42
Chapter 2 Chapter 2 SUMMARIZING DATA 1

Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Embed Size (px)

Citation preview

Page 1: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Chapter 2Chapter 2

SUMMARIZING DATA

1

Page 2: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

2 1 B k dRecall:

2.1 BackgroundRecall:Data elements/pointsPopulation and SamplePopulation and Sample

Descriptive Statistics are statistical proceduresDescriptive Statistics are statistical procedures used to summarize, organize, and simplify data.In statistics or Biometry the basis for any analysis is aIn statistics or Biometry, the basis for any analysis is a clear understanding of the data.Describing, summarizing, and presenting data are central to all statistical applications.

Inferential Statistics

2

Page 3: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

B k dBackground…

The first step in data analysis is to describe the dataThe first step in data analysis is to describe the data in some concise manner.

Descriptive statistics that involve numeric or graphic display are crucial in capturing and conveying the final results of studies in publications.

3

Page 4: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

2.1.2 Classification of variables

• Continuous or DiscreteQ tit ti i bl R d th t f thiQuantitative variable: Records the amount of something 

(How much or how many?) – e.g. Age or weight

– Continuous quantitative variable: Measured on a continuous scale (Always a value between any 2 given l ) Di i C i f h i lvalues) – e.g. Distance in m; Concentration of chemical 

etc.

– Discrete quantitative variable: Can list all the possible values(Counting something) – e.g. Number of children in household, Number of subjects per semester etc.

4

Page 5: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Classification of variables…..

• Ordinal variable:‐Natural order to the different categories Examples:• Cloudiness – Mostly cloudy, Partly cloudy & Sunny• Self‐reported health status‐ Excellent, very good, good, fair, 

poor

• Categorical variable or Nominal: Records in which category a i i i ( Bl d R h )person or item is in (e.g. Blood type, Response to therapy).

No natural order to the different categories (e.g. Blood type – A, B AB O; Gender: Male or Female)B, AB, O; Gender: Male or Female).

5

Page 6: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

NoteIt is important to determine the nature of the variable under investigation, as the selection of the most appropriate technique to summarize it depends on whether the variable is continuous or discrete.

6

Page 7: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Notation

Population vs. SamplePopulation size vs Sample sizePopulation size vs. Sample sizePopulation parameter vs. Sample statistic

Notation for variables and observations

V i bl b X Y Z• Variables: represent by uppercase – X, Y, Z etc.

• Observations on a variable: represent by lower case with subscript - . nxxx ,,, 21

7

Page 8: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Statistical analysis…..

• Data elements or data points: ‐Data elements or data points:  Each data element (also called observation) is a representation of a particular measurablerepresentation of a particular measurable characteristic or variable.

Examples– Individuals’ ages measured in years.– Patients’ systolic blood pressures measured inPatients  systolic blood pressures measured in mmHg

8

Page 9: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

2.2 Descriptive Statistics and Graphical Methodsp p

• Assume that the subjects in the sample were selected at d f h l f h lrandom from the population of interest, i.e. the sample is 

representative of the population.

Numerical summaries for continuous variablesSample mean: is the sum of all observations divided by the number of observations. That is,

n

iin x

nxxx

nx

121

1)(1

• It gives a sense of what a typical value looks like.

inn 1

9

Page 10: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Sigma ∑ is a summa on sign.g ∑ g

implies (x + x + + x )implies (x1 + x2 +…+ xn)

If a and b are integers where a ≤ b, then          meaning (xa +  xa+1 + … + xb)

If a = b, thenIf a   b, then 

If i t t thIf c is some constant, then 10

Page 11: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Example 2.1  Systolic blood pressures

• The sample data are: 121   110   114   100   160   130   130l ( )• Sample size (n) = 7

• Let X denotes the systolic blood pressure.

130 130 160 100 114 110 100 7654321 xxxxxxx

6.1237

130130160100114110121

x

• Note that some of the observed systolic blood pressures are above and some below the mean.

• The mean of 123.6 is interpreted as the average systolic blood pressure in the sample.

11

Page 12: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Example 2.1….

0)6.123130()6.123121()(1

n

ii xx

• The deviations from the mean sum to zero, since negative deviations cancel out the positive deviationsdeviations cancel out the positive deviations.

