34
المستنصريةلجامعة ا الھندسة كلية قس ــــ م الھندســــــــة الميك ـــــ انيك يـــة محط ــــــــــــ طاق ات ــــــــــــــــــــــ ةCHAPTER (2) Steam Power Plant Cycles  .م. أ مشعل. دمير ا عبد 05Oct14    

CHAPTER - 2 Steam Power Plant Cycles

Embed Size (px)

DESCRIPTION

Power plant cycles

Citation preview

  • )2(RETPAHCselcyC tnalP rewoP maetS

    . ..

    41tcO50

  • Power Plant Engineering Steam Power Plant Cycle

    11 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Chapter(2)SteamPowerPlantCyclesSimplevaporcycle: Steam power plant is an example of a systemoperatinginacyclewhichincludesaseriesofseparatesteadyflowprocessesateachunitofthispowerplantasshowninfigure(2.1).

    1. Boiler(B): Where the water is converted to steam at constant

    pressurebytheheatenergyreceivedfromthefuel.

    2. Turbine(T): Inwhichthesteamexpandstoalowerpressure.Causingworkenergytobeavailable.

    3. Condenser(C): Inwhichheatenergyflowsfromthelowpressure

    steam into the condenser coolingwater, resulting the steam tobecondensed.

    4. Pump(P): Itreturnsthewaterintotheboiler.

  • Power Plant Engineering Steam Power Plant Cycle

    12 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    CarnotCycleforSteam:

    This cycle is composed of two isothermal and two isentropicprocesses,asshowninfigure(2.2).Therefore,theapplicationofthiscycletovaporconsistsofthefollowingprocesses:12:isentropicexpansioninturbine23:isothermalheatrejection,(T1=T2),(Partialcondensation),qC=Tmins34:isentropiccompressionofinitiallywetsteamincompressor41:isothermalheatadditioninboiler,(T4=T1,P4=P1),qB=Tmaxs

    1

    DisadvantagesofCarnotCycleapplication:AlthoughtheCarnotcycleisthemostefficientcycle.Therearereasonswhyitisnotusedinpractice,suchas:

    1 Ithasalowworkratio2 Itisdifficulttostopcondensation(atstate3)3 It is difficult to startCompression of a verywet vapor (at state 3)

    efficiently.The liquid tendstoseparateout from thevaporand thecompressorwilltransfertwophasemixture.

    4 Thevolumeof fluid (atstate3) isveryhigh.Therefore,avery largecompressorisrequired.

    Therefore, the Carnot cycle is modified to overcome the abovedifficulties.ThemodifiedcycleisknownasRankinecycle.

  • Power Plant Engineering Steam Power Plant Cycle

    13 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    RankineCycle

  • Power Plant Engineering Steam Power Plant Cycle

    14 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Itisanidealcycleforasteampowerplantcycles,asshowninfigure(2.3).Foranygivenpressure, the steamapproaching the turbinemaybesuperheated(state1),drysaturated(state1),orwet(state1),butthefluidapproaching the pump in each case is saturated liquid (state 3). Steamexpandreversiblyandadiabaticallyintheturbinefrom(state1)to(state2),or(1to2),or(1to2).Thesteamleavingtheturbinecondensestowaterinthecondenseratconstantpressurefrom(state2,or2,or2)to(state3),the water is then pumped to the boiler to produce steam at constantpressurefrom(state4)to(state1,or1,or1).ThesteamflowaroundthecyclemaybeanalyzedusingtheSteadyFlowEnergyEquationandneglectingthechangesinK.EandP.Eterms.Therefore,eachprocesscanbeconsideredasfollows:

    1 SteamGenerator(BoilerB): FromtheS.F.E.E.: 0 (Noshaftwork)

    (kj)(kj/kg)

    2 Turbine(T): FromtheS.F.E.E.:

    BSteam

    Water

    1

    4

    12 12

    0

    12 12

    0

  • Power Plant Engineering Steam Power Plant Cycle

    15 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    0 (Insulation)

    (kj)(kj/kg)

    3 Condenser(C): FromtheS.F.E.E.:

    0 (Noshaftwork)

    (kj)(kj/kg)

    4 FeedPump(P): FromtheS.F.E.E.: 0 (Insulation)

    (kj)

    (kj/kg)

    Butsince =>

    12 12

    0

    Steam

    12 12

    0

  • Power Plant Engineering Steam Power Plant Cycle

    16 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    (Volume)(kj)(kj/kg)Thequantityof the feedpumpwork (WP) is small if compared to theturbine work (WT), it is usually neglected especially when the boilerpressureislow.

