75
Chapter 14 Analog Filters 14.1 General Considerations 14.2 First-Order Filters 14.3 Second-Order Filters 14.4 Active Filters 14.5 Approximation of Filter Response 1

Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Chapter 14 Analog Filters

14.1 General Considerations14.2 First-Order Filters14.3 Second-Order Filters14.4 Active Filters14.5 Approximation of Filter Response

1

Page 2: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Outline of the Chapter

2CH 14 Analog Filters

Page 3: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Why We Need Filters

In order to eliminate the unwanted interference that accompanies a signal, a filter is needed.

3CH 14 Analog Filters

Page 4: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Filter Characteristics

Ideally, a filter needs to have a flat pass band and a sharp roll-off in its transition band.Realistically, it has a rippling pass/stop band and a transitionband.

4CH 14 Analog Filters

attenuated amplified

sufficientlynarrow

bad stopbandattenuation

Page 5: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.1: Filter I

5CH 14 Analog Filters

Solution: A filter with stopband attenuation of 40 dB

Problem : Adjacent channel interference is 25 dB above the signal. Determine the required stopband attenuation if Signal to Interference ratio must exceed 15 dB.

Page 6: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.2: Filter II

6CH 14 Analog Filters

Problem: Adjacent 60-Hz channel interference is 40 dB above the signal. Determine the required stopband attenuation to ensure that the signal level remains 20dB above the interferer level.

Solution: A high-pass filter with stopband attenuation of 60 dB at 60Hz.

Page 7: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.3: Filter III

A bandpass filter around 1.5 GHz is required to reject the adjacent Cellular and PCS signals.

7CH 14 Analog Filters

Page 8: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Classification of Filters I

8CH 14 Analog Filters

Page 9: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Classification of Filters II

Continuous-time Discrete-time

9CH 14 Analog Filters

1 2 1Q C V=

2 2 2Q C V=

1 2 2 1

2

if , absorbs charge from and delivers it to a resistor

V V C VV

>⇒ ≈

Page 10: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Classification of Filters III

Passive Active

10CH 14 Analog Filters

Page 11: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Summary of Filter Classifications

11CH 14 Analog Filters

Page 12: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Filter Transfer Function

Filter (a) has a transfer function with -20dB/dec roll-off.Filter (b) has a transfer function with -40dB/dec roll-off and provides a higher selectivity.

(a) (b)

12CH 14 Analog Filters

Page 13: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

General Transfer Function

pk = pole frequencies

zk = zero frequencies

( )( ) ( )( )( ) ( )

1 2

1 2( ) m

n

s z s z s zH s

s p s p s pα

− − −=

− − −

13CH 14 Analog Filters

jσ ω= +

Page 14: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.4 : Pole-Zero Diagram

1 1

1( )1aH s

R C s=

+1 2

1 1 2

1( )( ) 1bR C sH s

R C C s+

=+ +

12

1 1 1 1 1

( )cC sH s

R L C s L s R=

+ +

14CH 14 Analog Filters

Page 15: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Impulse response contains

Example 14.5: Position of the poles

Poles on the RHPUnstable (no good)

Poles on the jω axisOscillatory(no good)

Poles on the LHPDecaying

(good)

15CH 14 Analog Filters

exp( ) exp( )exp( )k k kp t t j tσ ω=

Page 16: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Transfer Function

The order of the numerator m ≤ The order of the denominator nOtherwise, H(s)→∞ as s→∞.For a physically-realizable transfer function, complex zeros or poles occur in conjugate pairs.If a zero is located on the jω axis, z1,2=± jω1 , H(s) drops to zero at ω1.

16CH 14 Analog Filters

( )( ) ( )( )( ) ( )

1 2

1 2( ) m

n

s z s z s zH s

s p s p s pα

− − −=

− − −

1 1 1z jσ ω= + 2 1 1z jσ ω= −

( )( )The numerator contains a product such as which vanishes at

2 21 1 1

1

s j s j s ,s j

ω ω ωω

− + = +=

Page 17: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Imaginary Zeros

Imaginary zero is used to create a null at certain frequency.For this reason, imaginary zeros are placed only in the stop band.

17CH 14 Analog Filters

Page 18: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Sensitivity

PC

dP dCSP C

=

Sensitivity indicates the variation of a filter parameter due tovariation of a component value.

