Chapter 1 DC Drives Part2

Embed Size (px)

Citation preview

  • 8/9/2019 Chapter 1 DC Drives Part2

    1/75

    onverter Control oonverter Control o

    DC DrivesDC Drives

  • 8/9/2019 Chapter 1 DC Drives Part2

    2/75

    LearningObjectives

    At the end of this Chapter, you should be able to :

    Analyze the operation and control of phase controlled

    SCR converters for DC Motor Drive

    Analyze the operation and control of DC-DC

    converters for DC Motor Drive

    Model and analyze the closed-loop control system forDC motor drive system

  • 8/9/2019 Chapter 1 DC Drives Part2

    3/75

    (B) DC-DC Converter Controlled DCDrives

    (A) Phase Controlled SCR ConverterDC Drives

    Power ElectronicControllers for

    DC DrivesThere are two types of power electroniccontrollers for DC motor control. They are:

  • 8/9/2019 Chapter 1 DC Drives Part2

    4/75

    4

    Phase Controlled SCR ConverterDC Drives

    DC MotorDrives

    Single-phaseDrives

    Three-phaseDrives

    SeparatelyExited

    SelfExcited

    ShuntSeries

    SelfExcited

    SeparatelyExcited

    Series

    ShuntCompound

  • 8/9/2019 Chapter 1 DC Drives Part2

    5/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    6/75

    Average motor armature current:

    In a separately-excited machine, the developed torque is proportional

    to average armature current. This current Iais known as the torque

    producing component of the motor current.

    RMS motor armature current, ar

    This is the heat producing component of the motor current.

    Similar definitions for verage and !"S voltage exists.

    ia# instantaneous armature current

    T # time period for one cycle variation of ia.

    $

    %

    T

    &'ar

    %

    %

    $

    T

    %

    I

    = +t

    t t dti a

    =

    +T

    a

    %

    %

    &'T%I

    t

    t a dtti

  • 8/9/2019 Chapter 1 DC Drives Part2

    7/75!

    nput !o"er #actor $!#%

    If supply current is a distorted sinusoid, only the fundamental

    component of input current will contri(ute to the mean input power.

    Input )ower *actor '!#%is an important parameter as it decides the

    volt-ampere requirement of the drive system. *or the same power

    demand, if the power factor is poor, more volt-amperes 'and hence

    more current& are drawn from the supply.

    amperesvoltinputr&m&s&

    po"erinputmean

    !# =

    +rms supply phase voltageIrmssupply phase current

    I% rmsfundamental component of the supply current

    %angle (etween supply voltage and fundamental component of

    supply current

    +I

    cos+I)*

    %% =

  • 8/9/2019 Chapter 1 DC Drives Part2

    8/75"

    nput Displacement #actor $D#%

    This may (e called fundamental power factor and is defined as

    where % is known as the input displacement angle.

    *or the same power demand, if the displacement factor is low,

    more fundamental current is drawn from the supply.

    'armonic #actor''#%

    The input current (eing non-sinusoidal contains currents of

    harmonic frequencies. The harmonic factor is defined as

    (D# cos=

    $%

    =

    (

    (

    ))

    '#

    %

    h

    $

    %

    %

    $

    $

    I

    I

    I

    I

    -* =

    =

    =nn

    n* rms value of the nth

    harmonic current

    h* rms value of the net

    harmonic current

  • 8/9/2019 Chapter 1 DC Drives Part2

    9/75#

    The harmonic factor indicates harmonic content of input supply

    current and thus measures the distortion of the input current.The input supply current, i, can (e expressed in terms of a

    *ourier series as follows( )( )

    =

    =

    ++=

    ++=

    %nn

    %nnn

    &sin'nI$I

    &sin'nncosI

    n

    t

    tbtai

    The d.c. component, I, and *ourier coefficients an, bnare o(tained as

    =+

    , +

    %dti

    =T

    n&cos'n

    T

    $dttia

    =

    +

    n +

    $dttib )sin(n

    $

    %

    n

    $$

    nn

    $(aI

    +=

    = n

    n

    n

    b

    a%tan

  • 8/9/2019 Chapter 1 DC Drives Part2

    10/75$%

    aria!le speed DC drives that will givea good approximation to the steady-state motoring operation are groupedunder the !road classi"cation#

    D$C$ machine systems fed from an%$C$ supply

    &Phase Controlled 'SC()converters*

    D$C$ machine systems fed from a D$C$supply

    DC-DC converters - Pulse-width-

  • 8/9/2019 Chapter 1 DC Drives Part2

    11/75

    currentdcoutput

    currentrmsInput

    I

    I

    d

    rms =

    $$

    r&or'ance Para'eters

    oltage ratio

    Po*er ratio

    &'voltagedcmaximum+where,++ ddac ==

    po"eroutputDC

    supplytheofrating-A

    !