    CycleNetwork(Wnet):

    (kj)

    (kj/kg) 0 Andiffeedpumpworkisneglected,then:

    (kj/kg) 0

    WorkRatio(WR):

    ItistheratiooftheNetWorkoutputtotheGrossWorkoutputofthesystem.

    if 0 1

  • Power Plant Engineering Steam Power Plant Cycle

    17 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    SteamRate(SpecificSteamConsumptionS.S.C):It is thesteam flow in (kg/hr) required toproduce (1kW)ofpoweroutput.Therefore,theunitsof(S.S.C)is .

    HeatRate(H.R):Itistherateofheatinputtotheplantrequiredtoproduce(1kW)ofpoweroutput.Therefore,theunitsof(H.R)is .

    EfficienciesinSteamPowerPlant:

    1 Cycleefficiencyorthermalefficiency2 Mechanicalefficiency3 Isentropicefficiency

    . .

    .

    . 3600

    . . 3600

    =Steammassflowrate,(kg/hr). =TurbineBrakePower,(kW)=actualNetWorkobtainedattheshaftofturbine,(kj/kg)

    . . .

    . 3600 S. S. C

    =Boilerheatadded,(kj/kg)

  • Power Plant Engineering Steam Power Plant Cycle

    18 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    1. Cycleefficiencyorthermalefficiency:

    0 0 2. Mechanicalefficiency:Since 3. Isentropicefficiency:

    Example (1):ASteampowerplantoperatesbetweenaboilerpressureof(3bar)andacondenserpressureof(0.025bar).Calculatethecycleefficiency,theworkratio,andthespecificsteamconsumption:

    a ForaCarnotcycleusingwetsteam.b ForaRankinecyclewithdrysaturatedsteamatentrytotheturbine.c For a Rankine cycle of (b), when the expansion process has an

    isentropicefficiencyof(80%).

    . 3600

    3600 .

  • Power Plant Engineering Steam Power Plant Cycle

    19 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Solution:

    a Carnotcycle:Fromstemtable:@3bar=>[email protected]=>tsat.=21.1oCTmax=133.5+273.15=406.65KTmin=21.1+273.15=294.25K

    406.65 294.25

    406.65 0.2764 27.64%

    @3 2164/

    0.2764 2164 598.13/ @3 2725/

    From(hs)chart=> 2050/

    2725 2050 675/

    598.13675 0.886

    . . 3600

    3600598.13

    6.0188/.

  • Power Plant Engineering Steam Power Plant Cycle

    20 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    b Rankinecycle: @3 2725/From(hs)chart=> 2050 @0.025 88/ @0.025 0.001 0.001 3 0.025 10

    10 0.2975/ 2725 2050 675/

    675 0.29752725 88 0.2975

    0.256 25.6%

    675 0.2975675 0.99956

    . . 3600

    3600675 0.2975

    5.335/.

  • Power Plant Engineering Steam Power Plant Cycle

    21 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    c Rankinecycle(Actualcycle):

    0.8

    540/

    540 0.29752725 88 0.2975

    0.205 20.5%

    540 0.2975540 0.99945. . 3600

    3600540 0.2975 6.67/. MeanTemperatureofHeatAddition:IntheRankinecycle,heatisaddedreversiblyataconstantpressure, if is themean temperatureofheataddition,asshowninfigure2.4,sothattheareaunder4and1isequaltotheareaunder5and6,thenheataddedis;

    Andheatrejectedis;

