes are identical therefore IS ,η ,V

T are same

For Diode 1 ⇒V D1

= 0.7V@I D1

= 10mA

For Diode 2 ⇒V D2= 0.8V@I

D2= 100mA

V D2− V

D1= ηV

T ln

I D2

I D1

0 .8− 0 . 7= η× 0.025× ln100

10

η= 1.739

Find η

V = V D2− V D1= ηV T ln

I D2

I D1

= 0.08= 1.737× 0.025× ln0.01− I D1

I D1

I D1= 1. 4 mA

R=80

1. 4

= 57.1Ω

d R if Vo=80mV

P bl 3 36

Page 90: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 90/246

Problem 3.36

Assuming identical diodes for whichVD =0.7V @ ID=1mA. Find R if V0 = 3 V

V Dx=3

4= 0.75V

I DX = I S e

V DX

ηV T

I D2

I D1

=e

V D2

ηV T

e

V D1

ηV T

= e

(V D2

− V D2

)

ηV T

I D2= I D1¿e

(V D2

− V D2

)

ηV T = 1× e

(0.75− 0 .7 )

25× 10− 3

= 7.389mA

.75= 0 .7+ ηV T lnI D2

10− 3⇒ I D2= 7.389 mA

R=10− 3

7.389× 10− 3

= 947Ω

Page 91: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 91/246

Modeling the Diode

Forward

Characteristics

A simple circuit used to illustrate the analysis of circuits in which

the diode is forward conducting.

Page 92: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 92/246

g

I D=V DD− V D

R

I D= I

S e

V D

ηV T

Graphical analysis of the circuit using the exponential diode m

Page 93: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 93/246

Iterative Analysis using theE ti l M d l

Page 94: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 94/246

Exponential Model

Determined the diode current ID andDiode voltage VD with VDD =5V and R

=1000 ohms. Diode has a current of

1mA @ a VD of .7 V, and that its voltagedrop changes by 0.1 V for every decade

change in current.

Solution

Page 95: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 95/246

F irst iteration V D= 0.7V

I D= I S e

V D

ηV T

= 4 .3 mA

V 2− V 1= 2.3ηVT log I 2 I 1

ΔV = 2.3VT = 0.1V For Every decade change in current

V 2= V 1+ 0.1log

4 . 3

1. 0 = 0.763 V

S econd iteration V D= 0.763V

I D= I S e

V D

ηV T

= 4.237 mA

V 2− V 1= 2.3ηVT ln I 2 I 1

V 2= 0.763+ 0.1log4.237

4 .3= 0.762 V

Solution

I D

= 4.237mA ,

V D= 0.762V

Page 96: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 96/246

The Piecewise-Linear Model

Approximating the diode forward characteristicwith two straight lines: the piecewise-linear model.

Page 97: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 97/246

The Piecewise Linear Model

Page 98: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 98/246

The Piecewise-Linear Model

• Exponential curve is approx into twostraight lines

• Line No 1 with zero slope & Line 2 witha slope of 1/r d

• The voltage change of less than 50 mV is observed in case the current changefrom 0.1 mA to 10 mA.i D= 0 v D

= 0V

i D

=( v D− V D0 )

r D v

D

≥ V D0

Piecewise-linear model of the diode forward characteristic and its

equivalent circuit representation

Page 99: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 99/246

equivalent circuit representation.

Piecewise-l inear model

Page 100: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 100/246

Page 101: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 101/246

The

Constant – VoltageDrop Model

Constant – Voltage DropModel

Page 102: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 102/246

Model

• Forward conducting diode exhibitsa constant voltage drop VD

• The voltage change of less than 50mV is observed in case the currentchange from 0.1 mA to 10 mA.

• Model is used when

– Detailed information about diode

characteristics in not available

Constant-voltage-drop model

Page 103: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 103/246

The constant-voltage-drop model of the diode forward

characteristics and its equivalent circuit representation

Page 104: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 104/246

characteristics and its equivalent-circuit representation.

The Small – Signal Model

Page 105: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 105/246

The Small – Signal Model

• A small ac signal is superimposed onthe DC components.

• First determined dc Operating Point

• Then small signal operation around the

operating point

– Small portion of the curve is approximated

as almost linear segment of the diode

characteristics.

The Small – Signal Model

Page 106: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 106/246

The Small – Signal Model

Page 107: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 107/246

Figure 3.17 Development of the diode small-signal model. Note that the numerical values shown are for a diode with n = 2.