    -

    d

    rmsac =

    +ar'onic contents a, ac co'onents in o.t.tvoltage/

    C.rrent ratio

  • 8/9/2019 Chapter 1 DC Drives Part2

    12/75

    SCR devices

    currentloaddccurrentS/!

    d

    S/!

    I

    I =

    currentloaddc

    currentS/!peak

    I

    I

    d

    S/! =

    &'voltagedcmaximum

    S/!of+oltageInverse)eak

    +

    +

    d

    )I+

    ==

  • 8/9/2019 Chapter 1 DC Drives Part2

    13/75

    $1

    SCR 2hase-angle controlled3 drive B changing the 6ring angle/ variable DCo.t.t voltage can be obtained,

    Single hase (lo* o*er) and three hase(high and ver high o*er) s.l can be .sed,

    7he load c.rrent is .nidirectional/ b.t the

    o.t.t voltage can reverse olarit, +ence 8-9.adrant oeration is inherentl ossible,

    4-9.adrant oeration is also ossible .sing

    2t*o sets3 o& controlled recti6ers (D.alconverters ,

  • 8/9/2019 Chapter 1 DC Drives Part2

    14/75

    $4

    Single-Phase ConverterControlled Separately-

    Excited DC Motor DriveConverter : SCR ;.ll-Bridge Converter (8-.lse converter)

  • 8/9/2019 Chapter 1 DC Drives Part2

    15/75

    $5

    oltage and current waveforms

    %rmature

    current

    %rmaturevoltage

    a= Ea

    3nput

    acvoltage

    3nput linecurrent = 45

    3nput

    linecurrent

  • 8/9/2019 Chapter 1 DC Drives Part2

    16/75

    cos$$

    0cos&cos'1$

    0cos1$

    sin$%

    &waveformfrom'voltage,inalmotor termaveargeThe

    converterthetoageinput voltrmswheresin$2et

    2aw3+fromequationcircuitarmatureThe

    a

    aca

    ac

    ac

    acdca

    acac

    g

    a

    aaaaa

    VV

    V

    V

    dVVV

    E

    VVv

    edt

    di

    LiRev

    =

    ++=

    =

    ==

    ==+

  • 8/9/2019 Chapter 1 DC Drives Part2

    17/75

    45%6$6$

    6

    $6

    6

    %%%6$$

    6

    $$6%

    $$666

    66

    ./V

    V

    V

    V

    V,VoltageInerse!ea"

    cosVan#,

    .

    .$a% )()(

    d

    ac

    d

    PIV

    acPIV

    ddc

    d

    ac

    acacddca

    V

    V

    V

    V

    VVVVV

    cos$$

    voltage,inalmotor termverage aacVV =

    $!

    Per&or'anceara'eters

    Mathematical Derivations

  • 8/9/2019 Chapter 1 DC Drives Part2

    18/75

    %+

    Tv

    a

    v

    a

    %

    v

    aaa

    secradT33

    !3+

    secrad3

    !I+

    constantisfluxifspeed,veragemotor,normala*or

    =

    =

    cos

    $$

    voltage,inalmotor termverage aacV

    V =

    %+

    Tv

    a

    v

    %

    v

    aa

    secradT33

    !

    3

    cos$$

    secrad3

    !Icos$$

    constantisfluxifspeed,verage

    =

    =

    ac

    ac

    V

    V

    $"

    a=

    voltageappliedtoarmatur

    e$

    Mathematical Derivations

  • 8/9/2019 Chapter 1 DC Drives Part2

    19/75

    $#

    Two &'a#rant ('ll controlle#) peration

    *%ample:7he &ollo*ing data gives details o& asearatel e>cited d,c, 'otor .sed &or ro.lsion in an

    electric train,

    Ar'at.re resistance ? %,%4 oh'

    Bac= e,',&, Constant ? %,5 @r'