P=Filter Parameter

C=Component Value

18CH 14 Analog Filters

In simple RC filter, the -3dB corner frequency is given by 1/(R1C1)

Example:

Errors in the cut-off frequency: (a) the value of components varies with process and temperature

in ICs(b) The available values of components deviate from those

required by the design

Page 19: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.6: Sensitivity

( )

1

1/1

0

1

1

1

0

0

1211

0

110

−=

−=

−=

=

ω

ωω

ωω

RS

RdRdCRdR

dCR

19CH 14 Analog Filters

Problem: Determine the sensitivity of ω0 with respect to R1.

For example, a +5% change in R1 translates to a -5% error in ω0.

Page 20: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

First-Order Filters

1

1( ) s zH s

s pα +

=+

First-order filters are represented by the transfer function shown above. Low/high pass filters can be realized by changing the relative positions of poles and zeros.

20CH 14 Analog Filters

Page 21: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.8: First-Order Filter I

R2C2 < R1C1 R2C2 > R1C1

21CH 14 Analog Filters

2 1 1

1 2 1 2 1 2

( 1)( )( )

out

in

V R R C ssV R R C C s R R

+=

+ + +

1 1 11 ( ),z R C= − / 11 1 2 1 2[( ) ]p C C R R −= − + ||

.

2

1 2

R0R R

ω → ⇒+

1

1 2

CC C

ω →∞⇒+

( )( )1 1 1 2 1 2

1 1R C C C R R

<+

2 1

1 2

C R1 1C R

+ < +

( )( )1 1 1 2 1 2

1 1R C C C R R

>+

2 1

1 2

C R1 1C R

+ > +

Page 22: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.9: First-Order Filter II

R2C2 < R1C1 R2C2 > R1C1

22

11

2 1 1

1 2 2

1( )( ) 1

11

out

in

RV C ssV R

C sR R C sR R C s

− ||=

||

+= − ⋅

+

22CH 14 Analog Filters

inI

virtual short

inI

2

1

R0R

ω → ⇒ − 1

2

CC

ω →∞⇒ −

Page 23: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

2

2 2( )

nn

s sH ss s

Q

α β γω ω

+ +=

+ +

1,2 211

2 4n

np jQ Qω

ω= − ± −

Second-Order Filters

Second-order filters are characterized by the “biquadratic” equation with two complex poles shown above. When Q increases, the real part decreases while the imaginary part approaches ±ωn.=> the poles look very imaginary thereby bringing the circuit closer to instability.

23CH 14 Analog Filters

General transfer function

Page 24: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Second-Order Low-Pass Filter

( )

22

222 2

( )n

n

H j

Q

γωωω ω ω

=⎛ ⎞

− + ⎜ ⎟⎝ ⎠

α = β = 0

24CH 14 Analog Filters

Peak magnitude normalized to the passband magnitude: 2 11 (4 )Q Q −/ −

.

for 2Q2

>

2p Q2

H( )ω>

2p Q2

2n

H( )ω

γω

>

2( )0

H jωω

∂=

Page 25: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.10: Second-Order LPF

2

2

3

/ 1 1/(4 ) 3

1 1/(2 )n n

Q

Q Q

Qω ω

=

− ≈

− ≈

25CH 14 Analog Filters

Problem: Q of a second-order LPF = 3.Estimate the magnitude and frequency of the peak in the frequency

response.

( )

22

2222 2

( )

3n

n n

H j γωωω ω

=⎛ ⎞

− + ⎜ ⎟⎜ ⎟⎝ ⎠

Page 26: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Second-Order High-Pass Filter

2

2 2( )

nn

sH ss s

Q

αω ω

=+ +

21 1 (2 )n Qω / − /Frequency of the peak:

Peak magnitude normalized to the passband magnitude: 2 11 (4 )Q Q −/ −

26CH 14 Analog Filters

The zero(s) must fall below the poles

for 2Q2

>

0β γ= =

Page 27: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Second-Order Band-Pass Filter

2 2( )

nn

sH ss s

Q

βω ω

=+ +

27CH 14 Analog Filters

0α γ= =

The magnitude approaches zero for both s 0 and s ∞, reaching a maximum in between

Page 28: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.2: -3-dB Bandwidth

28CH 14 Analog Filters

Problem: Determine the -3dB bandwidth of a band-pass response.