    2

  • Power Plant Engineering Steam Power Plant Cycle

    22 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    1 1 1

    Where; =thetemperatureofheatrejection.Foragiven ,theloweristhe ,i.e.loweristhecondenserpressure,thehigherwillbetheefficiencyoftheRankinecycle.Butthelowestpracticabletemperature limit of heat rejection is the temperature of thesurroundings .Thesaturationpressurecorrespondingtothistemperatureistheminimumpressuretowhichsteamcanbeexpandedintheturbine.Thisbeingfixedbytheambientconditions, OnlyThehigherthemeantemperatureofheataddition,thehigherwillbethecycleefficiency.Effect of Superheat: The effect of increasing the initial temperature atconstantpressureoncycleefficiencyisshowninfigure2.5.Whentheinitialstatechangesfrom1to1, between4and1ishigherthan between4and1.Soanincreaseinthesuperheatatconstantpressureincreasesthemean temperature of heat addition and hence, the cycle efficiency.Moreover,with increase in superheat, theexpansion lineof steam in theturbineshiftstotheright,asaresultofwhichthequalityofsteamatturbineexhaustincreasesandperformanceoftheturbineimproves.

  • Power Plant Engineering Steam Power Plant Cycle

    23 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Effectofinletpressure: Theoperating temperatureof thematerialsusedforthemanufactureofsuperheaters,valves,pipelines,turbinebladesattheinletstages,andsoon,islimitedduetometallurgicalconsideration.Whenthemaximum temperature is fixed by this limit, as the operating steampressureatwhichheat isadded in theboiler increases from ,asshowninfigure2.6,themeantemperatureofheatadditionincreasessincebetween7and5ishigherthan between4and1.Moreover,withincreaseinturbineinletpressure,theexpansionlineofsteamintheturbineshifts to the left and themoisture content of steam at turbine exhaustincreases .Ifthemoisturecontentofsteam inthe laterstagesoftheturbine ishigh,thewaterparticlesthatiscarriedalongwiththevaporcomingoutofthenozzleswithhighvelocitystrikethebladesanderodethereedges,asaresult,theperformanceoftheturbineandthelifeofitsbladeswilldecrease.Themaximummoisturecontentattheturbineexhaustisnotallowedtoexceed12%.Reheat:Inthereheatcycle,asshowninfigure(2.7),thevaporatstate(1)isexpandedpartiallyinahighpressure(H.P)turbine,thenitisreturnedbackto the steam generator to be reheated at constant pressure (ideally) totemperatureatstate(3).Thereheatedsteamexpandsinalowpressure(L.P)turbine to the condenser pressure. As can be seen, reheat allows heatadditiontwice:(from6to1)and(from2to3).Itresultinincreasingtheaveragetemperatureatwhichheatisadded,whichresultinimprovingthecycleefficiencyandadriersteamatturbineexhaust(state4instead4).

  • Power Plant Engineering Steam Power Plant Cycle

    24 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Fig. 2.7 Reheat Cycle

    Theanalysisofreheatcycleis:

    But

    0

  • Power Plant Engineering Steam Power Plant Cycle

    25 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Example (2):Anidealreheatsteampowerplantoperatesbetweenaboileroutletat(150bar,500oC),reheatoutletat(20bar,500oC)andacondenserpressure(0.1bar).Calculatethefollowing:

    a Steamqualityatturbineexhaust.b Cycleefficiency.c Steamrate.d Heatrate

    Solution:

    From (h-s) chart: @ 150, 500 3309/ @ 20, 500 3116/ @ 20 2799/@ 0.1 0.9, 2344.8/From steam table:@ 0.1 192/

    0.1 10/ 0.1 10 150 0.1 10 15/

  • Power Plant Engineering Steam Power Plant Cycle

    26 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    3309 192 13 3116 2799 3421/ 3309 2799 3116 2344.8 1281.2/ 1281.2 15 1266.2/

    1266.23421 0.37 37%

    . . 3600

    36001266.2 2.84/.