12

Page 13: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Variance and Standard Deviation

If the center of the sample is defined as the sample mean, thenh h d ff ( d )a measure that can summarize the difference (or deviations)

between the individual sample points and the sample mean isneeded; that isneeded; that is,

One of the measure that would seem to accomplish this goal is:

However the sum of the deviations of the individualHowever, the sum of the deviations of the individual observations of a sample about the sample mean is always zero.

13

Page 14: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Variance and Standard deviationVariance and Standard deviation…..• Mean absolute deviation (MAD), expressed as

may be used.

l l l i i h h h• Alternatively, sample variance or variance, which is the average of the squares of the deviations from the sample mean, may be usedused

Another commonly used measure of spread is the sample standardAnother commonly used measure of spread is the sample standard deviation

14

Page 15: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Example 2.1….

• Sample variance

6.37417

)6.123130()6.123110()6.123100( 2222

s

• Sample standard deviation

17

4.196.374 s

15

Page 16: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Alternative formula for the Sample variance…..

• Sample variance (s2) is defined as

p

2

11

2

1

2

2

n

nxxs

n

i

n

iii

Example 2.11n

6.3746

3.889,106137,10917

7)865(137,109 22

s

• Sample standard deviation (s) is defined as

617

Sample standard deviation (s) is defined as

2s s

• Standard deviation is preferable to variance because it is in the same units as the original data

16

same units as the original data.

Page 17: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

M f L tiM f L tiMeasures of LocationMeasures of Location

Data summarization is important before anyinferences can be made about the population frominferences can be made about the population fromwhich the sample points have been obtained.

Measure of location is a type of measure useful for data summarization that defines the center or da a su a a o a de es e ce e omiddle of the sample.  Sample mean, median and mode

17

Page 18: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

• A standard data summary for a continuous variable in a sample consists of three statistics:sample consists of three statistics:Sample sizeSample meansSample standard deviation

Th th t ti ti id th i f ti th b• These three statistics provide the information on the number of subjects in the sample, the location, and the dispersion of the sample, respectively.

18

Page 19: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Coefficient of Variation (CV)Coefficient of Variation (CV)

• The coefficient of variation (CV) is defined as the ratio ofThe coefficient of variation (CV) is defined as the ratio of the sample standard deviation to the sample, expressed as a percentage, that is

100

xsCV

• Remains the same regardless of units used.• Useful in comparing variability of different samples with 

different   arithmetic means and when samples have diff i fdifferent units of measurements.

19

Page 20: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

MedianMedian• Sample median is defined as the middle value. • 50% of the values in the sample greater than or equal to 

the median and the remaining 50% less than or equal to the medianthe median.

To calculate the median:To calculate the median:• Arrange the observations from smallest to largest. Then 

median is 

th the largest observation if n is odd

Average of the th and the th observation if n is evenAverage of the       th and the             th observation if n is even   

20

Page 21: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Example  2.1Step 1: Arrange the data in ascending order:

100   110   114   121   130   130   160

n = 7 is odd, therefore the median is the average ((n+1)/2 = (7+1)/2 =4)th largest observation, or the observation in the fourth position in the order data set.

Median = 121.

21

Page 22: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

ModeMode: the most frequently occurring value among all the observations in a sampleall the observations in a sample.

Data distributions may have one or more modesData distributions may have one or more modes.One mode = unimodalTwo modes = bimodalTwo modes = bimodalThree modes = trimodal and so on.

22

Page 23: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Range • Range is the difference between the largest and smallest 

observations in a sample. Once the sample is ordered, it is very easy to compute the range.

• Range is very sensitive to extreme observations or outliers. 

• Larger the sample size (n), the larger the range and the diffi lt th i b t f d tmore difficult the comparison between ranges from data 

sets of varying sizes.

23

Page 24: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Quartiles• The first quartile of the sample is the sample value that holds 

approximately 25% of the data elements at or below it and

Quartiles

approximately 25% of the data elements at or below it and approximately 75% above or equal to it. It is denoted by Q1.

• The third quartile of the sample holds approximately 25% of the data elements at or above it and approximately 75% below or equal to it It is denoted by Qbelow or equal to it. It is denoted by Q3.

