117
Symmetrical Components and Sequence Networks Chapter 11

Chapter 11b

Embed Size (px)

Citation preview

Page 1: Chapter 11b

Symmetrical Components and Sequence Networks

Chapter 11

Page 2: Chapter 11b

Balanced sequences

Page 3: Chapter 11b

Synthesis equations

Page 4: Chapter 11b

Synthesis equations

Page 5: Chapter 11b

Analysis equations

๐‘‰๐‘Ž0 = 1

3 (๐‘‰๐‘Ž+ ๐‘‰๐‘ + ๐‘‰๐‘)

๐‘‰๐‘Ž1 = 1

3 (๐‘‰๐‘Ž+๐‘Ž ๐‘‰๐‘+๐‘Ž2๐‘‰๐‘)

๐‘‰๐‘Ž2 = 1

3 (๐‘‰๐‘Ž+๐‘Ž2 ๐‘‰๐‘+๐‘Ž๐‘‰๐‘)

Page 6: Chapter 11b

Example: Balanced line to neutral voltages with positive sequence

Calculate the sequence components of the following line to neutral voltages with abc sequence

๐‘‰๐‘Ž๐‘› = 277โˆ 00 V

๐‘‰๐‘๐‘› = 277โˆ โˆ’1200 V

๐‘‰๐‘๐‘› = 277โˆ 1200 V

Page 7: Chapter 11b

Solution

Page 8: Chapter 11b

Example: Balanced line currents with a negative sequence

Calculate the sequence components of the current in line a of a balanced star connected load with acb sequence

๐ผ๐‘Ž = 10โˆ 00 A

๐ผ๐‘ = 10โˆ 1200 A

๐ผ๐‘ = 10โˆ โˆ’1200 A

Page 9: Chapter 11b

Solution

๐ผ๐‘Ž0 = 0 A

๐ผ๐‘Ž1 = 0 A

๐ผ๐‘Ž2 = 10โˆ 00 A

This example shows that a balanced negative sequence network has only negative sequence components

Page 10: Chapter 11b

Example 11.1 Textbook

Page 11: Chapter 11b

Example 11.1 Solution

Page 12: Chapter 11b

Balanced ฮ” circuits

Only line voltages are applicable

Line currents and phase currents are applicable

Page 13: Chapter 11b

Balanced ฮ” circuits

๐ผ๐‘Ž = ๐ผ๐‘Ž๐‘ โˆ’ ๐ผ๐‘๐‘Ž

๐ผ๐‘ = ๐ผ๐‘๐‘ โˆ’ ๐ผ๐‘Ž๐‘

๐ผ๐‘ = ๐ผ๐‘๐‘Ž โˆ’ ๐ผ๐‘๐‘

For positive phase sequence

๐ผ๐‘Ž1 = 3โˆ (โˆ’300 ) ๐ผ๐‘Ž๐‘1

The magnitude of the line current is 3 the phase current and lags by 300

Page 14: Chapter 11b

Balanced ฮ” circuits

For negative phase sequence

๐ผ๐‘Ž2 = 3โˆ (+300 ) ๐ผ๐‘Ž๐‘2

The magnitude of the line current is 3 the phase current and leads by 300

Page 15: Chapter 11b

Phasors for balanced ฮ” circuits

Page 16: Chapter 11b

Balanced Y circuits

Only line currents are applicable

Line voltages and phase voltages are applicable

Page 17: Chapter 11b

Balanced Y circuits

๐‘‰๐‘Ž๐‘ = ๐‘‰๐‘Ž๐‘› โˆ’ ๐‘‰๐‘๐‘›

๐‘‰๐‘๐‘ = ๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘๐‘›

๐‘‰๐‘๐‘Ž = ๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘Ž๐‘›

For positive phase sequence

๐‘‰๐‘Ž๐‘1 = 3โˆ (+300 ) ๐‘‰๐‘Ž๐‘›1

The magnitude of the line voltage is 3 the phase voltage and leads by 300

Page 18: Chapter 11b

Balanced Y circuits

For negative phase sequence

๐‘‰๐‘Ž๐‘2 = 3โˆ (โˆ’300 ) ๐‘‰๐‘Ž๐‘›2

The magnitude of the line voltage is 3 the phase voltage and lags by 300

Page 19: Chapter 11b

Phasors for balanced Y circuits

Page 20: Chapter 11b

Equivalent Y and ฮ” loads

Given a ฮ” connected load of impedance ๐‘ฮ” per phase, it can be shown that the equivalent Y connected load will have an impedance of ๐‘๐‘Œ = ๐‘ฮ”

3 .