2 2( )

( )nn

sH ss s

Q

βω ω

=+ +

1,2 0 21 11

24 QQω ω

⎡ ⎤= + ±⎢ ⎥

⎢ ⎥⎣ ⎦

2 2 2 2

22 2 2 2 2( ) ( )n nn

Q

Q

β ω βω ωω ω ω

=− +

0BWQω

=

The response reaches times its peak value at -3dB frequency

1 / 2

Page 29: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

LC Realization of Second-Order Filters

11 1 2

1 1 1

1( ) ||1

L sZ L sC s L C s

= =+

An LC tank realizes two imaginary poles at ±j/(L1C1)1/2 , which implies infinite impedance at ω=1/(L1C1)1/2.

29CH 14 Analog Filters

at and at

1

1 0

Z 0 0Z

ωω ω

= = ∞= ∞ =

Page 30: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.13: LC Tank

At ω=0, the inductor acts as a short.At ω=∞, the capacitor acts as a short.

30CH 14 Analog Filters

11 1 2

1 1 1

1( ) ||1

L sZ L sC s L C s

= =+

at and 1Z 0 0ω= = ∞

Page 31: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

RLC Realization of Second-Order Filters

1 1 12 1 2 2

1 1 1 1 1 1 1

1 1 1 1

2 2 21 1 1 1 1 1

1 1 1 1

||1

1 1( ) ( )nn

L s R L sZ RLC s R LC s L s R

R L s R L s

R LC s s R LC s sRC LC Q

ω ω

= =+ + +

= =+ + + +

1,2 2

12

1 1 1 11 1

112 4

1 1 12 4

nnp j

Q Q

LjR C R CL C

ω ω= − ± −

= − ± −

With a resistor, the poles are no longer pure imaginary which implies there will be no infinite impedance at any ω.

31CH 14 Analog Filters

11

11 1

1 ,nCQ RLLC

ω = =

Page 32: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Voltage Divider Using General Impedances

( )out P

in S P

V ZsV Z Z

=+

Low-pass High-pass Band-pass32CH 14 Analog Filters

Page 33: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Low-pass Filter Implementation with Voltage Divider

( ) 12

1 1 1 1 1

out

in

V RsV R C L s L s R

=+ +

33CH 14 Analog Filters

1 as SZ L s s= →∞ →∞

11

1 0 as PZ R sC s

= || → →∞

Page 34: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.14: Frequency Peaking

( ) 12

1 1 1 1 1

ou t

in

V RsV R C L s L s R

=+ +

( )22 2 2 21 1 1 1 1Let D R R C L Lω ω= − +

34CH 14 Analog Filters

Voltage gain greater than unity (peaking) occurs when a solution exists for

22 2

1 1 1 1 1 1 1 12 2( )( )( )

0

d DR C L R R C L L

ω= − − +

=

11

1

1Thus, when ,2

peaking occurs.

CQ RL

= ⋅ >

2 21 1 1 1

1 1 0L C 2R C

ω⇒ = − >

2 11

1

C2R 1L

> 11

1

CQ RL

=∵

Page 35: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.15: Low-pass Circuit Comparison

The circuit (a) has a -40dB/dec roll-off at high frequency.However, the circuit (b) exhibits only a -20dB/dec roll-off since the parallel combination of L1 and R1 is dominated by R1

because L1ω→∞, thereby reduces the circuit to R1 and C1.

Good Bad

35CH 14 Analog Filters

(a) (b)

Page 36: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

High-pass Filter Implementation with Voltage Divider

( )2

1 1 1 1 12

1 1 1 1 11 11

( ) ||1( ) ||

o u t

in

V L s R L C R ssV R C L s L s RL s R

C s

= =+ ++

36CH 14 Analog Filters

2

2 2( ) for high pass filter

nn

sH ss s

Q

αω ω

=+ +

Page 37: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Band-pass Filter Implementation with Voltage Divider