• The median is also referred to as the second quartile Q• The median is also referred to as the second quartile, Q2

• When n is odd, the positions of the quartiles are determinedWhen n is odd, the positions of the quartiles are determined by 

43n

24

where [k] is the greatest integer less than k.

Page 25: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Quartiles…..

• When n is even, the positions of the quartiles are determined bby 

.

42n

• The interquartile range is the difference between the first and• The interquartile range is the difference between the first and third quartiles: 13 QQ

• If there are outliers, the median and interquartile deviation which is defined as  

are the most appropriate measures of location and dispersion,     respectively

213 QQ

respectively.25

Page 26: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Interpretation of Standard Deviation (Empirical Rule)

• The mean and standard deviation are used to understand where the data are located and how they are spread.

• If a distribution of values is normal, then approximately

68% of the observations fall between             and            . 

95% of the observations fall between and

sx sx

sx 2 sx 295% of the observations fall between             and            .

All of the observations fall between                and            .      

sx 2 sx 2

sx 3 sx 3

• If a distribution is not normal, then it is difficult to infer properties f di t ib ti f th d SDof a distribution from the mean and SD.  

• The median and interquartile deviation should be used instead.

26

Page 27: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Outliers

• Outliers in a sample areObservations outside the range sx 3Observations outside the range            .Observations above                           or below                        .

where                         = Interquartile range.)(5.13 IQRQ )(5.11 IQRQ

sx 3

13 QQIQR q g

Summary

13 QQIQR

Summary• If there are outliers in a data set, the most appropriate 

measure of location is the median and the most appropriate pp pmeasure of dispersion is the interquartile deviation.

• If there is no outliers in the data, then the sample mean and t d d d i ti th t i t fstandard deviation are the most appropriate measures of location and dispersion, respectively.

27

Page 28: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Frequency Distribution (pages 45‐51)

• A frequency distribution is the organization of raw data in table f l d fform, using classes and frequencies.– A frequency distribution table is a useful summary for discrete data.

When the data are in original form they are called raw data– When the data are in original form, they are called raw data.– The frequency of a class is the number of data values contained in a 

specific class.

1) The categorical frequency distribution is used for data that can b l d f h l d l l lbe placed in specific categories, such as nominal or ordinal level data, e.g. Religious affiliation, gender, blood type etc.

2) G d f di t ib ti N i l d t d2) Grouped frequency distribution : Numerical data are grouped into classes formed by two numbers called class limits.  

28

Page 29: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

• Lower class limit:‐ represents the smallest data value that can be included in the classincluded in the class.

• Upper class limit:‐ represents the largest data value that can be included in the class.Cl idth f l i f di t ib ti i f d b• Class width for a class in a frequency distribution is found by subtracting the lower (or upper) class limit of one class from the lower (or upper) class limit of the next class.

f di ib i f i i bl• To construct a group frequency distribution for continuous variableStep 1: Determine the classes

– Find the range: Highest value – Lowest valueg g– Select the number of classes desired for the frequency distribution– Find the width by dividing the range by the number of classes and 

rounding uprounding up.– Select the starting point (usually the lowest value or any convenient 

number less than the lowest value); add the width to get the lower limitslimits.

– Find the upper class limits.Step 2: Tally the data.Step 3: Find the numerical frequencies from the tallies.

29

Page 30: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Grouped Data ….When sample size is too large to display all the raw data, data are frequently collected in grouped form.

The simplest way to display the data is to generate a frequencydistribution using a statistical package.

A frequency distribution is an ordered display of each value in adata set together with its frequency, that is, the number of timesh l i h dthat value occurs in the data set.

30

Page 31: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

If the number of unique sample q pvalues is large, then a frequencydi t ib ti    distribution may still be too detailed.

31

Page 32: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

If the data is too large, then the data is categorized into broader groups.

32

Page 33: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

2 2 2 Graphic Summaries for Continuous Variables2.2.2 Graphic Summaries for Continuous Variables

• Provide a simple, complete and accurate representation of p p pthe data. 

B d hi k lBox‐and‐whisker plot: This plot incorporates the minimum and maximum, the median, and the quartiles., qUseful to compare samples

Stem‐and‐Leaf plots: easy to compute the median and other quartiles. Each data point is converted into stem and leaf, e.g., 438 (stem: 43; leaf: 8)(stem: 43;   leaf: 8) 

33

Page 34: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Graphical Summaries for Discrete Variables

• Bar chart:  d d l l bl used to display a categorical variable; 

Hi t• Histogram: used to display an ordinal variable; 

• Bar charts and histograms are based on either the frequency• Bar charts and histograms are based on either the frequency or the relative frequency of responses in each category.