    7or9.e constant ? 4," '@A (at 'a>, 6elde>citation)

    oltage alied to ar'at.re is reg.lated b a single

    hase &.ll-controlled (i,e,/ t*o 9.adrant) bridge .singSCRs, 7he 6eld has a searate controller to give &.ll

  • 8/9/2019 Chapter 1 DC Drives Part2

    20/75

    8%

    7he e9.i'ent is rated &or contin.o.s oerationat &.ll seed/ at *hich 'otor seed is 8%%% r,,',and o*er o.t.t is 5%% = and the 6eld has been

    *ea=ened to 5% o& 'a>i'.',a) Deter'ine the secondar voltage and A rating o&

    a trans&or'er to s.l the bridge,

    b) Deter'ine the 6ring dela angle *hen starting

    &ro' standstill *ith a tor9.e o& =-', S=etch theo.t.t voltage *ave&or's and the cond.ctionatterns in the o*er se'icond.ctors, eglect theeEects o& sat.ration in the 'otor/ s.l

    reg.lation/ voltage dros across the S,C,Rs andco''.tation delas,F7GPH ac@do

  • 8/9/2019 Chapter 1 DC Drives Part2

    21/75

    %

    rads7.$8

    =

    %secrad5.%7

    $

    %

    == B

    8$

    $a%

    V..I

    I+IVspee#,f'llt

    .!I

    V)(.,emf-ac"

    /sra#.spee#-ase

    ra#/.

    .spee#f'll

    a0oewea"eningfiel#

    spee#s,lowate%citationfiel#'ll

    .0ri#ge1'a#rant)(controlle#f'llphasesinglea0y+eg'late#

    ."2344!.,m.p.r:)(ass'mespee#f'llt o't

    476$

    $497:%696

    %66

    46%466

    5%76$%666

    7$86;

    $$66

    6$6

    f

    fvaaa

    a

    outa

    va

    Bb

    kA

    E

    rpmrpm

    VkE

    s

    two

    5ol'tion:

    5 #

  • 8/9/2019 Chapter 1 DC Drives Part2

    22/75

    5pee#

    Tor1'e

    (iel#

    wea"ening

    voltage&'Secondary+7.488&47'%%.%+%%.%+

    rating&+er'Transformk+7.488)%%.%+

    .k

  • 8/9/2019 Chapter 1 DC Drives Part2

    23/75

    81

    %

    v

    a

    %

    =7.5&4>47'cos

    ,forsolve,cos++.eqn*rom

    +4&7.'%$4&I

    I'k!I+voltage,rmature

    ?ero.toequalis@startingt

    current&'starting%$4=.7

    m.kA;I

    l&'standstilrads

    .m.kA;Twithstillstandfromstartingwhenangle,delay*iring

    ==

    ==

    =+=+=

    ===

    =

    =

    dadc

    f

    f

    aaa

    T

    a

    E

    K

    T

    $b%

    Waveforms are shown in previous slideson mathematical derivations

  • 8/9/2019 Chapter 1 DC Drives Part2

    24/75

    84

    *%ample: The following #ata gies #etails of a separately e%cite#

    #.c. motor controlle# 0y a single6phase f'll conerter.

    rmat're resistance 4.47 ohm

    -ac" e.m.f. constant 4.8 V/rpmTor1'e constant .9 ;m/ (at ma% fiel# e%citation)

    The ac s'pply oltage to the conerter is

  • 8/9/2019 Chapter 1 DC Drives Part2

    25/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    26/75

    8

    5'pply power factor:

    If the motor c'rrent is constant an# ripple free, the inp't s'pply

    c'rrent is a s1'are wae of amplit'#e 78 .

    Th's the rms s'pply c'rrent, I = 78

    5'pply olt6amps = V =

  • 8/9/2019 Chapter 1 DC Drives Part2

    27/75

    8!