( )1

1 12

1 1 1 1 11 11

1( ) ||

1( ) ||

out

in

L sV C s L ssV R C L s L s RL s R

C s

= =+ ++

37CH 14 Analog Filters

Zp must contain both a capacitor and an inductor so that it approaches zero as s 0 or s ∞

pZ

2 2( )

nn

sH ss s

Q

βω ω

=+ +

Page 38: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Summary

Analog filters prove essential in removing unwanted frequency components that may accompany a desired signal.The frequency response of a filter consists of a passband, stopband, and a transition band between the two. The passband and stopband may exhibit some ripple.Filters can be classified as LP, HP, BP, or BR topologies. They can be realized as continuous-time or discrete-time configurations, and as passive or active circuits.The frequency response of filters has dependences on various component values and, therefore, suffers from sensitivity to component variations.First-order passive or active filters can readily provide a LP or HP response, but their transition band is quite wide and stopband attenuation only moderate.Second-order filters have a greater stopband attenuation and are widely used. For a well-behaved frequency and time response, the Q of these filters is typically maintained below 2 / 2

Page 39: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Why Active Filter?

Passive filters constrain the type of transfer function.

They may require bulky inductors.

39CH 14 Analog Filters

Page 40: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Sallen and Key (SK) Filter: Low-Pass

( )( )2

1 2 1 2 1 2 2

11

out

in

V sV R R C C s R R C s

=+ + +

11 2

1 2 2

1 CQ R RR R C

=+ 1 2 1 2

1n R R C C

ω =

Sallen and Key filters are examples of active filters. This particular filter implements a low-pass, second-order transfer function.

40CH 14 Analog Filters

out XV V≈

out 2V C sY out 2 2 outV V C sR V= +

By applying KCL

2

2 2( )

nn

s sH ss s

Q

α β γω ω

+ +=

+ +

Page 41: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.16: SK Filter with Voltage Gain

( )3

4

2 31 2 1 2 1 2 2 2 1 1

4

1

1

out

in

RV RsV RR R C C s R C R C R C s

R

+=

⎛ ⎞+ + − +⎜ ⎟⎝ ⎠

41CH 14 Analog Filters

( )out 3 4 XV 1 R R V= +

Page 42: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.17: SK Filter Poles

The poles begin with real, equal values for andbecome complex for .

3

4

2 31 2 1 2 1 2 2 2 1 1

4

1( )

( ) 1

out

in

RV Rs RV R R C C s R C R C R C s

R

+=

+ + − +

31 2 2 2 1 1

2 1 1 1 2 2 4

1 RR C R C R CQ R C R C R C R= + −

3

4

1

2Q R

R

=−

3 4 0R R/ =3 4 0R R/ >

Problem: Assuming R1=R2, C1=C2, Does such a filter contain complex poles?

42CH 14 Analog Filters

Q ↑

Page 43: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Sensitivity in Low-Pass SK Filter

1 2 1 2

12

n n n nR R C CS S S Sω ω ω ω= = = = −

1 2

2 2

1 1

12

Q QR R

R CS S QR C

= − = − +

1 2

2 2 1 2

1 1 2 1

12

Q QC C

R C R CS S QR C R C

⎛ ⎞= − = − + +⎜ ⎟⎜ ⎟

⎝ ⎠

1 1

2 2

QK

R CS QKR C

=

43CH 14 Analog Filters

3 41K R R= +

the gain of filterout

X

VV

=

1 2 1 2

1n R R C C

ω =∵ n

1

ddRω

=31 2 2 2 1 1

2 1 1 1 2 2 4

1 RR C R C R CQ R C R C R C R= + −∵

Page 44: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.18: SK Filter Sensitivity I

1 2

1 2

1 12 31 22 3

3

Q QR R

Q QC C

QK

S SK

S SK

KSK

= − = − +−

= − = − +−

=−

44CH 14 Analog Filters

Problem: Determine the Q sensitivities of the SK filter for the common choice R1=R2=R, C1=C2=C.

1 2

1 2

With =1,

0

12

Q QR R

Q Q QKC C

K

S S

S S S

= =

= = =

Page 45: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Integrator-Based Biquads

( )2

2 2

out

ninn

V ssV s s

Q

αω ω

=+ + ( ) ( ) ( ) ( )

2

21.n n

out in out outV s V s V s V sQ s sω ωα= − −

It is possible to use integrators to implement biquadratictransfer functions.