See Examples 2.10, 2.11 and 2.12 (Pages 51 ‐55).

34

Page 35: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Features of good numeric or graphic form of data summarization:Self‐containedUnderstandable without reading the textUnderstandable without reading the textClearly labeled of attributes with well‐defined termsterms

35

Page 36: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Bar Graphs

To construct • Divide the data into groups or categoriesg p g• Construct a rectangle for each group with a base of a constant width and a height proportional to the frequency within that group.within that group.• Note that the rectangles are not contiguous and are equally spaced from each other.

Example: A sample of 182 poinsettia plants were categorized by color in the following tableC l F (N b R l ti C l tiColor Frequency (Number 

of plants = f)Relative Frequency (f/n)*100

Cumulative frequency

Red 108 59.34% 108

Pink 34 18.68% 142

White 40 21.98% 182

l %

36

Total 182 100%

Page 37: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

120

80

100f p

lant

s

20

40

60

Num

ber o

f

0

20

Red Pink White

Color

Figure 2.1. Bar chart of color of 182 poinsettias

37

Page 38: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Histogram

To construct the histogramList each response option along the horizontal• List each response option along the horizontal axis (the x axis).

• Scale the vertical axis to accommodate theScale the vertical axis to accommodate the relative frequencies.

• Draw rectangles above each response option to reflect the proportion of subjects in each.

Note that there are no breaks between rectangles suggesting theNote that there are no breaks between rectangles, suggesting the ordering of the response options.

S E l 2 10 2 11 d 2 12See Examples 2.10, 2.11 and 2.12

38

Page 39: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Box‐and‐whisker plot:• Top of box is upper quartile (Q3)

• Bottom of box is lower quartile (Q1)Bottom of box is lower quartile (Q1)

• Midline of box is median

• Vertical line extends from top of box to largest (maximum) non‐outlying valueVertical line extends from bottom of box to smallest (minimum) non‐outlying value

• Outlying value is defined as any valueOutlying value is defined as any valueeither > Q3 + 1.5 (Q3‐ Q1)

or < Q1 – 1.5 (Q3‐ Q1)

Note: An outlier is a  data point which differs so much from the rest of the data that it doesn’t seem to belong with the other data. 

• Outliers are designated by *'sOutliers are designated by  s

• An extreme outlying value is defined as any value either> Q3 + 3 (Q3 – Q1)  or < Q1 – 3 (Q3 – Q1).

39

Page 40: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Stem and Leaf Plot

To construct use the following steps:

1. Separate each data value into a leaf, the least significant digit(s) and a stem, the most significant digit(s). The stem of 483 is 48 and the leaf is 33.

2. Write the smallest stem in the data set in the upper left‐hand corner of the plot.

3 W it th d t hi h l th fi t t 1 b l th fi t3. Write the second stem, which equals the first stem +1, below the first stem.

4. Continue with Step 3 until you reach the largest stem in the data set.5. Draw a vertical bar to the right of the column of stems.6. For each number in the data set, find the appropriate stem and write 

the leaf to the right of the vertical bar.g

40

Page 41: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Stem and leaf plot of cholesterol

195, 145, 205, 159, 244, 166, 250, 236, 192, 224, 238, 197, 169, 158, 151, 197, 180, 222, 168, 168, 167, 161, 178, 137 

13 | 714 | 514 | 515 | 18916 | 16788917 | 817 | 818 | 019 | 257720 | 5

Median = (178+180)/2 = 179

20 | 521 | 22 | 24

|23 | 6824 | 425 | 0

41

Page 42: Chapter 2 · • Lower class limit: ... rounding up. – Select the ... Tally the data. Step 3: Find the numerical frequencies from the tallies. 29

Obtaining descriptive statistics using a computer

Numerous statistical packages may be used.

Excel may be used to compute average (for the arithmetic mean),median (for the median), Stdev (for the standard deviation), Var (formedian (for the median), Stdev (for the standard deviation), Var (forthe variance).

42