The Small – Signal Model

Page 108: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 108/246

In absence of signal

I D= I s e V DηV T

Once signal is applied

v D( t )= V D+ vd (t )

i D( t )= I

sev D

ηV T

i D( t )= I

se[V D+ v

d (t )]

ηV T

i D( t )= I

se

V D

ηV T × e

vd (t )

ηV T

i D(t )= I

De

vd (t )

ηV T

For very small signal vd

ηV T

<<1

i D(t )= I

D(1+

vd

ηV T

)

i D (t )= I D+ id (t )

The Small – Signal Model

The Small – Signal Model

Page 109: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 109/246

i D( t )= I D(1+

vd

ηV T )

i D( t )= I D+ id ( t )

id ( t )= I D vd

ηV T

r d =

ηV T

I D

The Small – Signal Model

r d is inversely proportional to I D

Modeling the Diode Forward Characteristic

Page 110: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 110/246

Page 111: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 111/246

Table 3.1 (Continued)

Page 112: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 112/246

Page 113: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 113/246

Exp 3-6

Page 114: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 114/246

+

-

VDID

+

-

vd

Exp 3 6V

DD= 10V,v

d = 1V peak amplitude @ 60 Hz

Diode has a current of 1mA @ a V D

of .7 V, n= 2

Find r d ,V D, vd ( t )

Solution

Page 115: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 115/246

I D=V

DD

− V D

R = 10−

0.710 = 0.93mA

r d =

ηV T

I D

=2× 250.93

= 53.8Ω

Small signal

v dpeak = v speak

r d

R+ r d

= 5.35mV

Input variation of 10% resulted in output voltage

variation of 0.7+5.4mV(0.8%) Voltage regulation

Exercise 3-16

Page 116: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 116/246

Exercise 3 16

• Design a circuit shown so that Vo=3vwhen IL =0 A and Vo changes by 40 mV

per 1mA of diode current.

• (a) Find the value of R• (b) The junction area of each diode

relative to a diode with ).7 V drop at

1mA current. Assume n=1

Excercise 3-16

Page 117: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 117/246

r DT

= Δv

o

Δio

=0.04

10− 3

= 40Ω

r DX

= 40/4= 10Ω

I DX

=nV T

r DX

= 2 .5mA

R=15− 3

2.5m= 4.8K Ω

At dc Operating Point VDX= 3 /4= .75V

I D1= 1mA ,V D1 0.7V

I DX

I D1

= I

SX

I S1

e

V DX

− V 1

nV T

⇒ I SX

I S1

= 0.34

The diodes have the junction area 0 .34 times the diode

Why 4 diodes and not 5? Diodes will

not conduct at 0.6 V

Diode Forward Drop inVoltage Regulation

Page 118: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 118/246

Voltage Regulation

• Small signal model is used.

• Voltage remains constant in spite of :

– Changes in load current

– Changes in the dc power supply voltages

• One diode provides constant voltage of

0.7 V and for greater voltages diodes

can be connected in series.

Example 3-7

Page 119: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 119/246

• A string of three diodes is used toprovide a constant voltage of about 2.1

V. We want to calculate the percentage

change in this regulated voltagecaused by

• (a) a + 10 % change to the power supply

voltage• (b) Connection of a 1 K ohms load

resistance , Assume n=2

Solution Exp 3-7

Page 120: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 120/246

Solution Exp 3 7

P 3-53• In a particular cct application, ten “20

Page 121: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 121/246

In a particular cct application, ten 20

mA diodes” ( a 20 mA diode is a

diode that provides a 0.7 V drop

when the current thru it is 20 mA)

connected in parallel operate at a

total current of 0.1 A. For the diodes

closely matched, with n=1, what

current flows in each.

What is the corresponding small signal

resistance of each diode and of the

combination?

i Dx=0.1

10==0.01 A

r dx= nV T

I Dx

= 2 . 5Ω

req=2. 5

10= 0.25Ω

Page 122: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 122/246

• If each of the 20 mA diode has aseries resistance of 0.2 ohm

associated with the wire bonds to

the junction. What is the equivalent

resistance of the 10 parallel

connected diodes?

What connection resistance would

single diode need in order to be totally

equivalent?

Re q=1

10(2. 5+ 0. 2)= 0.27Ω

The diode i –

v relationship

Page 123: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 123/246

Page 124: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 124/246

Reversed Biased Diode

Leakage current:

Page 125: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 125/246

ea age cu e

• In the reverse direction there is asmall leakage cur rent up until the

reverse breakdown vo l tage is reached.

• This leakage is undesirable, obviously

the lower the better.

• Diodes are intended to operate below

their breakdown voltage.