    . 3600 . . 2.84 3421 9715.64/. Regeneration: The mean temperature of heat addition can also beincreasedbyreducingtheamountofheatadded inthe lowtemperaturesregion(intheliquidphase)intheeconomizersectionofthesteamgenerator.Thisprocesscanbeaccomplishedifthefeedwatercouldbeenteredtothesteamgeneratoratsaturatedliquid(state5)ratherthan(state4),asshownin(figure2.5).Thisispossiblebytheprocessofregenerationinwhichenergyisexchangedinternallybetweentheexpandingfluidintheturbineandthecompressedfluidbeforeheataddition.TheStirlingCycle:A wellknown gas cycle that uses regeneration is theStirlingcycle.Thiscycle iscomposedof two reversible isothermsand tworeversible isochoric (constantvolume)processes,asshown in figure (2.8).Thiscycleconsistsofthefollowingprocesses:12:isochoricexpansion23:isothermalheatrejection34:isochoriccompression41:isothermalheataddition

  • Power Plant Engineering Steam Power Plant Cycle

    27 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Theareasunder12and34denotingheatlostbytheexpandedfluidandgainedbythecompressedfluidareequal.Therefore,alltheheatisaddedreversiblyat andalltheheatisrejectedreversiblyat .Therefore,theidealStirlingcyclehavethesameefficiencyastheCarnotcycle.Theidealregenerativecycle:In the ideal regenerative cycle for steam, as shown in figure 2.9, thecondensateafter leavingthepumpcirculatesaroundtheturbinecasingsothat heat is transferred from the vapor expanding in the turbine to thecondensate circulating around it. The process 12 represents reversibleexpansion of steam in the turbinewith reversible heat rejection to thesurroundingliquidheatedreversiblyintheprocess(4s5).Since and , also area (5ba4s5) is equal andidenticaltoarea(1dc21).Therefore,alltheheataddedfromtheexternalsource isatconstanttemperature ,andalltheheatrejected isatconstanttemperature ,bothbeingreversible,then;

    => => 1 1

  • Power Plant Engineering Steam Power Plant Cycle

    28 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Therefore, the efficiency of the ideal regenerative cycle and that of theStirlingcycleareequaltothatoftheCarnotcycle.Thiscycleisnotpracticalbecause;

    1 Reversibleheattransfercannotbeachieved.2 Heatexchangerintheturbinecasingisnotpractical.3 Themoisturecontentofthesteamintheturbineishigh.

    Opentyperegenerativefeedwaterheaters(Directcontact):Inthiscycle,asshowninfigure(2.10),aportionofsteamisextractedataselectedpointsalongtheturbinetoheatthefeedwaterinaseriesoffeedwaterheaters.Theextractionsteam ismixeddirectlywith the incomingsubcooled feedwatertoproducesaturatedwaterattheextractionsteampressure.Thisriseintemperatureofthefeedwaterenteringtheboilercausesan increaseinthermalefficiencyofthecycle.

    Fig.2.10Regenerativecyclewithtwodirectcontactfeedwaterheaters

    Amassbalancefor(1kg/s)atturbineinletgives:

    Massflowbetween1and2=1Massflowbetween2and9= Massflowbetween2and3=1 Massflowbetween3and7= Massflowbetween4and7=1 Massflowbetween7and9=1 Massflowbetween9and1=1Where , aresmallfractionsof1

  • Power Plant Engineering Steam Power Plant Cycle

    29 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    TheenergybalanceforFeedWaterheater(1)(FWH1): 1 1 TheenergybalanceforFeedWaterheater(2)(FWH2): 1 1 1 1 1 1 1 1 1 1 NumberofPumps=Numberofopentypefeedwaterheaters+1

    Example (3):AnidealRegenerativesteampowerplantthatusesingleDirectcontacttypefeedwaterheater,steamenterstheturbineat(30bar,400oC)and the exhaust pressure is (0.1 bar). The feedwater heater is a directcontacttypewhichoperatesat(4bar),calculatethefollowing:

    a Steamqualityatturbineexhaust.b Cycleefficiency.c Steamrate.d Heatrate. Neglectpumpwork