    Balf6wae(5ingle61'a#rant operation) Con#'ction pattern:

    Hach SCR cond.cts &or1@1radians7riggering se9.ence ? $/ 8/ 1/ $J

    7riggering interval ?8@1radians

  • 8/9/2019 Chapter 1 DC Drives Part2

    28/75

    BCB$ %66 D 9;

    fordVVV

    V

    da sin/

    )waeformfrom(oltage,terminalmotoraeargeThe

    ma%

    a

    conerterthetooltagephasema%im'minp'trmswhere

    sinoltage,phasetheet

    aw?Vfrome1'ationcirc'itarmat'reThe

    ma%

    ma%

    6

    6

    9966

    V

    Vv

    edt

    diLiRev g

    aaaaaa

    Analysis for 3-Pulse 1-Quadrant Operation

    )sin.cos.(ma%

    4-=;;9%

    $

    BB6

    V

    74forcos

    sin/

    ma%ma% E$

    BB6

    B$

    %6 D

    9;4

    9;

    VdVVa

  • 8/9/2019 Chapter 1 DC Drives Part2

    29/75

    8#

    Balf6wae(Two61'a#rant operation) Con#'ction pattern:

    Hach SCR cond.cts &or1@1radians

    7riggering se9.ence ? $/ 8/ 1/ $J

    D il d A l i f 3 P l Q d O i

  • 8/9/2019 Chapter 1 DC Drives Part2

    30/75

    1%

    Detailed Analysis for 3-Pulse -Quadrant Operation

    D9

    ;4

    9;

    da

    ga

    aaaaa

    d+B$

    %6+6+

    +

    6+

    +6v

    9EEe9

    dt

    di29i!6e6v

    sin/

    )waeformfrom(oltage,terminalmotoraeargeThe

    conerterthetooltagephasema%im'minp'trmswhere

    sinoltage,phasetheet

    aw?Vfrome1'ationcirc'itarmat'reThe

    ma%

    a

    ma%

    ma%

    9;4

    9;

    9;

    4

    9;

    -

    $

    B6

    B$%66 D

    cosE

    sin/

    )waeformfrom(oltage,terminalmotoraeargeThe

    ma%

    ma%

    a

    V

    dVVV

    V

    da

  • 8/9/2019 Chapter 1 DC Drives Part2

    31/75

    acma%ac

    ma%

    ma%

    ma%

    ma%

    ma%

    thenoltage,phasermsIf

    cos

    )cos(

    Dsin.cos.sin.cos.E

    DsinsincoscossinsincoscosE

    )Dcos()cos(E

    VVV

    VV

    VV

    V

    V

    V

    a

    a

    66

    $

    BB6

    B$

    B6

    4-=;;949=;;$

    B

    6

    ;-

    ;9

    ;

    49

    ;

    4-

    $

    B6

    9;

    99;

    4-

    $

    B6

    Detailed Analysis for 3-Pulse -Quadrant Operation

    D t il d A l i f 3 P l Q d t O ti

  • 8/9/2019 Chapter 1 DC Drives Part2

    32/75

    cos$

    $B

    cos$x

    B$

    BB

    cos$

    BBvoltage,inalmotor termaveargethes

    $xB

    voltage,phasemaximumThen

    er,transformtheofconnectionstar*or

    voltageline-to-2inevoltage,line2et the

    22

    22

    maxa

    22max

    22

    VV

    VV

    VV

    VV

    V

    a

    a

    =

    =

    =

    =

    =

    18

    Detailed Analysis for 3-Pulse -Quadrant Operation

  • 8/9/2019 Chapter 1 DC Drives Part2

    33/75

    11

    !ully "ontrolled #$wo-%uadrant&

    *ach 5C+ con#'cts for/7 ra#iansTriggering se1'ence =,

  • 8/9/2019 Chapter 1 DC Drives Part2

    34/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    35/75

    15

    3-phase input

    volta'e

    Armature

    volta'eArmature

    current

    (nput linecurrent

    #c

    A l i f ) P l Q d t O ti

  • 8/9/2019 Chapter 1 DC Drives Part2

    36/75

    1

    Analysis for )-Pulse -Quadrant Operation

    D

    9;

    9;

    -dca

    gaaaaaa

    d+B

    %6+6+

    ++

    +B99;EE9;e9dt

    di29i!6e6v

    cos/

    )waeformfrom(oltage,terminalmotoraeargeThe

    cos:waecosineaas#efine

    tage,aerageolofncalc'latioforwaeformThe

    0elinesthe0etweenoltagetheet

    aw?Vfrome1'ationcirc'itarmat'reThe

    a

    9;

    9;-

    +B6 Esin

    A l i f ) P l Q d t O ti

  • 8/9/2019 Chapter 1 DC Drives Part2

    37/75

    cos

    cossin

    Dsin)cos(cos)sin(sincoscosEsin

    )Dsin()Esin(7

    CC

    CC

    CC

    CC

    +B6+

    ;$

    +B6+

    ;

