19
1 Chapter 13 Bacterial RNA Polymerase

Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

1

Chapter 13

Bacterial RNA

Polymerase

Page 2: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

2

13.1 Introduction of the bacterial RNA

polymerase

Figure 13.1

Characteristics of RNA synthesis

1. Phosphodiester bond formation takes place as the result of

a nucleotide attack of the 3’-hydroxyl group on the growing

chain.

Page 3: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

3

2. DNA template sequence determines the RNA sequence – complementary pairing (G:C, A:U, T:A)

– one DNA strand acts as the template strand, the other is the sense strand that has the same sequence as the RNA (except U replaces T)

3. ATP, CTP, GTP, and UTP are required for RNA synthesis

4. RNA chain grows in the 5' to 3' direction

5. RNA polymerase does not require an RNA primer

Page 4: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

4

Numbering rules for the sense strand Figure 13.2

Page 5: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

5

Bacterial RNA polymerases are large, multisubunit enzymes Bacterial RNA polymerase는 1960년대 초에 발견되었으며 6개의 subunit로 되었으며

분자량이 459kDa인 holoenzyme임.

Page 6: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

6

• reaction mix components

– RNA polymerase,DNA,Mg2+,three nonradioactive NTPs and one

radioactive NTP

• stop reaction with trichloroacetic acid

– newly formed RNA precipitates and is collected on a filter

– the radioactivity in the precipitate on the filter is proportional to

the amount of RNA synthesized

The examination of the activity of RNA polymerase

Figure 13.03: Surface representation of a

T7 RNA polymerase-DNA complex

structure.

Page 7: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

7

Bacterial RNA polymerases consists of core enzyme and

sigma factor Figure 13.4

holoenzyme = a2bb's

core enzyme = a2bb'

13.2 Initiation Stage

phosphocellulose ion exchange

chromatography를 이용하면 resin에 core

enzyme이 결합하고 KCL 농도에 따라 분리함

core enzyme의 실험실 상에서 조립순서. ω subunit는 세포내의 조립에 관여한다고 간주

Page 8: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

8

A promoter core polymerase와 다르게 holoenzyme은 intact DNA를 RNA 합성의 주형으로 이용한다.

이때 holoenzyme은 promoter라는 특정 initiation signal을 인식하고 결합한다.

promotor는 promotor mutation이라는 돌연변이를 통해서 발견이됨.

• is essential for promoter recognition

• does not bind to promoter DNA on its own

• the major E. coli sigma factor is σ 70 (분자량이 약 70kDa)

• this sigma factor recognizes promoters for housekeeping genes (housekeeping 유전자의 promotor를 인식함)

σ factor의 역할

DNase protection method에 의하여 RNA

polymerase가 41-44 base pairs에 결합한다는 것을

발견함.

Page 9: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

9

Promoter sequences Conserved sequences in s70 promoters

-10 box (Pribnow box)

– centered 10 bp upstream of the transcription start site

– consensus sequence TATAAT

-35 box

– centered ~35 bp upstream of the start site

– consensus sequence TTGACA Figure 13.7

-35box; down mutation. -10box; up mutation

Page 10: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

10

Different sigma factors in Bacteria

E. coli에서 σfactor는 7가지 종류가 존재함. 그리스 문자니 분자량으로 표시하고 또한

유전자의 이름으로 표시하기도함.

염기서열 유사성에 따라 σfactor는 σ70과 σ54 (σN family)로 나누며 σ54 family에는 σ54 만

속하고 나머지는 σ70에 속한다. σ70을 포함하는 RNA polymerase holoenzyme은 정상적인

exponential growth에서 필요한 단백질을 전사 하기 때문에 필수 단백질이다.

Page 11: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

11

Figure 13.9

σ factor는 4개의 conserved된 지역으로 되어있으며 각각은 작은 highly conserved region

으로 되어있다. (a) crystal structure는 4개의 영역 중 3개의 영역만 나타난다. (b) region

1.1을 제외하고 다른 지역은 모든 σ factor에 존재하나 region 1.1은 major sigma factor

에만 존재

(a) crystal structure

(b)

Page 12: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

12

Figure 13.10

σ54-RNA polymerase holoenzyme은 -25 CTGGCAC와

-12 TTGCA에 결합을 한다. 그러나 activator protein의 도움

없이는 전사를 활성화 시킬 수 없다. σ54 promoter로부터

100bp upstream에 있는 enhancer부위에 activator protein이

결합을 한다. IHF (integration host factor)등의 도움에 의하여

DNA bending이 일어난다. activator protein이 polymerase에

결합 한 후 activator protein내의 ATPase activity에 의하여

DNA를 푼다.

