24
Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation: no shearing stress Hydrostatic pressure at a point: Pascal’s Law Pressure field/pressure variation for fluids at rest Measurement of pressure Hydrostatic force on surfaces Vertical/Horizontal planes Inclined surfaces Curved surfaces Buoyancy, flotation, and stability

Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

  • Upload
    docong

  • View
    236

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Chapter 2. Fluid Statics

� Topics

� Fluid at rest: No relative motion/deformation: no shearing stress

� Hydrostatic pressure at a point: Pascal’s Law

� Pressure field/pressure variation for fluids at rest

� Measurement of pressure

� Hydrostatic force on surfaces� Vertical/Horizontal planes

� Inclined surfaces

� Curved surfaces

� Buoyancy, flotation, and stability

Page 2: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Pressure Field in Static Fluids

� Static fluids

� no shearing stress

� no fluid deformation

� “F = m*a” can be applied on a control volume as if on a rigid body

� We are interested in the balance between the hydrostatic force and body forces on a control volume

Page 3: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Pressure at a point

� Pascal’s Law: px = py = pz at any point in static fluid

i.e. pressure is isotropic

WU1

Page 4: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 3

WU1 On whiteboard, show the derivationWindows User, 1/6/2012

Page 5: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Hydrostatic Force on a

Small Control Volume

� dfs = ∇p*dv

� −�� − ��� = �

∫=A

Apdfvv

∫=A

xx pdAf

WU2

Page 6: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 4

WU2 How the pressure in a fluid in which there are no shearing stresses vary from point to point?

Show derivation, introduce the pressure derivativeWindows User, 1/6/2012

Page 7: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Pressure Field for Incompressible Fluids

� −�� − ��� =0

� ∆p = ρgh

� How about compressible fluids?

r1r2

Page 8: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 5

r1 rzr11001, 1/8/2012

r2 show derivation

hydrostatic distribution; The pressure difference between two points can be specified by the distance h, which is called pressure headrzr11001, 1/8/2012

Page 9: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Example: atmosphere

r3

Page 10: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 6

r3 show the derivation for isothermal case with ideal gas lawrzr11001, 1/8/2012

Page 11: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Figure 2.9 (p. 51) Piezometer tube.

Pressure Measurement:

Piezometer-Tube Manometer

• Absolute Pressure:relative to vacuum

• Gage Pressure:relative to ambient

� = −�1ℎ1

r4r5

Page 12: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 7

r4 Manometers use vertical or inclined liquid columns to measure pressurerzr11001, 1/8/2012

r5 Disvantages:1. the pressure in the container must be greater than atmospheric pressure2. pressure difference relative smallrzr11001, 1/8/2012

Page 13: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Figure 2.10 (p. 51)Simple U-tube manometer.

Pressure Measurement:

U-Tube Manometer

� = �2ℎ2 − �1ℎ1

Page 14: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Figure 2.12 (p. 54)Inclined-tube manometer

Pressure Measurement:

Inclined-Tube Manometer

� − �� = �2�2���θ

r6

Page 15: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 9

r6 To measure small pressure differencerzr11001, 1/8/2012

Page 16: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Hydrostatic Force on a Surface

� Differential form

� Integral form:

Apdfdvv

=

∫=A

Apdfvv

∫=A

xx pdAf

Page 17: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Ex: Hydrostatic Force on Planes

� Horizontal planes � Vertical planes

r7

Page 18: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 11

r7 resultant force

Derive Equation 2.18

Explain pressure prism. Only good for rectangularrzr11001, 1/8/2012

Page 19: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Ex:

Hydrostatic Force on Curved Surfaces

r8

Page 20: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 12

r8 Show derivation by considering the eqiulibrium of the fluid volume enclosed by the curved surface of interest and thr horizontal and vertial projections of this surface.rzr11001, 1/8/2012

Page 21: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Buoyancy

� Buoyancy: integrated hydraulic force on the surface of an object

� Archimedes principle:

� Buoyancy force = weight of the displaced volume

r9

Page 22: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Slide 13

r9 show the derivation procedure on Page 69rzr11001, 1/8/2012

Page 23: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Stability

Page 24: Chapter 2. Fluid Statics - engr.uconn.eduengr.uconn.edu/~rzr11001/ME3250_F12/ch2 FluidStatics.pdf · Chapter 2. Fluid Statics Topics Fluid at rest: No relative motion/deformation:

Pressure Variation under Acceleration

Linear Acceleration

Rigid Body Rotation

−�� − ��� = �