    -9

    ;

    --

    ;

    9

    ;

    +B6+

    9;

    --9;

    +6

    a

    a

    a

    Analysis for )-Pulse -Quadrant Operation

  • 8/9/2019 Chapter 1 DC Drives Part2

    38/75

    T7PE ac8do 3rms83d %8Pdo 3SC(83d 93SC(83d

    P38d:utputoltage;armonic

  • 8/9/2019 Chapter 1 DC Drives Part2

    39/75

    D I;DGCT;C* CCGTI;:

    C6DC 5C+ C;V*+T*+

    oad inductance#

    RKS rile c.rrent in the load '.st not e>ceedi'.' rile occ.rs at so'e $

    Compute ;

  • 8/9/2019 Chapter 1 DC Drives Part2

    40/75

    D I;DGCT;C* CCGTI;

    Example# ;alf wave 'Two ,uadrant) /-phase %C-DC

    oad inductance calculation# .'ber o& riles (in one ccle) ? n ? 1 ;.nda'ental s.l &re9.enc ? & ? 5%+0

    Average dc voltage at = 5> do RKS rile c.rrent in the load '.st note>ceed i'.' rile occ.rs at = ?5

    $

    BB max

    VVdo =

    acmax

    ac

    $then

    voltage,phaserms

    VV

    V

    =

    =

    DC DC C t C t ll d

  • 8/9/2019 Chapter 1 DC Drives Part2

    41/75

    DC-DC Converter ControlledDC Drives

    5witche#6mo#e #ries Gsing switche# mo#e DC6DC conerter, DC oltage is

    arie# 0y #'ty cycle.

    $ainly 'se# for low to me#i'm power range

    5ingle61'a#rant conerter (0'c"):61'a#rant

    Balf60ri#ge: 61'a#rant

    'll60ri#ge: 61'a#rant

  • 8/9/2019 Chapter 1 DC Drives Part2

    42/75

    48

    P+M techni,ue is a method of controlling the

    voltage within a dc-dc converter$ +ith thistechni,ue> the converter output voltageinvolves a pulse width modulated wave> andthe voltage is controlled !y varying theduration of the output voltage pulses$ 7he revio.s slides sho* the voltage controlachieved b varing the hase o& the cond.ctionintervals o& SCRs/ T;.and T;1*ith resect to T;/and T;2,

    The pulse width control is achieved !y phase-advancing or retarding the control signals forone or pair of switches 'Transistors> M:S and in this way the converter output

    voltage can !e adBusted smoothly from

  • 8/9/2019 Chapter 1 DC Drives Part2

    43/75

    7

    !2$ peration

    % control signal is compared with a repetitiveswitching-fre,uency triangular waveform inorder to generate the switching signals$

    Controlling the switching duty ratios allows theavera ed D$C$ volta e out ut to !e controlled$

  • 8/9/2019 Chapter 1 DC Drives Part2

    44/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    45/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    46/75

    losses)no(ass'ming3I

    4./",34IV,/4VV,/44V.,g.e

    I"II

    "VT

    "VVV

    ratio#'ty"

    fre1'encyswitchingwhere,conertertheofperio#timeT

    conertertheof")(

    ,conertertheof"

    conertertheofoltageo'tp'tV

    oltage,so'rce#cV

    s

    ##s

    #Hs

    ssH

    #

    s

    s

    #

    s

    6

    6666

    66

    6T

    66

    6

    6ff

    %66

    time-off6T-%

    time-on6T

    6

    6

  • 8/9/2019 Chapter 1 DC Drives Part2

    47/75

    4!

    2ample:

    )(

    @.

  • 8/9/2019 Chapter 1 DC Drives Part2

    48/75

    2att7.7.

  • 8/9/2019 Chapter 1 DC Drives Part2

    49/75

    4#

    appro24 trian'ular or sawtooth waveform4

    .7

  • 8/9/2019 Chapter 1 DC Drives Part2

    50/75

    .4449mB.