Foot printing techniques; 그림 13.11과 그림 13.12 참조

Page 13: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

13

Page 14: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

14

The holoenzyme-promoter complex changes conformation during initiation

Figure

13.13

Closed complex; DNA가 이중 결합을 하고 있는 상태. -10에서 -55에 걸쳐서 결합을 한다.

Open complex; +20에서 -55까지 결합을 하며 -12에서 +2까지 strand가 open이 됨.

open 지역에는 AT-rich 지역인 -10부위가 포함되며 +1에서 전사가 시작된다.

Rifampicin은 항생제로 RNA

polymerase에 결합하여 초기

RNA 합성을 막는다.

이때 첫 번째와 두 번째의

phosphodiester bond의 생성을

막는다.

Rifampicin resistant mutant는

core polymerase의 βsubunit

유전자에 이상이 생긴 것임.

Page 15: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

15 Figure 13.14

core polymerase와 σ70 RNA polymerase 는 아래 그림처럼 서로 구조가 다르다.

즉 σ factor가 결합한 후 구조가 바뀌나 E. coli RNA polymerase는 high-resolution 구조가

잘 보이지 않아 다른 bacterial RNA polymerase를 이용하여 연구를 함.

E..coli RNA polymerase core

enzyme

E..coli RNA polymerase holoenzyme

Page 16: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

16

Thermus aquaticus RNA polymerase

Figure 13.15

1999년 Seth Darst와 동료들이 Taq의 core RNA

polymerase (α2ββ’ω)의 구조를 보여줌. 이 구조는

E. coli의 counterpart와 유사함. ω는 분리된 E.coli

core polymerase에 항상 존재 하지 않지만 core

polymerase의 조립에는 필요하나 RNA 합성에는

필요치 않은 것으로 간주됨.

그림처럼 게의 집게를 닮았으며 one pincer는 β unit

다른 pincer는 β’이 이루고 있다. 그들이 이루고 있는

channel에 DNA 이중가닥이 들어가 맞는다. core

polymerase의 길이는 15nm이고 폭은 11nm임.

• an internal channel is formed between the β and β' subunits

• the N-terminal domains of the α subunits allow them to dimerize

• the α subunit N-terminal domains bind to the β and β' subunits

• the β and β' subunits interact extensively with each other and together form the catalytic site

• the β' subunit binds the active site Mg2+ and is required for phosphodiester bond formation

Page 17: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

17

The synthetic fork-junction DNA used for studying open complex structure

Figure 13.17

core polymerase의 구조는 밝혀졌으나 core polymerase와 σ factor와 DNA의 연관 작용은

밝혀지지 않았다. 이에 Darst는 fork junction 서열을 갖는 DNA를 합성하여 실험을 진행함.

Fork-junction 서열; transcription bubble처럼 double strand DNA와 single strand DNA를

갖은 서열. -35box 근처에는 이중가닥이고 -10 box근처는 단일 가닥임.

RNA polymerase has mobile modules and

conformational flexibility;

비교적 이동이 없는 core 부위; 회색으로 표시되며

두 개의 α subunit의 N-terminal, ω, β와 β’의일부.

β1 mobile unit는 초록, β flap은 청색. clamp는 pink

σ는 red와 orange로 표시됨

Page 18: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

18

Transcription initiation has several steps Figure 13.19

1. closed complex formation

- sigma factor interacts with

core and DNA

2. intermediate stage

- downstream DNA segment

bends across the entrance to

the active site channel; DNA begins melting

3. open complex formation and abortive initiation

- DNA melts to complete the transcription bubble

- σ3.2 loop must be displaced to prevent abortive initiation

4. end of abortive initiation

- RNA chain elongates to ~12 nt and RNA-DNA hybrid forms

5. promoter escape

- movement of RNA polymerase away from the promoter

Page 19: Chapter 13contents.kocw.net/KOCW/document/2013/koreasejong/... · 2016-09-09 · Chapter 13 Bacterial RNA Polymerase . 2 13.1 Introduction of the bacterial RNA ... 4. RNA chain grows

19

RNA polymerase holoenzyme scrunches DNA during the initial stage of

transcription

• RNA polymerase holoenzyme unwinds adjacent DNA segments

• the unwound DNA is pulled into the active site during initial transcription

• the unwound DNA re-winds when RNA polymerase holoenzyme leaves the initiation site and moves down the DNA

• energy stored in the system during the scrunching stage is used during promoter escape to break interactions between the holoenzyme and the initiation site to allow RNA polymerase to move forward

전사의 초기에 RNA polymerase가 이동하는 기작에 대하여 여러가지 model이 있으나

scrunching model이 유력한 model임.

다음이 scrunching model에 관한 설명임