  • Power Plant Engineering Steam Power Plant Cycle

    30 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Solution:

    From (h-s) chart: @ 30, 400 3231/@ 4 2753/@ 0.1 0.836, 2191.7/From steam table: 0@ 0.1 192/ @ 4 605/TheenergybalanceforFeedWaterheater: 1 1 2753 605 1 605 192 0.1612/boilersteam 3231 605 2626/ 1 3231 2753 1 0.16122753 2191.7 948.818/

    948.8182626 0.3613 36.13%

    . . 3600 3600

    948.818 3.8/. . 3600 . . 3.8 2626 9978.8/.

  • Power Plant Engineering Steam Power Plant Cycle

    31 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Closed type regenerative feed water heaters with drain cascadedbackward: Inthistype,asshowninfigure(2.11),thecondensateisfedbacktothenextlowerpressure feedwaterheater.Thecondensateof the lowestpressurefeedwaterheaterisfedbacktothemaincondenser.

    Fig.2.11Regenerativecyclewithtwoclosedtypefeedwaterheaterswith

    draincascadedbackward

    Amassbalancefor(1kg/s)atturbineinletgives:Massflowbetween1and2=1Massflowbetween2and3=1 Massflowbetween3and10=1 Massflowbetween10and1=1Massflowbetween2and12= Massflowbetween3and12= Massflowbetween12and10= Where , aresmallfractionsof1Theenergybalancefor(H.P)FeedWaterheater(FWH1):

  • Power Plant Engineering Steam Power Plant Cycle

    32 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Theenergybalancefor(L.P)FeedWaterheater(FWH2): Sinceprocesses(910)&(1112)arethrottlingprocesses.Therefore; , .Also , 1 1 56 5 1 Closedtyperegenerativefeedwaterheaterswithdrainpumpedforward: Inthistype,asshowninfigure(2.12),thedrain,insteadofbeingcascadedbackward,ispumpedforwardintothemainfeedwaterline.

    Fig.2.12Regenerativecyclewithtwoclosedtypefeedwaterheaterswith

    drainpumpedforward

  • Power Plant Engineering Steam Power Plant Cycle

    33 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Amassbalancefor(1kg/s)atturbineinletgives:Massflowbetween1and2=1Massflowbetween2and12= Massflowbetween2and3=1 Massflowbetween3and14= Massflowbetween3and7=1 Massflowbetween13and14= Massflowbetween8and9=1 Massflowbetween11and12= Massflowbetween10and1=1Where , aresmallfractionsof1Theenergybalancefor(H.P)FeedWaterheater(FWH1): 1 Theenergybalancefor(L.P)FeedWaterheater(FWH2): 1 Assume => , 11 13 56 5 1 1 1 1 1 1 1 56 5 13 11 and 1 and

  • Power Plant Engineering Steam Power Plant Cycle

    34 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Example (4):Anidealregenerativesteamcycleusingtwoclosedfeedwaterheaterswithdrainscascadedbackward,thesteamissuppliedtotheturbineat (40bar,500Co),and isexhaustedto thecondenserat (0.035bar).Theintermediate bleed pressures are obtained such that the saturationtemperature intervalsareapproximatelyequal,givingpressureof (10and1.5bar).Calculatethefollowing:(neglectpumpwork)

    a Theamountofsteambledateachstage.b Theworkoutputoftheplantin(kj/kg)ofboilersteam.c Thethermalefficiency.

    Solution:

    From (h-s) chart: @ 40, 500 3445/@ 0.035 0.824, 2120.912/@ 1.5 0.977, 2641.8/@ 10 3032.9/From steam table: @ 0.035 112/@ 1.5 467/ @ 10 781/Sinceprocesses(910)&(1112)arethrottlingprocesses.Therefore; , .Also , 0 =>

  • Power Plant Engineering Steam Power Plant Cycle

    35 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Theenergybalancefor(H.P)FeedWaterheater(FWH1): 3032.9 781 781 467 781 4673032.9 781 0.14/boilersteamTheenergybalancefor(L.P)FeedWaterheater(FWH2): 2641.8 467 0.14781 467 467 112