    T")4.9(

    LTVLI

    :perio#theanalyKing0yChec"

    mB.

    ms)"()V(V

    LI

    LTV

    LT

    LI#t

    #iV

    oltageIn#'ctor:perio#;

    (typical)rippleachieetoDesignms)(T"BKfre1'ency!2$

    :#esignCho"e

    Ts

    666

    666

    F6

    peak-to-peak66

  • 8/9/2019 Chapter 1 DC Drives Part2

    51/75

    5$

    2aeforms with allowances for transistor an# #io#e oltage #rops

  • 8/9/2019 Chapter 1 DC Drives Part2

    52/75

    58

  • 8/9/2019 Chapter 1 DC Drives Part2

    53/75

    s

    sdssTsG

    d

    offons

    ss,

    T

    T&k%&'$+'Tk&+$'+++

    voltageofwaveformthe*rom

    TTTperiod,Switching

    T&k%'rtransistooftime-HffkTrtransistooftime-Hn

    +==

    +=

    ==

    v

  • 8/9/2019 Chapter 1 DC Drives Part2

    54/75

    54

    2aeforms with allowances for transistor an# #io#e oltage #rops.

  • 8/9/2019 Chapter 1 DC Drives Part2

    55/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    56/75

    offons

    s

    s,

    dT

    TTTperiod,SwitchingT&k%'rtransistooftime-Hff

    kTrtransistooftime-Hn

    kratio,duty&and'diodesandrstransistooftimesswitching/onsider

    &and+'dropsvoltagediodeandransistor/onsider t

    computedisvoltageaveragethevoltage,ofwaveformthe*rom

    +=

    =

    =

    FR tt

    v

    5

  • 8/9/2019 Chapter 1 DC Drives Part2

    57/75

    s

    dss$%

    s

    Tss$%

    Gd

    s

    dsss$%

    s

    Tsss$%

    Gd

    T

    &$+&0'T&k%'$1' T

    &+$&0'+Tk$1'++

    T&$+&0'T&k%'T&k%1''

    T

    &+$&0'+TkT1'k++

    strape?iumofareaheconsider tvoltage,ofwaveformthe*rom

    vtt

    tt

    vtt

    tt

    FR

    FR

    FR

    FR

    +

    ==

    +

    ++

    ==

  • 8/9/2019 Chapter 1 DC Drives Part2

    58/75

    The mass of an electric ehicle as shown in !(56. is 344 "g, The ehicleis going 'p a slope of 74oat a spee# of 74 "m/hr. The friction coefficient of the

    s'rface at a gien weather con#ition is 4.. The acceleration #'e to graity, g =

    @.8 ms6. The electric ehicle is 0eing powere# 0y a DC motor mo'nte# on the

    front wheels an# the wheel #iameter is 4.3 m. re#'ction gear of 34: is 'se#.

    The motor ta"es 9 V with constant e%citation, an# is controlle# 0y a two6

    1'a#rant transistor !2$ #c6#c conerter. The #c motor on 0oar# the ehicler'ns at 844 rpm. The following characteristics apply to the system:

    2ample:

  • 8/9/2019 Chapter 1 DC Drives Part2

    59/75

    rmat're resistance = 4. ohms

    Tor1'e constant= 4. ;m/-ac" emf constant = 4. V/ra#s6

    Transistor an# #io#e switching times, on an# off = Msec an# Msec

    5witching fre1'ency of transistors = 3 "BK

    Transistor con#'ction oltage #rop = V

    Determine:

    (a) The tor1'e #eelope# 0y the motor.

    (0) The oltage applie# to the motor.

    (c) The #'ty ratio of the !2$ conerter.

    (ns: 4.97< ;m, 7.@48 V, 4.8@)

  • 8/9/2019 Chapter 1 DC Drives Part2

    60/75

    Solution: Data:$ass of the 0's, m = 344 "g

    2heel #iameter, # = 4.3 m5pee# of the 0's, = 74 "m/hr

    5lope of the hill, = 74o

    riction coefficient, r= 4.

    cceleration #'e to graity, g = @.8

    ms6(a) The weight of ehicle is #ii#e# into two components: (i) !erpen#ic'lar to the roa# s'rface (force F), responsi0le for friction

    force, Fr (ii) !arallel to the s'rface, responsi0le for p'lling the ehicle towar#s

    0ottom of the slope, FlThe total force, FL= FlN Fr

    ll these forces are #epen#ent on the graitational force, FgConsi#ering the force #iagram, the normal force, Fan# p'lling force, Flare

    F = Fgcos

    Fl= Fgsin

  • 8/9/2019 Chapter 1 DC Drives Part2

    61/75

    The graitational force, F = m.g = 344 % @.8 = @44 ;