45CH 14 Analog Filters

( )2

2n

outV ssω

− ( )1.noutV s

Q sω

Page 46: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

KHN (Kerwin, Huelsman, and Newcomb) Biquads

( ) ( ) ( ) ( )2

21Comparing with .n n

out in out outV s V s V s V sQ s sω ωα= − −

5 6

4 5 31R R

R R Rα

⎛ ⎞= +⎜ ⎟+ ⎝ ⎠

64

4 5 1 1 3

1. . 1n RRQ R R R C Rω ⎛ ⎞

= +⎜ ⎟+ ⎝ ⎠

2 6

3 1 2 1 2

1.nRR R R C C

ω =

46CH 14 Analog Filters

21 1 2 2 1 2 1 2

1 1 1, X out Y X outV V V V VR C s R C s R R C C s

= − = − = 5 4 6 6

4 5 3 3

1in Xout Y

V R V R R RV VR R R R

⎛ ⎞+= + −⎜ ⎟+ ⎝ ⎠

Simplifieddiagram

Page 47: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Calculation of Vout with Simplified Circuit

AV

To obtain AV ,

in

4A XV 0

4 5

RV VR R=

=+ X

5A inV 0

4 5

RV VR R=

=+

in X

4 X 5 inA A AV 0 V 0

4 5

R V R VV V VR R= =

+= + =

+

To obtain for given we ground out A YV V , V

( ) 6Aout 3 6 A

3 3

RVV R R V 1R R

⎛ ⎞= + = +⎜ ⎟

⎝ ⎠

To obtain for given we ground out Y AV V , V

6Yout 6 Y

3 3

RVV R VR R

⎛ ⎞= − = ⎜ ⎟

⎝ ⎠

Page 48: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Versatility of KHN Biquads

( )2

2 2High-pass: out

ninn

V ssV s s

Q

αω ω

=+ +

( )2

2 2 1 1

1Band-pass: .X

ninn

V ssV R C ss s

Q

αω ω

−=

+ +

( )2

22 2 1 2 1 2

1Low-pass: .Y

ninn

V ssV R R C C ss s

Q

αω ω

=+ +

48CH 14 Analog Filters

outX

1 1

V 1VR sC

= −∵

XY

2 2

V 1VR sC

= −∵

Page 49: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Sensitivity in KHN Biquads

1 2 1 2 4 5 3 6, , , , , , , 0.5nR R C C R R R RSω =

1 2 1 2 4 5

3 6

5, , , ,

4 5

3 6 2 2,

5 3 6 1 1

4

0.5, 1,

2 1

Q QR R C C R R

QR R

RS SR R

R R R CQS R R R R CR

= = <+

−=

+

49CH 14 Analog Filters

3 6

3 6

,

if ,

then vanishesQR R

R R

S

=

Page 50: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Tow-Thomas Biquad

32 2 4 1 1

1 1out inout

V V R VR C s R R sC

⎛ ⎞⎛ ⎞⋅ + = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

50CH 14 Analog Filters

X YV V= −

2 2( )Y outV V R C s= −1

inVR

2 2 4

1outVR C s R

Page 51: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Tow-Thomas Biquad

2 3 4 22

1 2 3 4 1 2 2 4 2 3Band-pass: .out

in

V R R R C sV R R R R C C s R R C s R

= −+ +

51CH 14 Analog Filters

3 42

1 2 3 4 1 2 2 4 2 3

1Low-pass: .Y

in

R RVV R R R R C C s R R C s R

=+ +

2 2( )

nn

sH ss s

Q

βω ω

=+ +

2 2( )

nn

H ss s

Q

γω ω

=+ +

BFP

LFP

Page 52: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Differential Tow-Thomas Biquads

An important advantage of this topology over the KHN biquadis accrued in integrated circuit design, where differential integrators obviate the need for the inverting stage in the loop.

52CH 14 Analog Filters

Page 53: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.20: Tow-Thomas Biquad

2 4 1 2

1n R R C C

ω =

Adjusted by R2 or R4

1 2 4 2

3 1

1 R R CQR C

− =

Adjusted by R3

Note that ωn and Q of the Tow-Thomas filter can be adjusted (tuned) independently.