Page 21: Chapter 11b

Equivalent Y and ฮ” loads

Page 22: Chapter 11b

Example 11.2 Textbook

Page 23: Chapter 11b

Example 11.2 solution

Page 24: Chapter 11b

Example 11.2 solution

Page 25: Chapter 11b

Example 11.2 solution

Page 26: Chapter 11b

Example 11.2 solution

Page 27: Chapter 11b

Example 11.2 solution

Page 28: Chapter 11b

Example 11.2 solution

Page 29: Chapter 11b

Power in terms of symmetrical components

๐‘†3ฮฆ = ๐‘‰๐‘Ž๐ผ๐‘Žโˆ—+๐‘‰๐‘๐ผ๐‘

โˆ—+๐‘‰๐‘๐ผ๐‘โˆ—

= 3๐‘‰๐‘Ž0๐ผ๐‘Ž0โˆ—+ 3๐‘‰๐‘Ž1๐ผ๐‘Ž1

โˆ—+ 3๐‘‰๐‘Ž2๐ผ๐‘Ž2โˆ—

Page 30: Chapter 11b

Example 11.3

Using symmetrical components calculate the power absorbed in the load of example 11.2 and check the answer.

Page 31: Chapter 11b

Example 11.3 solution

๐‘†3ฮฆ = ๐‘‰๐‘Ž๐ผ๐‘Žโˆ—+๐‘‰๐‘๐ผ๐‘

โˆ—+๐‘‰๐‘๐ผ๐‘โˆ—

= 3๐‘‰๐‘Ž0๐ผ๐‘Ž0โˆ—+ 3๐‘‰๐‘Ž1๐ผ๐‘Ž1

โˆ—+ 3๐‘‰๐‘Ž2๐ผ๐‘Ž2โˆ—

When working in per unit the factor of 3 falls away. Therefore

๐‘†3ฮฆ =๐‘‰๐‘Ž0๐ผ๐‘Ž0โˆ—+ ๐‘‰๐‘Ž1๐ผ๐‘Ž1

โˆ—+ ๐‘‰๐‘Ž2๐ผ๐‘Ž2โˆ—

= 0 + (0.9857โˆ 43.60)(0.9857โˆ -43.60) +(0.2346โˆ 250.30)(0.2346โˆ -250.30)

= 1.023โˆ 00

Actual

= 1.023โˆ 00(500)

= 513.320KW

Page 32: Chapter 11b

Example 11.3 solution

Verifying the answer

๐ผ๐‘Ž1 = 0.9857โˆ 43.60

๐ผ๐‘1 = 0.9857โˆ โˆ’76.40

๐ผ๐‘1 = 0.9857โˆ 163.60

๐ผ๐‘Ž2 = 0.2346โˆ 250.30

๐ผ๐‘2 = 0.2346โˆ 370.30

๐ผ๐‘2 = 0.2346โˆ 130.30

๐ผ๐‘Ž0 = ๐ผ๐‘0= ๐ผ๐‘0=0

Page 33: Chapter 11b

Example 11.3 solution

๐ผ๐‘Ž = ๐ผ๐‘Ž0+ ๐ผ๐‘Ž1+ ๐ผ๐‘Ž2 = 0.7832โˆ 35.870 ๐ผ๐‘ = ๐ผ๐‘0+ ๐ผ๐‘1+ ๐ผ๐‘2 = 1.026โˆ โˆ’63.20 ๐ผ๐‘ = ๐ผ๐‘0+ ๐ผ๐‘1+ ๐ผ๐‘2 = 1.189โˆ 157.40

Base current Ib = 500000

3 (2300) = 125.5 A

Actual currents ๐ผ๐‘Ž= 98.3โˆ 35.870 A ๐ผ๐‘= 128.8โˆ โˆ’63.20 A ๐ผ๐‘= 149.2โˆ 157.40 A

Page 34: Chapter 11b

Example 11.3 solution

Power = ๐ผ๐‘Ž2๐‘…๐‘Œ+๐ผ๐‘

2๐‘…๐‘Œ+๐ผ๐‘2๐‘…๐‘Œ

= 98.32(10.58)+128.82(10.58)+149.22(10.58)

= 513 kW

Page 35: Chapter 11b

Sequence circuits of Y and ฮ” impedance loads

Page 36: Chapter 11b

Sequence circuits of Y and ฮ” impedance loads

Neutral current

๐ผ๐‘› = ๐ผ๐‘Ž+ ๐ผ๐‘+ ๐ผ๐‘

= (๐ผ๐‘Ž0+ ๐ผ๐‘Ž1+ ๐ผ๐‘Ž2) + (๐ผ๐‘0+ ๐ผ๐‘1+ ๐ผ๐‘2)+(๐ผ๐‘0+ ๐ผ๐‘1+ ๐ผ๐‘2)

= (๐ผ๐‘Ž0+ ๐ผ๐‘0+ ๐ผ๐‘0) + (๐ผ๐‘Ž1+ ๐ผ๐‘1+ ๐ผ๐‘1)+(๐ผ๐‘Ž2+ ๐ผ๐‘2+ ๐ผ๐‘2)