The Reversed Biased Region

Page 126: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 126/246

g

i= I s(e

v

nV T − 1

v is negative ∧ >>V T (25mV )

i= − I S

Current in reserved biased diode circuit is due to

leakage current & increases with increase in reverse

voltage

Leakage current is proportional to the junction area

& temperature but doubles for every 10oC rise in

Breakdown Region

Page 127: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 127/246

• Once reverse voltage exceeds a threshold value of

diode VZK

, this voltage is called breakdown voltage.

VZK Z – Zener, K – Knee

• At breakdown knee reverse current increases rapidly

with associated small increase in voltage drop

• Diode breakdown is not destructive if power

dissipated by diode is limited by external circuitry.

• Vertical line for current gives property of voltage

regulation

The diode i –

v characteristic with the breakdown region

shown in some detail.

Page 128: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 128/246

Page 129: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 129/246

Zener Diode

Zener Diode

O ti i th R B kd

Page 130: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 130/246

• Operation in the Reverse Breakdown

Region

• Very steep i-v cu rve at breakdown w ith

almos t constant vol tage drop region

• Used the design ing vo l tage regu lator

• Diode manu factu red to operate

speci f ical ly in the Breakdown region

called Zener or B reakdown

Zener Diode : Symbol

Page 131: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 131/246

I Z

- V Z +

Zener Diode : Symbol

Model: Zener • Manufacturer specify Zener Voltage V at a

Page 132: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 132/246

Manufacturer specify Zener Voltage Vz at aspecified Zener test current Iz, the Max.

power that the device can safely dissipate 0.5W @ 6.8 v at max 70mA

• r z Dynamic resistance of the Zener and is the

inverse of the slope of the almost linear i-vcurve at operating point Q

• Lower r z, the more constant Zener Voltage

• The most common range of zener voltage is 3.3 volts to 75 volts,

ΔV z = ΔI z r z

Model for the zener diode.

Page 133: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 133/246

Model: Zener

Page 134: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 134/246

V z = V zo+ r z I z

I z> I

zk

V z> V zo

es gn ng o e ener s unregulator

Page 135: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 135/246

+

-

Vo

Zener regulator

Supply voltage includesa large ripple component

Vo is an output of the zener regulator

that is as constant as possible in spite of

the ripples in the supply voltage VS

and the variations in the load current

Voltage regulator performance can be measured

Line Regulation & Load Regulation

Line Regulation = ΔV o /ΔV s

Load Regulation = ΔVo /ΔIL

Expression of performance : Zener regulator

Page 136: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 136/246

I

IL

+

-

Vo

• Only the first term on right hand side is desirable one

Second and third terms depend upon Supply

Voltage Vs and Load current IL

• Line Regulation =

• Load Regulation =

(V s

-V o)

R = (V

o-V

zo)

r z + I L

V o= V zo(R

R+ r z )+ V S (

r z

R+ r z ) - I L(r z ∣∣ R )

ΔV o

ΔV s/ =

r z

(r z + R )

ΔVo

ΔI L= - (r z ∣∣ R )

Expression of performance : Zener regulator

Page 137: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 137/246

I

IL

+

-

Vo

• An important consideration for the design

is

• To ensure that current through the zener

diode never becomes too low i.e less

than IZK or Izmin

• Minimum zener current Izmin occurs when

• Supply Voltage Vs is at its minimumVSmin

• Load current IL is at its maximum

ILmax

• Above design can be made be selecting R =

(V s min – V ZO - r z I z min)

(I z min+ I Lmax )

where I Lmax=V Z

R L

The circuit with the zener diode replaced with its equivalent circuit mode

Example 3.8

Page 138: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 138/246

Exp 3-8

Page 139: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 139/246

Example 3-8

Page 140: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 140/246

V =+10 v± 1v

R= 0.5k Ω

V z= 6 .8v I z= 5 mA

r z= 20Ω

I zk = 0 . 2 mA

I RL= 1 mA

a) Find No Load Line RegulationV o∧ ΔV o

Page 141: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 141/246

V z= V

zo+ r

z I z

V zo= V z−I zr z=

6.8− 5

×20

×10

−3

=6.7v

Depending upon the manufacturer provide DataFirst calculate Vzo if Vz =6.8 V & Iz=5mA, r Z=20 ohm

Now connecting the Zener diode in the Cct as shownCalculate actual Iz and resulting Vo