    467 112 0.14781 4672641.8 467

    0.143/boilersteam 3445 781 2664/ 1 1 3445 3032.9 1 0.143032.9 2641.81 0.14 0.1432641.8 2120.912 412.1 336.346 373.4767 1121.923/

    1121.9232664 0.421 42.1%

  • Power Plant Engineering Steam Power Plant Cycle

    36 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Cogeneration: Industries such as paper mills, textile mills, chemicalfactories, sugar factories, ricemillsand soonuse saturated steamat thedesiredtemperaturetoutilizethe latentheatreleasedforheating,Dryingetc.Inaddition,afactoryalsoneedspowertodriveitsmachines.Therearetwotypesofcogeneration:

    1 BackpressureTurbine: TheexhauststeamfromtheturbineisusedforheatingintheprocessheaterthatisreplacingthecondenserintheRankinecycle,asshowninfigure(2.14).Suchaturbineiscalledabackpressureturbine.Aplantproducingbothelectricalpowerandprocessheat simultaneously is called a Cogeneration Plant. This plant iscalledaByproductpowercycleonlyifitisusedtoproduceprocesssteamasamajorproduct,andproduceelectricalpowerasaminorproduct.

    Fig.2.14Cogenerationplantwithabackpressureturbine

    and

    , Or ,

  • Power Plant Engineering Steam Power Plant Cycle

    37 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    TheCogenerationplantefficiencyisgivenas;

    Forseparategenerationofelectricityandsteam,Theheataddedperunittotalenergyoutputis

    1

    WhereE=Electricalfractionoftotalenergyoutput.

    Electricplantefficiency

    Processheatefficiency

    Therefore,theCombinedefficiencyforseparategenerationisgivenas;

    1

    1

    Cogenerationplantisusefulonlyif .

    2 PassOutTurbine:PassOutturbineisusedwhenthepoweravailable

    fromthebackpressureturbineislessthanthatrequiredinafactory.Steam is extracted from the turbine at an intermediate stage forheatingprocessatthedesiredpressureandtemperature,asshowninfigure(2.15).

    and

  • Power Plant Engineering Steam Power Plant Cycle

    38 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

  • Power Plant Engineering Steam Power Plant Cycle

    39 Created by: Assistant Professor Dr. Mishaal AbdulAmeer AbdulKareem ... [email protected]

    Example (5):Atextilefactoryrequires(10ton/hr)ofdrysaturatedsteamforprocessheatingat(3bar)and(1MW)ofpower,forwhichabackpressureturbineof(70%)isentropicefficiencyistobeused.Findthesteamconditionrequiredatinletoftheturbine.Solution:Fromsteamtable:@ 3 2725/ 561/ 2164/ 6.993/. 1.672/. 5.321/.

    1 10 100003600 2725 1000 3085/

    0.7

    3085 27253085 2570.714/

    2570.714 561 2164 0.9287 1.672 0.9287 5.321 6.6136/. From(hs)diagram:Since 3085/ 6.6136/. 37.3 345

  • Createdby:AssistantProfessorDr.MishaalAbdulAmeerAbdulKareem [email protected]

    PowerPlantEngineering TUTORIALSHEET2 SteamPowerPlantCycles

    40

    1 Drawasimplesketchthenshowitsprocessesonthe(Ts)and(hs)diagramsforeachidealcyclelistedinthetablebelow.Cycle Type SteamCondition ClosedFWH Direct