= (๐ผ๐‘Ž0+ ๐ผ๐‘Ž0+ ๐ผ๐‘Ž0) + 0 +0

= 3๐ผ๐‘Ž0

The neutral current consists only of the zero sequence current

Page 37: Chapter 11b

Sequence circuits of Y and ฮ” impedance loads

The volt drop across ๐‘๐‘› is ๐‘‰๐‘๐‘› = 3๐ผ๐‘Ž0๐‘๐‘› This means that the voltages to neutral (๐‘‰๐‘Ž๐‘›, ๐‘‰๐‘๐‘›, ๐‘‰๐‘๐‘›) and the voltages to ground (๐‘‰๐‘Ž, ๐‘‰๐‘ , ๐‘‰๐‘) are different under balanced conditions ๐‘‰๐‘Ž = ๐‘‰๐‘Ž๐‘› + ๐‘‰๐‘๐‘› = ๐‘๐‘Œ๐ผ๐‘Ž + 3๐ผ๐‘Ž0๐‘๐‘› ๐‘‰๐‘= ๐‘‰๐‘๐‘› + ๐‘‰๐‘๐‘› = ๐‘๐‘Œ๐ผ๐‘ + 3๐ผ๐‘Ž0๐‘๐‘› ๐‘‰๐‘ = ๐‘‰๐‘๐‘› + ๐‘‰๐‘๐‘› = ๐‘๐‘Œ๐ผ๐‘ + 3๐ผ๐‘Ž0๐‘๐‘›

Page 38: Chapter 11b

Sequence circuits of Y and ฮ” impedance loads

The previous set of equations can be written in matrix form as

A

๐‘‰๐’‚๐ŸŽ

๐‘‰๐’‚๐Ÿ

๐‘‰๐’‚๐Ÿ

= ๐‘๐‘Œ A

๐ผ๐’‚๐ŸŽ

๐ผ๐’‚๐Ÿ

๐ผ๐’‚๐Ÿ

+ 3๐ผ๐‘Ž0๐‘๐‘› 111

Where A =๐Ÿ ๐Ÿ ๐Ÿ๐Ÿ ๐’‚๐Ÿ ๐’‚๐Ÿ ๐’‚ ๐’‚๐Ÿ

Page 39: Chapter 11b

Sequence circuits of Y and ฮ” impedance loads

Multiplying throughout by ๐‘จโˆ’๐Ÿ gives

๐‘‰๐’‚๐ŸŽ

๐‘‰๐’‚๐Ÿ

๐‘‰๐’‚๐Ÿ

= ๐‘๐‘Œ

๐ผ๐’‚๐ŸŽ

๐ผ๐’‚๐Ÿ

๐ผ๐’‚๐Ÿ

+ 3๐ผ๐‘Ž0๐‘๐‘› ๐‘จโˆ’๐Ÿ 111

Which reduces to

๐‘‰๐’‚๐ŸŽ

๐‘‰๐’‚๐Ÿ

๐‘‰๐’‚๐Ÿ

= ๐‘๐‘Œ

๐ผ๐’‚๐ŸŽ

๐ผ๐’‚๐Ÿ

๐ผ๐’‚๐Ÿ

+ 3๐ผ๐‘Ž0๐‘๐‘› 100

Page 40: Chapter 11b

Sequence circuits of Y and ฮ” impedance loads

Writing as previous equations as separate equations Multiplying throughout by ๐‘จโˆ’๐Ÿ gives

๐‘‰๐‘Ž0 = (๐‘๐‘Œ + 3๐‘๐‘›) ๐ผ๐‘Ž0 = ๐‘0 ๐ผ๐‘Ž0

๐‘‰๐‘Ž1 = ๐‘๐‘Œ๐ผ๐‘Ž1 = ๐‘1 ๐ผ๐‘Ž1

๐‘‰๐‘Ž2 = ๐‘๐‘Œ๐ผ๐‘Ž2 = ๐‘2 ๐ผ๐‘Ž2

Where

๐‘0 is the impedance to zero sequence current

๐‘1 is the impedance to positive sequence current

๐‘2 is the impedance to negative sequence current

Page 41: Chapter 11b

Sequence circuits of Y impedance loads

The previous three equations results in three separate networks:

Positive sequence network

Negative sequence network

Zero sequence network

Page 42: Chapter 11b

Sequence circuits of Y impedance loads

The previous three equations results in three separate circuits for the Y connected load

Page 43: Chapter 11b

Sequence circuits of Y impedance loads

๐‘0 is the zero sequence impedance

๐‘1 is the zero sequence impedance

๐‘2 is the negative sequence impedance

Page 44: Chapter 11b

Sequence circuits of Y impedance loads

๐‘๐‘› can assume the following values:

0 (short circuit โ€“ solidly bolted, solidly grounded)

Some positive value

โˆž

Solidly grounded neutral Open circuited neutral

Page 45: Chapter 11b

Sequence circuits of ฮ” impedance loads

Zero sequence network

Positive sequence network

Negative sequence network

๐’ฮ”

๐Ÿ‘

๐’ฮ”

๐Ÿ‘

Page 46: Chapter 11b

Sequence circuits of ฮ” impedance loads

Zero sequence network

Positive sequence network

Negative sequence network

๐’ฮ”

๐Ÿ‘

๐’ฮ”

๐Ÿ‘ ๐’ฮ”

๐Ÿ‘

Page 47: Chapter 11b

Example

Three equal impedances of j30 ฮฉ are connected in ฮ”. Determine the sequence impedances and draw the sequence networks. Repeat the problem for the case where a mutual impedance of j5 ฮฉ exists between each branch of the load.