Thus establishing operating Point

Page 142: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 142/246

Line

Regulation

I z = V − V zo

R+ r z

= 10− 6 .7500+ 20

= 6.35mA

V o= V

zo+ I

z r z = 6 .7+ 6.35× 20× 10− 3= 6.827V ≈ 6.83V

ΔV o ΔV

=38.5

1= 3.85mv /v

Now carry out Small Signal Analysis

Suppress DC source and calculate resultant change in VoUse voltage divider rule

ΔV o= ΔV

+r z

R+ r z

=± 1× 20

520=± 38.5mv

n vO oa res s ance L connected & draws 1mA and load

regulation

Page 143: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 143/246

g

1mA drawn by load would decrease

by same amount so

Page 144: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 144/246

R L≈6.83 v

1mA= 6.83 k Ω

R L∣∣ R=

20× 6830

6850 = 19.94ΩV Z = V o= V ZO+ I Z r Z = 6 . 7+ 5.35× 20= 6.807 V

I Z =Vs− V Z

R+ R L∣∣r Z

=10− 6.807

500+ 19.94= 6.14 mA

ΔI Z

= 6.35− 6.14= . 21 mA= 210 μA

I z ΔV o= r z ΔI z = 20× −1mA=− 20mV

= ΔV o

ΔI z

=− 20 mV /mA

Checkexact Calculations

by same amount so

Load Regulation

c) for ΔV o R L= 2k Ω

Page 145: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 145/246

I R L= V Z

R L= 3 . 4 mA

ΔI Z = − 3 . 4 mA

ΔV o= r Z ΔI Z = − 68 mV

Page 146: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 146/246

• 1) Check

Zener at Breakdown region

V o=2000

2500× 10= 8v

2000

500

+10

Page 147: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 147/246

10v

V o

10

500

6.63 v

19.8Ω

Δ

+

6.7v−

20

2k Ω

0.5k Ω

A

B

Page 148: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 148/246

V oc= 6 .7× 20002020

= 6.63v

Req= 19.8Ω

A

B

d ) RL= 500Ω

Page 149: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 149/246

Zener is not

operating

V o=10× 500

1000= 5v

zk

@V o<<Valignl ¿¿¿

¿5<<6.8v

¿¿

L

10 v

500

500

e) Min value of for which the diode still

operates in the breakdown region

R L

Page 150: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 150/246

p g

I z

• at BreakdownRegion

+ 10± 1v

500 I z

R L6.7v

0.2 mA

I z= I

zk = 0 .2 mA

V z= V zk = 6.7vV

DD= 9vmin

I =9− 6 . 7

500= 4 . 6mA

I = I zk + I

RL

I RL

= 4 .6− 0. 2= 4 .4 mA

R L=

V zk

I RL

=6 . 7

4 .4m= 1.5k Ω

Problem D3.68Design a 7.5-V zener regulator circuit using a 7.5-V

ifi d t 12 A Th h

Page 151: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 151/246

zener specified at 12mA. The zener has anincremental resistance r z = 30 Ω and a knee current

of 0.5mA. The regulator operates from a 10-V supplyand has a 1.2-kΩ load.

(a) What is the value of R you have chosen?

(a) What is the regulator output voltage when thesupply is 10% high? Is 10% low?

(a) What is the output voltage when both the supply is

10% high and the load is removed?

(a) What is the smallest possible load resistor that canbe used while the zener operates at a current nolower than the knee current while the supply is 10%

low?

Solution 3-68

r = 30Ω

Page 152: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 152/246

r z

30Ω

I Zk = 0 .5 mAV

Z = 7.5V

I Z = 12 mA7 .5= V ZO+ 12× 30× 10

− 3

⇒V ZO= 7.14 V

I RL=7 .5

1 .2= 6.25 mA

Design a 7.5-V zener regulator circuit usinga 7.5-V zener specified at 12mA. The zener has an incremental resistance r z = 30 Ω anda knee current of 0.5mA. The regulator operates from a 10-V supply and has a 1.2-kΩ l d

Page 153: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 153/246

Select I = 10mA

I RL=

7.5

1.2= 6.25 mA

So that I Z = 3.75mA

W hichis> I Zk

R=10− 7 .5

10= 250Ω

kΩ load.

(a) What is the value of R you have chosen?

(a) What is the regulator outputvoltage when the supply is 10%high? Is 10% low?

For ΔV +=± 1V

Page 154: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 154/246

ΔV O=± 1×1.2//0.03

0.250+ (1.2//.03 ) =± 0.1V

ThusV O =+7.4V to + 7.6V

With V += 11V and I L= 0

V O= V ZO+11− V O

0.28X0. 03

⇒V O= 7.55V

(a) What is the output voltage whenboth the supply is 10% high andthe load is removed?