    ContactFWHTurbineinlet Reheat Outlet Condenser DrainCascaded

    BackwardDrain

    PumpedForward

    A Rankine 4bar,Dry 0.035bar B Rankine 60bar,

    410Co 0.07bar

    C Reheat 100bar,410Co

    60bar,410Co 0.07bar

    D Regenerative 60bar,410Co

    0.07 bar 20 bar10 bar

    E Regenerative 60bar,410Co

    0.07bar 20 bar 10bar

    F Regenerative 60bar,410Co

    0.07bar 20bar 10bar

    G Regenerative 60bar,410Co

    0.07bar 20 bar 10bar

    H Regenerative 60bar,410Co

    0.07bar 20bar10bar2bar

    I Regenerative 60bar,410Co

    0.07bar 20bar 2bar10bar

    J Regenerative 60bar,410Co

    0.07bar 20bar 2bar10bar

    K Regenerative 60bar,410Co

    0.07bar 20bar 10bar 2bar

    L ReheatRegenerative

    100bar,410Co

    25bar,410Co 0.07bar 12 bar2bar0.5 bar

    M ReheatRegenerative

    100bar,410Co

    25bar,410Co 0.07bar 12 bar 0.5 bar2 bar

    N ReheatRegenerative

    100bar,410Co

    25bar,410Co 0.07bar 12bar 0.5 bar2bar

    O ReheatRegenerative

    100bar,410Co

    25bar,410Co 0.07bar 12bar 2bar 0.5bar

  • Createdby:AssistantProfessorDr.MishaalAbdulAmeerAbdulKareem [email protected]

    PowerPlantEngineering TUTORIALSHEET2 SteamPowerPlantCycles

    41

    2 Drawallthedetailsofthe(Ts)diagramoftheidealsteampowerplantlayoutshowninthefigurebelow.

    3 Forthefollowingsteamcyclesthatarelistedinthetablebelow,find(a)in(kj/kg)(b)in(kj/kg)(c)in(kj/kg)(d)(e)S.S.Cin(kg/kW.hr)and(f)moisturefractionattheendoftheturbineprocess.Showtheresultsintabularformwithyourcomments.Cycle Type BoilerOutlet Condenser

    PressureA IdealRankine,NeglectWP 10bar,Saturated 1barB Assume 75% 10bar,Saturated 1barC IdealRankine 10bar,Saturated 0.1barD IdealRankine 10bar,300Co 0.1barE IdealRankine 160bar,600Co 0.1barF Reheatto600CoatmaximumI.Ptolimitendmoistureto15% 160bar,600Co 0.1barG Reheatto600CoatmaximumI.Ptolimitendmoistureto15%

    butwith 75%160bar,600Co 0.1bar

    H Singleopenfeedwaterheaterat110Co 10bar,Saturated 0.1barI Twoopenfeedwaterheatersat90Co and135Co 10bar,Saturated 0.1barJ Twoclosedfeedwaterheaterswithdraincascadedbackwardat

    90Coand135Co10bar,Saturated 0.1bar

  • Createdby:AssistantProfessorDr.MishaalAbdulAmeerAbdulKareem [email protected]

    PowerPlantEngineering TUTORIALSHEET2 SteamPowerPlantCycles

    42

    4 Inanidealsteamcycle,steamat(20bar,360Co)isexpandedinaturbineto(0.08bar).It thenentersacondenserwhere it iscondensed tosaturated liquidwater.Then thepump feedsback thewater into theboiler.Findperkgof steam (a) (b) (c)if 80%,findthepercentagereductioninand.Ans.(a)969.61(kj/kg)(b)32.5%(c)20.1%(d)20.1%

    5 Neglectthefeedpumpterm,comparetheRankinecycleefficiencyofahighpressuresteamplantoperatingat(80bar)withthatofalowpressureplantat(40bar).Inbothcases,themaximumtemperatureis(400Co)andthecondenserpressureis(0.07bar).Explainyourresultbriefly.Alsofindtheratiooftheheatrejectedfromthecondensingplants.Assumethattheturbinesaretoproducethesamepower.Ans.0.391,0.357,0.83(H.P/L.P)

    6 An ideal reheat cycleworksbetweenpressuresof (120and0.035bar).The steam issuperheatedto(570Co)andafterexpansiontothedrysaturatedstate isreheatedto(500Co).Calculatethethermalefficiencyofthecycletakingaccountofthefeedpumpwork.Ans.0.453