Page 48: Chapter 11b

Solution

j30 j30

j30

j30 j10 j10

Zero sequence network

Positive sequence network

Negative sequence network

Page 49: Chapter 11b

Solution with mutual impedance

Page 50: Chapter 11b

Solution with mutual impedance

j40 J8.3 J8.3

Page 51: Chapter 11b

Sequence circuits of a transmission line

๐‘๐‘Ž๐‘Ž - self impedance of each phase conductor ๐‘๐‘›๐‘› - self impedance of the neutral conductor ๐‘๐‘Ž๐‘ - mutual impedance between phase conductors ๐‘๐‘Ž๐‘› - mutual impedance between neutral and phase conductors

Page 52: Chapter 11b

Sequence circuits of a transmission line

The presence of the neutral conductor changes the self impedance and mutual impedance of the phase conductors:

๐‘๐‘  = ๐‘๐‘Ž๐‘Ž+ ๐‘๐‘›๐‘› - 2 ๐‘๐‘Ž๐‘› (self impedance)

๐‘๐‘š = ๐‘๐‘Ž๐‘+ ๐‘๐‘›๐‘› - 2 ๐‘๐‘Ž๐‘› (mutual impedance)

Page 53: Chapter 11b

Sequence circuits of a transmission line

Using the self and mutual impedance of the line , the volt drops across the line can be calculated from the following set of equations:

๐‘‰๐‘Ž๐‘Žโ€ฒ

๐‘‰๐‘๐‘โ€ฒ

๐‘‰๐‘๐‘โ€ฒ

=

๐‘‰๐‘Ž๐‘› โˆ’ ๐‘‰๐‘Žโ€ฒ๐‘›โ€ฒ

๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ

๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ

=

๐‘๐‘  ๐‘๐‘š ๐‘๐‘š

๐‘๐‘š ๐‘๐‘  ๐‘๐‘š

๐‘๐‘š ๐‘๐‘š ๐‘๐‘ 

๐ผ๐‘Ž

๐ผ๐‘

๐ผ๐‘

Page 54: Chapter 11b

Sequence circuits of a transmission line

The sequence impedances of the transmission line are defined as:

๐‘0 = ๐‘๐‘ + 2๐‘๐‘š = ๐‘๐‘Ž๐‘Ž+ 2 ๐‘๐‘Ž๐‘ + 3 ๐‘๐‘›๐‘› - 6 ๐‘๐‘Ž๐‘›

๐‘1 = ๐‘๐‘ - ๐‘๐‘š = ๐‘๐‘Ž๐‘Ž- ๐‘๐‘Ž๐‘

๐‘2 = ๐‘๐‘ - ๐‘๐‘š = ๐‘๐‘Ž๐‘Ž- ๐‘๐‘Ž๐‘

Page 55: Chapter 11b

Sequence circuits of a transmission line

The volt drops across the line can be calculated from the following equations

Page 56: Chapter 11b

Sequence circuits of a transmission line

Zero sequence network

Positive sequence network

Negative sequence network

Page 57: Chapter 11b

Example

A three phase transmission line has the following voltages at the sending and receiving ends

๐‘‰๐‘Ž๐‘›=182+j70 kV ๐‘‰๐‘Žโ€ฒ๐‘›โ€ฒ=154+j28 kV

๐‘‰๐‘๐‘›=72.24-j32.62 kV ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ=44.24-j74.62 kV

๐‘‰๐‘๐‘›=-170.24+j88.62 kV ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ=-198.24+j46.62 kV