53CH 14 Analog Filters

3 42

1 2 3 4 1 2 2 4 2 3

1Low-pass: .Y

in

R RVV R R R R C C s R R C s R

=+ +

( )H sα

=2s β+

2 2nn

s

s sQ

γω ω

+

+ +

Page 54: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Antoniou General Impedance Converter

1 35

2 4in

Z ZZ ZZ Z

=

It is possible to simulate the behavior of an inductor by using active circuits in feedback with properly chosen passive elements.

54CH 14 Analog Filters

1 3 5 XV V V V= = =

4 45

XX

VV Z VZ

= +

4 33

3Z

V VIZ−

= 4

5 3

XV ZZ Z

= ⋅

2 3 2 3ZV V Z I= −

42

5 3

XX

V ZV ZZ Z

= − ⋅ ⋅

2

1

XX

V VIZ−

=

2 4

1 3 5X

Z ZVZ Z Z

=

5

XVZ

3ZI

3ZIXI

Page 55: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Simulated Inductor

By proper choices of Z1-Z4, Zin has become an impedance that increases with frequency, simulating inductive effect.

Thus, in X Y

eq X Y

Z R R CsL R R C

=

=

55CH 14 Analog Filters

1 35

2 4in

Z ZZ ZZ Z

=∵

1Z 2Z

3Z 4Z 5Z

Page 56: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

High-Pass Filter with SI

With the inductor simulated at the output, the transfer functionresembles a second-order high-pass filter.

( )2

12

1 1 1 1 1

out

in

V L ssV R C L s L s R

=+ +

56CH 14 Analog Filters

Page 57: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.22: High-Pass Filter with SI

4 1 Yout

X

RV VR

⎛ ⎞= +⎜ ⎟

⎝ ⎠

Node 4 can also serve as an output.

57CH 14 Analog Filters

V4 is better than Vout since the output impedance is lower.

1 3 5outV V V V= = =

5 4 4 51X Y

Y X X

R RV V V VR R R

⎛ ⎞= ⇒ = + ⇒⎜ ⎟+ ⎝ ⎠

Page 58: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Low-Pass Filter with Super Capacitor

( )1

1inX

ZCs R Cs

=+

1

2 21 1

11

out in

in in

X

V ZV Z R

R R C s R Cs

=+

=+ +

58CH 14 Analog Filters

How to build a floating inductor to derive a low-pass filter?Not possible. So use a super capacitor.

2 2( )

nn

H ss s

Q

γω ω

=+ +

1Z 2Z

3Z4Z 5Z

Page 59: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.23: Poor Low-Pass Filter

( )41 2out X out out XX

V V Cs R V V R CsR

⎡ ⎤⎛ ⎞= + + = +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

Node 4 is no longer a scaled version of the Vout. Therefore the output can only be sensed at node 1, suffering from a high impedance.

59CH 14 Analog Filters

1out

XV Cs

R⎛ ⎞

+⎜ ⎟⎝ ⎠

1 3 5outV V V V= = =

Page 60: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Summary

Continuous-time passive second-order filters employ RSC sections, but they become impractical at very low frequencies (because of large physical size of inductors and capacitors).Active filters employ op amps, resistors, and capacitors to create the desired frequency response. The Sallen and Key topology is an example.Second-order active (biquad) sections can be based on integrators. Examples include the KHN biquad and the Tow-Thomas biquad.Biquads can also incorporate simulated inductors, which are derived from the “general impedance converter” (GIC). The GIC can yield large inductor or capacitor values through the use of two op amps.

Page 61: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Frequency Response Template

With all the specifications on pass/stop band ripples and transition band slope, one can create a filter template that will lend itself to transfer function approximation.

61CH 14 Analog Filters

Page 62: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Butterworth Response

2

0

1( )

1n

H jωωω

=⎛ ⎞

+ ⎜ ⎟⎝ ⎠

ω-3dB=ω0, for all n.

The Butterworth response completely avoids ripples in the pass/stop bands at the expense of the transition band slope.