(a) What is the smallest possible load resistor that can beused while the zener operates at a current no lower thanthe knee current while the supply is 10% low? IZK=0.5mA,VZO=7.14 V

Page 155: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 155/246

11V

V O

R9− 7.155

0.25

= 7.38mA

7.14+ 0.03 X0 .5

7.155V 0.5 mA

250Ω

R Lmin

R Lmin=7.155

7.38− 0 . 5

= 1.04k Ω

1

3

2

Page 156: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 156/246

Rectifier Circuit Power Supply

Page 157: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 157/246

• Power supply must supply dc voltage to be constantin spite of – variation is ac line voltage

– Variation in current drawn by load, that is variable loadresistance

Rectifier Circuits

Page 158: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 158/246

• Filter – Smoothes out pulsating dc but still some time-

dependent components-(ripple) remain in the output

• Voltage Regulation – Reduces ripples

– Stabilizes magnitude of dc output against variation inload current

– Regulation by Zener Diode or Voltage regulator I.C

Half Wave Rectifier

Page 159: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 159/246

Transfer characteristic of

the rectifier circuit

Input and output waveforms assuming that rD >

Full Wave Rectifier

Page 160: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 160/246

Input and output waveforms.

Page 161: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 161/246

Full Wave Rectifier

Page 162: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 162/246

• Diode in Reverse biased stateAnode @ - Vs

Cathode @ + Vo

• PIV = 2Vs - VDO

Twice as in case of half wave rectifier

Bridge Rectifier

Page 163: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 163/246

The bridge rectifier: (a) circuit; (b) input and output waveforms.

Page 164: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 164/246

Bridge Rectifier

Page 165: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 165/246

Bridge Rectifier

Page 166: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 166/246

Bridge Rectifier

Page 167: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 167/246

• Peak Inverse Voltage

– PIV => consider loop D3, R & D2

– VD3(res) = Vo + VD2

– Vo = Vs – 2VD

– PIV = Vs – 2VD + VD = Vs – VD

Half of PIV for Full wave Rectifier

D4

D1

D2 D3

Page 168: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 168/246

Figure 3.28 (a) A simple circuit used to illustrate the

effect of a filter capacitor. (b) Input and output

waveforms assuming an ideal diode.

Page 169: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 169/246

g

Peak detector with Load

Page 170: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 170/246

Figure 3.29 Voltage and current waveforms in thepeak rectifier circuit with CR<<T .

Page 171: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 171/246

Charge / Discharge Cycle

Page 172: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 172/246

Peak detector with Load

Page 173: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 173/246

i L=

V o

Ri D= i

C + i

L

i D= C

dV s

dt

+ i L

Figure 3.30 Waveforms in the full-wave peak

rectifier.

Page 174: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 174/246

• When Vr is small

ea ec er : u puVoltage

Page 175: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 175/246

When Vr is small

– Vo = Vpeak

– iL is almost constant

– DC components of iL

• Accurate value of output dc voltage

Average Value

i L=V P

R

V o= V P −1

2V r

Charge / Discharge Cyclev o= V P e

−t

CR

Page 176: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 176/246

V o= V P − 12 V r

i L=V P

R

e−

T

CR= 1−T

CR

V o= V P − V r ≈ V P e

−T

CR

⇒V r = V P (1− e−

T

CR

)

V r = I L

fC

, provided V r <<V p

V r = V

P (1− 1+T

CR)

I L=V

P

R

V r =V

P

T

CR ⇒

V P

fCR

Peak Rectifier : Ripple Voltage

Page 177: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 177/246

• During Discharge cycle

• At the end of discharge cycle

• Since CR >> T

e−

T

CR= 1−T

CR

V o= V P − V r ≈ V P e− T CR

⇒V r = V

P

(1− e−T

CR )

v o= V P e−

t

CR

−T

CR T−T

Peak Rectifier : Ripple Voltage

Page 178: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 178/246

Ripple Voltage

V r = I L

fC

, provided V r <<V p

V r = V

P (1− 1+T

CR)

V r =V P

CR

I L= V P

R

e CR= 1−T

CRV r = V P (1− e

−CR

)

V r =

V P T

CR ⇒

V P

fCR

ea ec er : on uc onInterval

Page 179: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 179/246

V P

(1−

(ωΔt )2

2 )= V P − V r

⇒ωΔt =√2V

r

V P

V P cos(ωΔt )= V P − V r

Hence ωΔt is small

Cos (wΔt )= 1−(wΔt )2

2 !+ .. .