The line impedances are

๐‘๐‘Ž๐‘Ž=j60 ฮฉ ๐‘๐‘Ž๐‘=j20 ฮฉ ๐‘๐‘›๐‘›=j80 ฮฉ ๐‘๐‘Ž๐‘›=0 ฮฉ

Determine the line currents ๐ผ๐‘Ž, ๐ผ๐‘ and ๐ผ๐‘

Page 58: Chapter 11b

Solution

๐‘๐‘  = ๐‘๐‘Ž๐‘Ž+ ๐‘๐‘›๐‘› - 2 ๐‘๐‘Ž๐‘› = j60 + j80 โ€“ j60 = j80 ฮฉ

๐‘๐‘š = ๐‘๐‘Ž๐‘+ ๐‘๐‘›๐‘› - 2 ๐‘๐‘Ž๐‘› = j20 + j80 โ€“ j60 = j40 ฮฉ

Then using

๐‘‰๐‘Ž๐‘Žโ€ฒ

๐‘‰๐‘๐‘โ€ฒ

๐‘‰๐‘๐‘โ€ฒ

=

๐‘‰๐‘Ž๐‘› โˆ’ ๐‘‰๐‘Žโ€ฒ๐‘›โ€ฒ

๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ

๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ

=

๐‘๐‘  ๐‘๐‘š ๐‘๐‘š

๐‘๐‘š ๐‘๐‘  ๐‘๐‘š

๐‘๐‘š ๐‘๐‘š ๐‘๐‘ 

๐ผ๐‘Ž

๐ผ๐‘

๐ผ๐‘

Page 59: Chapter 11b

Solution

๐‘‰๐‘Ž๐‘Žโ€ฒ

๐‘‰๐‘๐‘โ€ฒ

๐‘‰๐‘๐‘โ€ฒ

=

๐‘‰๐‘Ž๐‘› โˆ’ ๐‘‰๐‘Žโ€ฒ๐‘›โ€ฒ

๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ

๐‘‰๐‘๐‘› โˆ’ ๐‘‰๐‘โ€ฒ๐‘›โ€ฒ

=

๐‘๐‘  ๐‘๐‘š ๐‘๐‘š

๐‘๐‘š ๐‘๐‘  ๐‘๐‘š

๐‘๐‘š ๐‘๐‘š ๐‘๐‘ 

๐ผ๐‘Ž

๐ผ๐‘

๐ผ๐‘

28 + ๐‘—4228 + ๐‘—4228 + ๐‘—42

x103 =

๐‘—80 ๐‘—40 ๐‘—40๐‘—40 ๐‘—80 ๐‘—40๐‘—40 ๐‘—40 ๐‘—80

๐ผ๐‘Ž

๐ผ๐‘

๐ผ๐‘

Page 60: Chapter 11b

Solution

๐ผ๐‘Ž

๐ผ๐‘

๐ผ๐‘

=

๐‘—80 ๐‘—40 ๐‘—40๐‘—40 ๐‘—80 ๐‘—40๐‘—40 ๐‘—40 ๐‘—80

28 + ๐‘—4228 + ๐‘—4228 + ๐‘—42

x103

=

262.5 โˆ’ ๐‘—175262.5 โˆ’ ๐‘—175262.5 โˆ’ ๐‘—175

A

-1

Page 61: Chapter 11b

Solution

Using Symmetrical component

The sequence components of the line volt drops are

๐‘‰๐‘Ž๐‘Žโ€ฒ0

๐‘‰๐‘Ž๐‘Žโ€ฒ1

๐‘‰๐‘Ž๐‘Žโ€ฒ2

= 1

3

1 1 11 ๐‘Ž ๐‘Ž2

1 ๐‘Ž2 ๐‘Ž

๐‘‰๐‘Ž๐‘Žโ€ฒ

๐‘‰๐‘๐‘โ€ฒ

๐‘‰๐‘๐‘โ€ฒ

Page 62: Chapter 11b

Solution

๐‘‰๐‘Ž๐‘Žโ€ฒ0

๐‘‰๐‘Ž๐‘Žโ€ฒ1

๐‘‰๐‘Ž๐‘Žโ€ฒ2

= 1

3

1 1 11 ๐‘Ž ๐‘Ž2

1 ๐‘Ž2 ๐‘Ž

28 + ๐‘—4228 + ๐‘—4228 + ๐‘—42

x103

= 28 + ๐‘—42

00

x103 V

Page 63: Chapter 11b

Solution

๐‘0 = ๐‘๐‘Ž๐‘Ž+ 2 ๐‘๐‘Ž๐‘ + 3 ๐‘๐‘›๐‘› - 6 ๐‘๐‘Ž๐‘› = j60 + j40 + j240 โ€“ j180 = j160 ๐‘1 = ๐‘2 = ๐‘๐‘Ž๐‘Ž- ๐‘๐‘Ž๐‘ = j60 โ€“ j20 = j40 So ๐‘‰๐‘Ž๐‘Žโ€ฒ

0 = ๐‘0 ๐ผ๐‘Ž0

๐‘‰๐‘Ž๐‘Žโ€ฒ1 = ๐‘1 ๐ผ๐‘Ž

1 ๐‘‰๐‘Ž๐‘Žโ€ฒ

2 = ๐‘2 ๐ผ๐‘Ž2

Page 64: Chapter 11b

Solution

(28 + ๐‘—42) 103 = (j160) ๐ผ๐‘Ž0 ๐ผ๐‘Ž

0 = 262.5 โ€“ j175 A 0 = j40 ๐ผ๐‘Ž1 ๐ผ๐‘Ž

1 = 0 0 = j40 ๐ผ๐‘Ž2 ๐ผ๐‘Ž

2 = 0 Therefore ๐ผ๐‘Ž = ๐ผ๐‘ = ๐ผc = 262.5 โ€“ j175 A

Page 65: Chapter 11b

Sequence circuits of a synchronous machine

Page 66: Chapter 11b

Sequence circuits of a synchronous machine

The sequence equations are:

๐ฟ๐‘  and ๐‘€๐‘  are the self and mutual inductances of the windings

Zero sequence network

Positive sequence network

Negative sequence network

Page 67: Chapter 11b

Sequence circuits of a synchronous machine

Page 68: Chapter 11b

Sequence circuits of a synchronous machine

Page 69: Chapter 11b

Sequence circuits of a synchronous machine

Page 70: Chapter 11b

Example

A generator rated at 20 MVA, 13.8 kV has a direct axis subtransient reactance of 0.25 per unit. The negative and zero sequence reactances are 0.35 and 0.10 per unit respectively. The neutral of the generator is solidly grounded. If the generator is unloaded at rated voltage ๐ธ๐‘Ž๐‘›= 1.0โˆ 00 per unit and a single line to ground fault occurs at the machine terminals, which results in the following terminal voltages to ground

Page 71: Chapter 11b

Example

๐‘‰๐‘Ž= 0

๐‘‰๐‘= 1.0.13โˆ โˆ’102.250

๐‘‰๐‘= 1.0.13โˆ โˆ’102.250

Determine the subtransient current in the generator and the line-to-line voltages for subtransient conditions due to the fault.

Page 72: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

5 Cases will be considered

Case 1: Y-Y bank โ€“ both neutrals grounded

Case 2: Y-Y bank โ€“ one neutral grounded

Case 3: ฮ”-ฮ” bank

Case 4: Y-ฮ” bank โ€“ Y grounded

Case 5: Y-ฮ” bank โ€“ Y ungrounded

Page 73: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 1: Y-Y bank โ€“ both neutrals grounded

Page 74: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 1: Y-Y bank โ€“ both neutrals grounded Sequence equations: Positive sequence Negative sequence Zero sequence

Page 75: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 1: Y-Y bank โ€“ both neutrals grounded

Zero Sequence equivalent circuit:

๐‘0 = 3๐‘๐‘ + 3 ๐‘๐‘›

Page 76: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 1: Y-Y bank โ€“ both neutrals grounded

Zero Sequence equivalent circuit with leakage impedance Z:

๐‘0 = Z + 3๐‘๐‘ + 3 ๐‘๐‘›

Page 77: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 1: Y-Y bank โ€“ both neutrals grounded

Zero Sequence equivalent circuit with leakage impedance Z:

๐‘0 = Z + 3๐‘๐‘ + 3 ๐‘๐‘›

Page 78: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 1: Y-Y bank โ€“ both neutrals grounded

Positive Sequence equivalent circuit with leakage impedance Z:

๐‘1 = Z

๐‘1

Page 79: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 1: Y-Y bank โ€“ both neutrals grounded

Negative Sequence equivalent circuit with leakage impedance Z:

๐‘2 = Z

๐‘2

Page 80: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 2 Y-Y bank โ€“ one neutral grounded

Page 81: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 2 Y-Y bank โ€“ one neutral grounded

Zero Sequence equivalent circuit

๐ผ0 cannot flow due to the absence of a path for current flow between the windings

Page 82: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 3: ฮ”-ฮ” bank

Page 83: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 3: ฮ”-ฮ” bank Sequence equations:

VAB0 = Vab

0 = 0 Zero sequence

VAB1 =

๐‘1

๐‘2Vab

1 Positive sequence

VAB1 =

๐‘1

๐‘2Vab

1 Negative sequence

Page 84: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 3: ฮ”-ฮ” bank

Zero Sequence equivalent circuit with leakage impedance Z:

Page 85: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 3: Y-ฮ” bank โ€“ Y grounded

Page 86: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 3: Y-ฮ” bank โ€“ Y grounded Sequence equations:

VA0 - 3 ๐‘๐‘ IA

0 = ๐‘1๐‘2

Vab0 = 0 Zero sequence

VA1 =

๐‘1

๐‘2Vab

1 Positive sequence

VA2 =

๐‘1

๐‘2Vab

2 Negative sequence

Page 87: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 4: Y-ฮ” bank โ€“ Y grounded Zero Sequence equivalent circuit with leakage impedance Z:

๐‘0 = Z + 3๐‘๐‘

Page 88: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 5: Y-ฮ” bank- Y ungrounded

Page 89: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 5: Y-ฮ” bank โ€“ Y ungrounded Sequence equations:

VAB0 =

๐‘1๐‘2

Vab0 = 0 Zero sequence

VAB1 =

๐‘1

๐‘2Vab

1 Positive sequence

VAB2 =

๐‘1

๐‘2Vab

2 Negative sequence

Page 90: Chapter 11b

Sequence circuits of Y โ€“ ฮ” transformers

Case 5: Y-ฮ” bank โ€“ Y ungrounded Zero Sequence equivalent circuit with leakage impedance Z:

Page 91: Chapter 11b

Y โ€“ ฮ” transformers

VAB1 = 3

๐‘1

๐‘2Vab

1 โˆ 300

VAB2 = 3

๐‘1

๐‘2Vab

2 โˆ โˆ’300

In per unit

VAB1 = Vab

1 โˆ 300

VAB2 = Vab

2 โˆ โˆ’300

The same applies for currents in the per unit case

IA1 = Ia

1 โˆ 300

IA2 = Ia

2 โˆ โˆ’300

Page 92: Chapter 11b

Example

Three identical Y connected resistors form a load with a three phase rating of 2300 V and 500 kVA. If the load has applied voltages

๐‘‰๐‘Ž๐‘ = 1840 V ๐‘‰๐‘๐‘ = 2760 V ๐‘‰๐‘๐‘Ž = 2300 V

Find the line and currents in per unit into the load. Assume that the neutral of the load is not connected to the neutral of the system and select a base of 2300 V, 500 KVA.

Page 93: Chapter 11b

Example

If the resistive Y connected load bank is supplied from the low voltage Y side of a Y-ฮ” transformer, find the line voltages and currents in per unit on the high voltage side of the transformer.

Page 94: Chapter 11b

Solution

Voltages and currents on the load side has been calculated previously ๐‘‰๐‘Ž๐‘ = 0.8โˆ 82.80 ๐‘‰๐‘๐‘ = 1.2โˆ โˆ’41.40 ๐‘‰๐‘๐‘Ž = 1.0โˆ 1800 Vab

1 = 0.9857โˆ 73.60 Vab

2 = 0.2346โˆ 220.30 Van

1 = 0.9857โˆ 43.60 Van

2 = 0.2346โˆ 250.30 Ia

1 = 0.9857โˆ 43.60 Ia

2 = 0.2346โˆ 250.30

Page 95: Chapter 11b

Solution

The calculated load voltages will be the voltages on the low voltage side of the transformer Vab

1 = 0.9857โˆ 73.60 Vab

2 = 0.2346โˆ 220.30 Therefore high voltage side voltages in per unit will be VAB

1 = Vab1 โˆ 300

VAB2 = Vab

2 โˆ โˆ’300 So VAB

1 = 0.9857 โˆ 103.60 VAB

2 = 0.2346 โˆ 190.30 Next calculate the sequence components of the other lines VBC

1 = 0.9857 โˆ (103.6โˆ’120)0 = 0.9857 โˆ โˆ’16.40 VCA

1 = 0.9857 โˆ (103.6+120)0 = 0.9857 โˆ 223.60 VBC

2 = 0.2346 โˆ (190.3+120)0 = 0.2346 โˆ 310.30 VCA

2 = 0.2346 โˆ (190.3โˆ’120)0 = 0.2346โˆ 70.30

Page 96: Chapter 11b

Solution

The line-line voltages on the high voltage side are VAB = VAB

0 + VAB1 + VAB

2 = 0 + 0.9857 โˆ 103.60 + 0.2346 โˆ 190.30 = 1.026 โˆ 116.80 VBC = VBC

0 + VBC1 + VBC

2 = 0 + 0.9857 โˆ โˆ’16.40 + 0.2346 โˆ 310.30 = 1.19 โˆ โˆ’22.60 VCA = VCA

0 + VCA1 + VCA

2 = 0 + 0.9857 โˆ 223.60 + 0.2346 โˆ 70.30 = 0.783 โˆ โˆ’144.10

Page 97: Chapter 11b

Solution

The calculated load currents will be the line currents on the low voltage side of the transformer Ia

1 = 0.9857โˆ 43.60 Ia

2 = 0.2346โˆ 250.30 Therefore high voltage side voltages in per unit will be IA

1=Ia1โˆ 300

IA2 =Ia

2โˆ โˆ’300

So IA

1= 0.9857 โˆ 73.60 IA

2= 0.2346 โˆ 220.30 Next calculate the sequence components of the other lines IB

1 = 0.9857 โˆ (73.6โˆ’120)0 = 0.9857 โˆ โˆ’46.40 IC

1 = 0.9857 โˆ (73.6+120)0 = 0.9857 โˆ 193.60 IB

2 = 0.2346 โˆ (220.3+120)0 = 0.2346 โˆ 340.30 IC

2 = 0.2346 โˆ (220.3โˆ’120)0 = 0.2346โˆ 100.30

Page 98: Chapter 11b

Solution

The line currents on the high voltage side are IA = IA

0 + IA1 + IA

2 = 0 + 0.9857 โˆ 73.60 + 0.2346 โˆ 220.30 = 0.8 โˆ 82.90 IB = IB

0 + IB1 + IB

2 = 0 + 0.9857 โˆ โˆ’46.40 + 0.2346 โˆ 340.30 = 1.2 โˆ โˆ’41.40 IC = IC

0 + IC1 + IC

2 = 0 + 0.9857 โˆ 193.60 + 0.2346 โˆ 100.30 = 1.0 โˆ 179.90

Page 99: Chapter 11b

Sequence Networks

Sequence circuits have been developed for the following components: Loads (Y and ฮ”) Synchronous machines Transmission lines Transformers The components when combined make up a network Thus combining sequence circuits together make up a sequence network