    F = Fgcos = @44 % cos 74 = 7 ;

    Fl = Fgsin= @44 % sin 74 = 34 ;The friction force, Fr= r% F= 4. % 7 =

  • 8/9/2019 Chapter 1 DC Drives Part2

    62/75

    (c) kratio&,')

  • 8/9/2019 Chapter 1 DC Drives Part2

    63/75

    p ' '

    !irst %uadrant operation: 8otorin' mode

    $wo Quadrant Operation - .e'enerative 7ra0in':

  • 8/9/2019 Chapter 1 DC Drives Part2

    64/75

    Second %uadrant operation: .e'enerative 9ra0in' mode

    $wo Quadrant Operation - .e'enerative 7ra0in':

  • 8/9/2019 Chapter 1 DC Drives Part2

    65/75

    p ' '

    $wo Quadrant Operation - .e'enerative 7ra0in':

  • 8/9/2019 Chapter 1 DC Drives Part2

    66/75

    p ' '

    $wo Quadrant Operation - .e'enerative 7ra0in':

  • 8/9/2019 Chapter 1 DC Drives Part2

    67/75

    +hen the electric vehicle is going down the hill>the dc machine is under regenerative !raing

    mode$ 3n the downward direction> the speed ofthe electric vehicle may exceed its no-loadspeed> and generate electric power that can !efed !ac to the source$

    f

    aabfabLb

    f

    afffLbab

    db

    ab

    Lb

    ab

    R

    VIIII

    R

    VIIIII

    T

    E

    I

    I

    ==

    =+=

    =

    =

    ==

    =

    motor,theofcurrentTerminal

    current,fieldtheiswhere,

    (rakingduringspeed

    torque(rakingdeveloped

    (rakingduringemfinduced(rakingduringcurrentline

    (rakingduringcurrentarmature

    (

    $wo Quadrant Operation - .e'enerative 7ra0in':

  • 8/9/2019 Chapter 1 DC Drives Part2

    68/75

    a

    abaab

    db

    Tv

    a

    v

    a

    T

    dbabvaababa

    abTdb

    R

    EVI

    T

    kk

    R

    k

    V

    k

    TRkRIEV

    IkT

    =

    =

    +=+==

    (

    operationnormalIn the

    ' '

    In the #ownhill operation, the loa# tor1'e changes its #irection.Th's the armat're c'rrent also reerses its #irection.

    Therefore in the a0oe e1'ations T#0

    is negatie.

    $wo Quadrant Operation - .e'enerative 7ra0in':

  • 8/9/2019 Chapter 1 DC Drives Part2

    69/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    70/75

    2ample: 4 V #c sh'nt motor has the following characteristics:rmat're resistance 4.799 ohms

    iel# resistance 4 ohmsVoltage constant 7.@7 V sec6

    Tor1'e constant 7.@7 ;m/

    Determine the following #'ring regeneratie 0ra"ing when the armat're

    c'rrent is

  • 8/9/2019 Chapter 1 DC Drives Part2

    71/75

  • 8/9/2019 Chapter 1 DC Drives Part2

    72/75

    9

    orwar# c'rrent 'ses TNTan# then DN Dalternately.

    +eerse c'rrent 'ses T7NTan# then D7 N Dalternately.

  • 8/9/2019 Chapter 1 DC Drives Part2

    73/75

    Drie signals for transistors:

    #elay tDis allowe# on switch6on of the transistors in or#er

    to ens're that the other transistors hae f'lly cease#

    con#'ction.

  • 8/9/2019 Chapter 1 DC Drives Part2

    74/75

    9

    .evision:

  • 8/9/2019 Chapter 1 DC Drives Part2

    75/75

    .evision:6Characteristic of DC $otor

    6Controlle# 0y s'pply oltage/c'rrent an#

    e%cite# oltage/c'rrent ( #epen# on config'ration)

    65ingle !hase Controller Conerter6Balf wae65emi conerter6'll conerter6D'al conerter

    6reeweeling #io#e effect6Determine aerage oltage an# rms oltage

    Controlling Techni1'es65C+ techni1'e

    65ingle phase67 phase

    67 p'lse conerter6< p'lse conerter

    6!2$65ingle 1'a#rant6Do'0le/secon# 1'a#rant