When Vr<<Vp the conduction angle will be small

Page 180: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 180/246

Average Diode Current –During

Conductioni = i + i

Page 181: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 181/246

During Discharge Qlost =CV r

i D= i

C + i

L

i Dav

= iCav

+ I L

iCav

= i Dav

− I L

During Charge Qsupplied

= icav Δt

iCav

= i Dav

− I L

Qsupplied= Qsupplied⇒icav Δt = CV r

Qlost= Qsu lied⇒CV r= icav Δt

Average Diode Current –During

Conduction

Page 182: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 182/246

i Dav

=2π

√2V r

V P

V P

R+ I

L⇒i

L(1+ π 2V P

V r )

V r

<<V P

⇒ iDav

>> I L

Qlost Qsu lied r cav

V r =V P T CR

=⇒CV r =V P T R

V P T

R= (i Dav

− I L) Δt

Δt = 12πf

2V r

V P

= T 2π

2Vr

V P

V P

T

R= (i Dav

− I L)(T

2Vr

V P )

Deduction

Page 183: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 183/246

• As waveform of is almost right angle r

triangleV

r << V

P

i D max= 2i Dav

Observations• Diode current flows for short interval

d t l i h th h l t b

Page 184: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 184/246

and must replenish the charge lost by

the capacitor. Discharge interval is long

& discharge is through high resistance

• Maximum diode current

Assuming that i L is almost constant = I L &

CR >>T

r D<< R L

i D=CdV i

dt + i L

i D max

= i L(1+ 2π

2V p

V r )≈ 2i

Dav

Example N0 3-9Consider a peak rectifier fed by a 60 Hz

sinusoidal having a peak value of Vp =

Page 185: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 185/246

sinusoidal having a peak value of Vp =

100 V. Let the load resistance R =10 kOhms.

(a) Find the value of the capacitance C

that will result in peak to peak ripple of 2 V

(b) Calculate the fraction of the cycle

during which the diode is conduction

(c) Calculate the average and peak value

of the diode current.

Example 3.9

Page 186: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 186/246

• Find value of C for Vr =2V (peak to peak)

• Find fraction of cycles that diode

conducts

• => Diode conducts of cycle

0.2

2π× 100= 3.18

100Sin2Π60 t

10 k Ω

C =V P

V r fR=

100

2× 60× 104= 83 .3μF

ωΔt =2Vr

V P

= 0 .2radian

Solution Exp 3-9

Page 187: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 187/246

• Find &

i Dav= I L(1+ π

2V P

V r )

I L=

V P

R=

100

10000= 10 mA

i Dav= 10(1+ π

√2× 100

2 )= 324 mA

imax= 2i Dav= 648 mA

i D max

i Dav

Full wave peak Detector

Page 188: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 188/246

In full wave rectifier, the capacitor discharge for almost T/2 time interval.

that mean ripple frequency is twice the

input, soV r =V

P 2 fCR

imax

= 2i Dav

= I L(1+ 2π

V P

2Vr )

i Dav

= I L(1+ π

V P

2Vr )

Applications

Page 189: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 189/246

• Peak Rectifier – Peak detector is used

for

– Detecting the peak of the an input signal

for signal processing systems

– Demodulator for amplitude modulated

(AM) signals

.

Page 190: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 190/246

Precision Half Wave Rectifier Super Diode

Page 191: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 191/246

• Normal Diodes VD= 0.7v are used for

rectifier of input of much larger

amplitude then VD

• For smaller signals detection,

demodulation or rectificationOperational Amplifiers (Op Amp) are

used

Wave form GenerationLimiting Clamping

Page 192: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 192/246

• Limiter Circuit – Vo is limited between two levels – upper

(L+) and lower (L-) thresholds

Figure 3.33 Applying a sine wave to a limiter can

result in clipping off its two peaks.

Page 193: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 193/246

Figure 3.34 Soft limiting.

Page 194: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 194/246

Wave form GenerationLimiting / Clamping

• Double Limiter

Page 195: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 195/246

– Clips off both negative & positive peaks• Single Limiter

• Clips off only one side of the input peak

• Application – Limits the inputs to operation Amplifier to a

limit lower than the breakdown voltage of

transistors of input stage of operational

Amplifier

– Half / Full Rectifier for Battery Charger

Figure 3.35 A variety of basic limiting circuits.