    7 Asteamturbineissuppliedwithsteamat(40bar,450Co)andexhaustedat(0.035bar).Neglectingthefeedpumpterm,findtheidealRankinecycleefficiencyoftheplant,andcompareitwiththeidealefficiencywhichwouldbeobtainedifregenerativefeedwaterheatingwereemployed.Assumetheuseofopenheatersand(a)Onebleedingpoint(3bar),(b)Threebleedingpointsat(15,3,and0.5bar).Ans.0.391,(a)0.173kg,0.415,(b)0.114,0.083,0.08kg,0.429

    8 Saturatedsteamat(30bar)entersahighpressureturbineandexpandsisentropicallytoapressureatwhich itsdryness fraction is (0.841%).At thispressure, themoisture isextractedandreturnedtotheboilerviafeedpump.Theremainder,assumedtobedrysteam, is expanded isentropically to (0.04 bar) in a low pressure turbine, and thecondensate is returned to the boiler via a second feed pump. Calculate the cycleefficiencywhentheisentropicefficiencyofeachturbineandfeedpumpis(0.8).Whatisthenthedrynessfractionattheexitofeachturbine?Ans.0.357,0.291,0.88,and0.871.

  • Createdby:AssistantProfessorDr.MishaalAbdulAmeerAbdulKareem [email protected]

    PowerPlantEngineering TUTORIALSHEET2 SteamPowerPlantCycles

    43

    9 Asteamturbinegetsitssupplyofsteamat(70bar),(450Co).Afterexpandingto(25bar)inhighpressurestages, it isreheated to (420Co)at theconstantpressure.Next, it isexpanded in intermediatepressurestages to theextractionpoint foradirectcontactfeedwaterheatertoanappropriateminimumpressuresuchthatpartofthesteambledatthispressureheatsthefeedwatertoatemperatureof(180Co).Theremainingsteamexpands fromthispressuretoacondenserpressureof (0.07bar) inthe lowpressurestage.The isentropicefficiencyofthehighpressurestage is(78.5%),whilethatoftheintermediateandlowpressurestagesis(83%)each.Drawasimplesketchofthecycleandshowitsprocessesonthe(Ts)and(hs)diagrams,thendeterminethefollowing.(a)Theminimumpressureatwhichbleedingisnecessary.(b)Thequantityofthesteambledperkgofflowattheturbineinlet.(c)Thethermalefficiencyofthecycle.(Neglectpumpswork).Ans.(a)10bar,(b)0.206kg/kgsteamflowattheturbineinlet,(c)35.92%.

    10 Inan ideal reheatcycle,steam initiallyat (150bar,550Co)expands ina turbine toacondenser pressure of (0.1 bar), and the moisture in the condenser inlet is (5%).Determine(a)Thereheatpressure,(b)Thecycleefficiency,and(c)Thesteamrate.Ans.(a)13.5bar,(b)43.65%,(c)205kg/kW.hr.

    11 Thenetpoweroutputofanidealreheatregenerativecycleis(80MW).SteamenterstheHPturbineat(80bar)and(500Co),andexpandstillitbecomessaturatedvapor.Someofthesteamthengoestoanopenfeedwaterheaterandthebalanceisreheatedto(400Co),afterwhich itexpands in the LP turbine to (0.07bar).Determine (a)The reheatpressure,(b)ThesteammassflowratetotheHPturbine,and(c)Thethermalefficiency.Ans.(a)6.5bar,(b)58.4kg/s,and(c)43.7%.

    12 Thenetpoweroutputofanidealreheatregenerativecycleis(100MW).SteamenterstheHPturbineat(90bar)and(550Co).Afterexpansionto(7bar),someofthesteamgoestoanopenfeedwaterheaterandthebalanceisreheatedto(400Co),afterwhichitexpandsintheLPturbineto(0.07bar).Determine(a)ThesteammassflowratetotheHPturbinein(ton/hr),(b)Thetotalpumpwork,and(c)Thethermalefficiency.Ans.(a)256.186(ton/hr),(b)9.767(kj/kg),and(c)44.36%.

    CHAPTER-2 Steam Power Plant CyclesTutorial Sheet-2 Steam Power Plant Cycles