Page 100: Chapter 11b

Sequence Networks

Recapping sequence circuits:

1. Separate volt drop equations for each sequence can be set up

2. Z1 and Z2 are equal for static components (loads, lines and transformers)

Z1 and Z2 are approximately equal for synchronous machines under subtransient conditions

Page 101: Chapter 11b

Sequence Networks

Recapping sequence circuits:

3. Z0 is generally different different from and Z1 and Z2

4. Only the positive sequence of synchronous machines contains a voltage source (E)

5. The neutral is reference for positive and negative sequence circuits. Voltage to neutral and voltage to ground are the same

Page 102: Chapter 11b

Sequence Networks

Recapping sequence circuits:

6. No positive or negative sequence currents flow between neutral and ground

7. The impedance Zn is not included in positive

and negative sequence circuits but is represented as 3 Zn

in the zero sequence.

Page 103: Chapter 11b

Sequence Networks

Balanced 3 phase systems generally make up a positive sequence set.

In such cases, the per phase equivalent circuit is the positive sequence network.

Changing a positive sequence network to a negative sequence only involves changing the impedances of rotating machines

Page 104: Chapter 11b

Sequence Networks

Consider the one line diagram shown below:

Page 105: Chapter 11b

Sequence Networks

Positive sequence network:

Xg-1

XT1-1 Xline-1 XT2-1

Xm1-1 Xm2-1

Page 106: Chapter 11b

Sequence Networks

Negative sequence network:

Xg-2

XT1-2 Xline-2 XT2-2

Xm1-1 Xm2-2 Xm1-2

Page 107: Chapter 11b

Sequence Networks

Zero sequence network:

XT1-0 Xline-0 XT2-0

Xm2-0

Xm1-0

3Xn1-0

Xg-0

3Xgn-0

Page 108: Chapter 11b

Sequence Networks - Example

A 300 MVA 20 kV three phase generator has a subtransient reactance of 20%. The generator supplies 2 synchronous motors over a of 64 km long transmission line having two transformers at both ends. The motors are rated at 13.2 kV. The neutral of motor M1 is grounded through a reactance of 0.4 ฮฉ. M2 is not grounded. Rated input for M1 is 200 MVA and M2 is 100 MVA. For both motors ๐‘‹๐‘‘

โ€ = 20%.

Page 109: Chapter 11b

Sequence Networks - Example

Transformer T1 is rated at 350 MVA, 230/20 kV with a leakage of 10%. Transformer T2 is rated at 300 MVA, 220/13.2 kV with a leakage of 10%. Series reactance of the transmission line is 0.5 ฮฉ/km. Draw the positive sequence network. Use the generator values as base values.

Page 110: Chapter 11b

Sequence Networks - Example

Page 111: Chapter 11b

Sequence Networks - Example

Generator ๐‘‹๐‘‘โ€ = j0.2

Transformer ๐‘‡1 ๐‘‹1 = j0.0857

Transmission line ๐‘‹๐‘™๐‘–๐‘›๐‘’ = j0.182

Transformer ๐‘‡2 ๐‘‹2 = j0.0915

Motor M1 ๐‘‹๐‘‘โ€ = j0.274

Motor M2 ๐‘‹๐‘‘โ€ = j0.549

Page 112: Chapter 11b

Sequence Networks - Example

Positive sequence network

Page 113: Chapter 11b

Sequence Networks - Example

Draw the negative sequence network for the system. Assume the negative sequence reactance of each machine is equal to its subtransient reactance.

Page 114: Chapter 11b

Sequence Networks - Example

All negative sequence reactances are equal to positive sequence reactances.

Page 115: Chapter 11b

Sequence Networks - Example

Draw the zero sequence network. Assume the zero sequence reactance of each machine (generator and motors) is equal to 0.05 per unit. A current limiting reactor of 0.4 ฮฉ is in each of the neutrals of the generator and M1 . The zero sequence reactance of the transmission line is 1.5 ฮฉ/km.

Page 116: Chapter 11b

Sequence Networks - Example

Generator ๐‘‹๐‘‘โ€ = j0.05

Transformer ๐‘‡1 ๐‘‹0 = j0.0857 (๐‘๐‘› = 0)

Transmission line ๐‘‹๐‘™๐‘–๐‘›๐‘’ = j0.545

Transformer ๐‘‡2 ๐‘‹2 = j0.0915 ((๐‘๐‘› = 0)

Motor M1 ๐‘‹๐‘‘โ€ = j0.0686

Motor M2 ๐‘‹๐‘‘โ€ = j0.1372

Generator 3๐‘๐‘› = j0.902

Motor M1 3๐‘๐‘› = j1.89

Page 117: Chapter 11b

Sequence Networks - Example

Zero sequence network