Page 196: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 196/246

Figure E3.27

Page 197: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 197/246

Solution Ex 3-27

(a ) − 5≤ vi≤ 5 ⇒ v = v i

Page 198: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 198/246

v R=

[10

10+ 10 ](v i− 5)=

1

2(vi− 5)

v o= 5+ v R=1

2v i+ 2 . 5

(a ) 5≤ vi≤ 5 ⇒ vo v i

(b) V I ≥+ 5 Vo D2 Conduct, D1 cut-off

(c ) v i≤ − 5 V D1 Conducts & D2 is off

v R= [10

10+ 10 ](v i+ 5)=1

2(vi+ 5)

vo=

1

2

(v i+ 5)− 5=

1

2

(vi− 2 . 5)

D C Restorer • The output waveform will have its lower

peak “Clamped” to O V therefore

Page 199: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 199/246

peak Clamped to O V therefore

known as “Clamped Capacitor”

• Output waveform will have a finite

average value & is entirely different and

unrelated to the average value of the

input waveform

Application

Page 200: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 200/246

T X R

DCRestorers

− 4v

+ 6

− 4

+ 2v

0v

4v

Figure 3.36 The clamped capacitor or dc restorer

with a square-wave input and no load.

Page 201: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 201/246

Figure 3.37 The clamped capacitor with a loadresistance R .

Page 202: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 202/246

Figure 3.38 Voltage doubler: (a) circuit; (b)

waveform of the voltage across D 1.

Page 203: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 203/246

Figure P3.97

Page 204: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 204/246

Figure P3.98

Page 205: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 205/246

Figure P3.102

Page 206: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 206/246

Figure P3.103

Page 207: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 207/246

Page 208: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 208/246

Figure P3.105

+ 4 v i

Page 209: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 209/246

Diode Off V0= V i+ V c

Diode On Vo= − 0.7v

D on

− 6

− 0

D off

V C

v o

The Voltage Doubler

Page 210: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 210/246

C1

V P sinωt

+ V P -

+

V D1

D1

2V P

+

+ V P -

V P sinωt

C 1 D1⇒a Clamp circuit

DC Restorer

Special Diode TypeSchottky-Barrier Diode (SBD)

• Shottky-Barrier Diode is formed by

Page 211: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 211/246

Shottky Barrier Diode is formed by

bringing metal into contact with amoderately doped „n‟ type

semiconductor material

• Resulting in flow of the conducting

current in one direction from metal

anode to the semiconductor cathodeand acts as an open circuit in the other

direction

Schottky-Barrier Diode (SBD)

Page 212: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 212/246

• Gets two important properties

– SBD switches on-off faster due to current

conducts due to majority carrier b

(electrons)

– Forward voltage drop is lower then P-n

junction diode

Varactor

Page 213: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 213/246

• Variable Capacitor – Depletion layer acts as junction

capacitance

– Depletion layer varies CapacitanceDepletion Region

Dielectric

← D→

Metallic Plate

Varactor • When a reverse vo ltage is applied to a p-n junction ,

the depletion region, is essentially devoid of carriers

Page 214: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 214/246

e dep e o eg o , s esse a y de o d o ca e s

and behaves as the dielectric of a capacitor.

• The depletion region increases as reverse voltage

across it increases; and since capacitance variesinversely as dielectric thickness, the junction

capacitance will decrease as the voltage across the

p-n junction increases.

• By varying the reverse voltage across a p-n

junction the junction capacitance can be varied .

Semiconductor diodes• The tunnel diode, the current through the

device decreases as the voltage is increased

Page 215: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 215/246

within a certain range; this property, knownas negative resistance, makes it useful as an

amplifier.

• Gunn diodes are negative-resistance diodes

that are the basis of some microwave

oscillators.

• Light-sensitive or photosensitive diodes can

be used to measure illumination; the voltage

d th d d th t f

SCR (Thyristor)• The Silicon Controlled Rectifier (SCR) is simply a

conventional rectifier controlled by a gate signal.

Page 216: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 216/246

• A gate signal controls the rectifier conduction.

• The rectifier circuit (anode-cathode) has a low

forward resistance and a high reverse resistance.

• It is controlled from an off state (high resistance) to

the on state (low resistance) by a signal applied to

the third terminal, the gate.

• Most SCR applications are in power switching,

phase control, chopper, and inverter circuits.

Page 217: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 217/246

Photodiode

Page 218: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 218/246

If reversed biased PN junction isexposed to incident light – the photons

impacting the junction cause covalent –

bond to break thus give rise to current

known as a photocurrent & is

proportional to the intensity of incident

light.

Converts Light energy into a electrical

signals

Photodiode

Page 219: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 219/246

• Photodiode are manufactured usingGallium Arsenide (GaAs)

• Photodiodes are important element of optoelectronics or photonics circuit

(Combination of Electronics & optics)

used for signal processing, storage &transmission

Photodiode : Applications

Page 220: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 220/246

• Fiber optics Transmission of telephonic& TV signals

• Opto-storage are CD ROM computer disks

• Wide bandwidth & low signalattenuation.