62CH 14 Analog Filters

To obtain the poles, we make a reverse substitution, / ,and set the denominarot to zero:

s jω =

Page 63: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Butterworth Response

2

01 0

ns

jω⎛ ⎞

+ =⎜ ⎟⎝ ⎠

( ) ( ) ( )( ) ( )

2 222 20 0

220

0 0

0

n nnn n

nnn

s j s j

s j

ω ω

ω

+ = ⇒ + =

+ − =

This polynomial has 2n roots given by

02 1exp exp , 1,2,..., 2

2 2kj kp j k n

nπω −⎛ ⎞= =⎜ ⎟

⎝ ⎠

For 2nd order filter,

1,2,3,4 0 0 0 03 5 7 9exp , exp , exp , exp4 4 4 4k

j j j jp π π π πω ω ω ω= =

exp4jπ− exp

4jπ

But only the roots having a negative real part are acceptable

negative real positive real

63CH 14 Analog Filters

02 1exp exp , 1, 2, ,

2 2kj kp j k n

nπω π−⎛ ⎞= =⎜ ⎟

⎝ ⎠

Page 64: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Poles of the Butterworth Response

64CH 14 Analog Filters

2nd‐Order nth‐Order

1 2

1 2

( )( ) ( )( )( )( ) ( )

n

n

p p pH ss p s p s p− − ⋅⋅⋅ −

=− − ⋅⋅⋅ −

where the factor in the numerator is included to yield H(s=0)=1

Page 65: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.24: Order of Butterworth Filter

The minimum order of the Butterworth filter is three.

22

164.2

nff

⎛ ⎞=⎜ ⎟

⎝ ⎠2 12f f=

65CH 14 Analog Filters

Specification: passband flatness of 0.45 dB for f < f1=1 MHz, stopbandattenuation of 9 dB at f2=2 MHz.

1( 1MHz) 0 95H f| = |= .

22

1

0

1 0 9521

nfπ

ω

= .⎛ ⎞

+ ⎜ ⎟⎝ ⎠

03, 2 (1 45MHz)n ω π= = × .

2( 2MHz) 0 355H f| = |= .

22

2

0

1 0 35521

nfπ

ω

= .⎛ ⎞

+ ⎜ ⎟⎝ ⎠

0.45 dB≈ − 9 dB≈ −

Page 66: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.25: Butterworth Response

12 22 *(1.45 )* cos sin3 3

p MHz jπ ππ ⎛ ⎞= +⎜ ⎟⎝ ⎠

32 22 *(1.45 )* cos sin3 3

p MHz jπ ππ ⎛ ⎞= −⎜ ⎟⎝ ⎠

2 2 *(1.45 )p MHzπ= RC section

2nd-order SK

Using a Sallen and Key topology, design a Butterworth filter for the response derived in Example 14.24.

66CH 14 Analog Filters

23π

43π

1,2,3 0 0 02 3 4exp , exp , exp3 3 3k

j j jp π π πω ω ω= =

0ω= −

Page 67: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.25: Butterworth Response (cont’d)

[ ]2

1 32 2

1 3

( )( ) [2 (1 45MHz)]( )( )( ) 4 (1 45MHz)cos(2 3) [2 (1 45MHz)]SK

p pH ss p s p s s

ππ π π

− − × .= =

− − − × . / + × .

22 (1 45MHz) and 1/ 2cos 13n Q πω π ⎛ ⎞= × . = = →⎜ ⎟

⎝ ⎠

1 2 2 1 21k , 54.9pF, and 4R R C C C= = Ω = =

3 33 3

1 2 (1 45MHz) 1k and 109.8pFR CR C

π= × . → = Ω =

67CH 14 Analog Filters

2

2 2( )

nn

s sH ss s

Q

α β γω ω

+ +=

+ +2C

1C

2C3R1R 2R

11 2

1 2 2

1 CQ R RR R C

=+

∵1 2 1 2

1n R R C C

ω =∵

2 21 1

1

4n

R Cω =

Page 68: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Chebyshev Response

( )2 2

0

1

1 n

H j

C

ωωεω

=⎛ ⎞

+ ⎜ ⎟⎝ ⎠

The Chebyshev response provides an “equiripple” pass/stop band response.