Light Emitting Diode (LED)• Inverse of Photodiode

Page 221: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 221/246

• Converts a forward biased current into light

• GaAs used for manufacturing LEDs

• Used as electronics displays

• Coherent light into a narrow bandwidth laser diodes

Fib O i & CD ROM

LED

Page 222: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 222/246

Double heterostructure laser

Page 223: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 223/246

Optoisolator

• LED & Photodiode

Page 224: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 224/246

Electrical to light Light toelectrical

• Provides complete electrical isolation between

electrical circuits

• Reduces the effects of electrical interference on

signal being fixed within a system

• Reduces risk of shock

• Can be implemented over long distance fiber optics

Laser Pointer

.

Page 225: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 225/246

Laser Microphone

Page 226: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 226/246

Page 227: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 227/246

Problem 3-103

Page 228: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 228/246

Sketch and label the transfer Characteristics of the circuit shown

over a + 10 V range of the input signal.

All diodes are VD =0.7 V @ 1 mA with

n=1.

What are the slopes of the

characteristic at the extreme + 10 V

levels?

+1 V

Page 229: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 229/246

-2 V-2 V

V i

V 0

0<V i< 1 Vo= 0

Problem 3-103

Page 230: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 230/246

Page 231: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 231/246

Ist Sessional• Q No 1 (12 Marks) In the circuit shown, input

voltage is a 1kHz, 10 V peak to peak sine wave. The

diode is an ideal diode.

Page 232: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 232/246

d ode s a dea d ode

• (a) Sketch the waveform resulting at output

terminal vO.

• (b) What are its positive and negative peak

values?

• Q No 2 (15 Marks) A circuit utilizes three

Ist Sessional

Page 233: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 233/246

Q ( )

identical diodes connected in series having

n=1 and IS= 10-14 A.

• (a) Find the value of current required to

obtain an output voltage of 2 V across thethree diodes combined.

• (b) If a current of 1 mA is drawn away

from the output terminal by a load

• (i) What is the change in output

voltage?

• (ii) What is the value of the load?

• Q No 3 (13 Marks) For the circuit shown,

Ist Sessional

Page 234: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 234/246

Q ( ) ,

sketch the output for the sine wave input of

10 volts peak. Label the positive and

negative peak values assuming that CR

>>T.

Ist Sessional

Page 235: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 235/246

• Q No 4 (10 Marks) 9.25 V zener diodeexhibits its nominal voltage at a test

current of 28 mA. At this current the

incremental resistance is specified as 7

ohms.

– (a) Find VZO of the zener model.

– (b) Find the zener voltage at a current

of 10 mA.

• Q No 5 (20 Marks) Consider a bridge

rectifier circuit with a filter capacitor C

Ist Sessional

Page 236: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 236/246

placed across the load resistor R for the casein which the transformer secondary delivers

a sinusoid of 12 V (rms) having the 60 Hz

frequency and assuming VD = 0.8 V and a

load resistance of 100 ohms.

– Find the value of C that results in a ripple voltage

no larger than 1 V peak to peak.

– Find the diode conduction angle. – Find the load current.

– What is the average load current?

• Q No 6 (10 Marks) In a circuit shown, the

Ist Sessional

Page 237: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 237/246

( ) ,

output voltage is 2.4 V. Assuming that the

diodes are identical and are having 0.7 V drop

at 1mA.

– (a) Find the current following through the resistor R.

– (b) What the value of resistor R.

Page 238: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 238/246

Figure 3.31 The “superdiode” precision half -wave rectifier and its almost-ideal transfer characteristic. Note that when v I

> 0 and the diode conducts, the op amp supplies the load current, and the source is conveniently buffered, an added

advantage. Not shown are the op-amp power supplies.

Figure P3.82

Page 239: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 239/246

Figure P3.91

Page 240: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 240/246

Figure P3.92

Page 241: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 241/246

Figure P3.93

Page 242: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 242/246

Figure P3.105

Page 243: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 243/246

Figure P3.105

Page 244: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 244/246

Quiz DE28 EE -B

(10 ) 9 2

Page 245: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 245/246

(10 Marks) 9.25 V zener diode exhibitsits nominal voltage at a test current of

28 mA. At this current the incremental

resistance is specified as 7 ohms. –(a) Find VZO of the zener model.

–(b) Find the zener voltage at a current

of 10 mA.

Quiz DE 28 EE -A

A di d h i l lt

Page 246: Chapter 3 Diode

7/22/2019 Chapter 3 Diode

http://slidepdf.com/reader/full/chapter-3-diode 246/246

A zener diode whose nominal voltageis 10 V at 10 mA has an incremental

resistance of 50 Ω.

(a) What is the value of VZO of the zener

model?