68CH 14 Analog Filters

: the amount of rippleε2

0( / ) : the "Chebyshev polynomial" of th ordernC nω ω

Chebyshev Polynomial

Page 69: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Chebyshev Polynomial

Chebyshev polynomial for n=1,2,3

Resulting transfer function forn=2,3

10

0 0

10

0

cos cos ,

cosh cosh ,

nC n

n

ω ω ω ωω ω

ω ω ωω

⎛ ⎞ ⎛ ⎞= <⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎛ ⎞

= >⎜ ⎟⎝ ⎠ 69CH 14 Analog Filters

2

11 ε+

1

0

H ωω⎛ ⎞⎜ ⎟⎝ ⎠

( )2 2

0

1

1 n

H j

C

ωωεω

=⎛ ⎞

+ ⎜ ⎟⎝ ⎠

Page 70: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Chebyshev Response

2 2 1

0

1( ) |

1 cos cosPBH j

n

ωωεω

| =⎛ ⎞

+ ⎜ ⎟⎝ ⎠

2 2 1

0

1( ) |

1 cosh coshSBH j

n

ωωεω

| =⎛ ⎞

+ ⎜ ⎟⎝ ⎠

70CH 14 Analog Filters

2dBPeak-to-peak Ripple 20 log 1 ε| = +

Page 71: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.26: Chebyshev Response

( )2 (2MHz) 0.116 18.7dBH j π = = −

ω0=2π (1MHz)

A third-order Chebyshev response provides an attenuation of -18.7 dB a 2MHz.

Suppose the filter required in Example 14.24 is realized with third-order Chebyshev response. Determine the attenuation at 2MHz.

2

1 0 95 0 3291

εε

= . → = .+

( )23

2

0 0

1

1 4 3

H jω

ω ωεω ω

=⎡ ⎤⎛ ⎞⎢ ⎥+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

71CH 14 Analog Filters

Page 72: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.27: Order of Chebyshev Filter

Specification: Passband ripple: 1 dBBandwidth: 5 MHzAttenuation at 10 MHz: 30 dBWhat’s the order?

72CH 14 Analog Filters

21 dB 20log 1 0 509ε ε= + → = .

0Attenuation at 2 10 MHz: 30 dBω ω= =

2 2 1

1 0 03161 0 509 cosh ( cosh 2)n −

= .+ .

2cosh (1 317 ) 3862 3 66 4n n n. = → > . → =

Page 73: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.28: Chebyshev Filter Design

( ) ( )1 10 0

2 1 2 11 1 1 1sin sinh sinh cos cosh sinh2 2k

k kp j

n n n nπ π

ω ωε ε

− −− −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2,3 0 00.337 0.407p jω ω= − ±

SK21,4 0 00.140 0.983p jω ω= − ±

SK1

Using two SK stages, design a filter that satisfies the requirements in Example 14.27.

73CH 14 Analog Filters

Page 74: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Example 14.28: Chebyshev Filter Design (cont’d)

1 41

1 420

2 20 0

( )( )( )( )( )

0 9860 28 0 986

SKp pH s

s p s p

s sω

ω ω

− −=

− −

.=

+ . + .

1 00 993 2 (4 965MHz)nω ω π= . = × .

1 3 55Q = .

1 2 1 21 k , 50 4R R C C= = Ω = .

1 2

2 1

1 2 (4 965MHz)50 4

4.52 pF, 227.8 pFR C

C C

π= × ..

→ = =

2 32

2 3

20

2 20 0

( )( )( )( )( )

0 2790 674 0 279

SKp pH s

s p s p

s sω

ω ω

− −=

− −

.=

+ . + .

2 00 528 2 (2 64MHz)nω ω π= . = × .

2 0 783Q = . .

1 2

2 1

1 2 (2 64 MHz)2 45

38 5 pF, C 94.3 pFR C

C

π= × ..

→ = . =

1 2 1 21 k , 2 45R R C C= = Ω = .

74CH 14 Analog Filters

Page 75: Chapter 14 Analog Filters - Seoul National University · 2018. 1. 30. · Continuous-time Discrete-time CH 14 Analog Filters 9 QCV 121= QCV 222= 122 1 2 if , absorbs charge from and

Summary

The desired filter response must in practice be approximated by a realizable transfer function. Possible transfer functions include Butterworth and Chebyshev responses.The Butterworth response contains n complex poles on a circle and exhibits a maximally-flat behavior. It is suited to applications that are intolerant of any ripple in the passbandThe Chebyshev response provides a sharper transition than Butterworth at the cost of some ripple in the passband and stopbands. It contains n complex poles on an ellipse.