Chapt 06 Lect01

Embed Size (px)

Citation preview

  • 8/3/2019 Chapt 06 Lect01

    1/6

    Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

    1999 Yijun Liu, University of Cincinnati 138

    Chapter 6. Solid Elements for 3-D Problems

    I. 3-D Elasticity Theory

    Stress State:

    y

    F

    x

    z

    y

    yx

    yz

    zy

    zx

    z

    xz

    x

    xy

    y , v

    , u

    z, w

  • 8/3/2019 Chapt 06 Lect01

    2/6

    Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

    1999 Yijun Liu, University of Cincinnati 139

    { } [ ] )1(, ij

    zx

    yz

    xy

    z

    y

    x

    or

    ==

    Strains:

    { } [ ] )2(, ij

    zx

    yz

    xy

    z

    y

    x

    or

    ==

    Stress-strain relation:

    +=

    zx

    yz

    xy

    z

    y

    x

    zx

    yz

    xy

    z

    y

    x

    v

    v

    vvvv

    vvv

    vvv

    vv

    E

    2

    2100000

    02

    21

    0000

    002

    21000

    0001

    0001

    0001

    )21)(1(

    or )3(E =

  • 8/3/2019 Chapt 06 Lect01

    3/6

    Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

    1999 Yijun Liu, University of Cincinnati 140

    Displacement:

    )4(

    ),,(

    ),,(

    ),,(

    3

    2

    1

    =

    = uu

    u

    zyxw

    zyxv

    zyxu

    u

    Strain-Displacement Relation:

    )5(,,

    ,,,

    x

    w

    z

    u

    z

    v

    y

    w

    y

    u

    x

    v

    z

    w

    y

    v

    x

    u

    xzyzxy

    zyx

    +

    =

    +

    =

    +

    =

    =

    =

    =

    or

    ( )

    ( ) notation)tensor(2

    1

    simply,or

    3,2,1,,2

    1

    ,, ijjiij

    i

    j

    j

    i

    ij

    uu

    jix

    u

    x

    u

    +=

    =

    +

    =

  • 8/3/2019 Chapt 06 Lect01

    4/6

    Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

    1999 Yijun Liu, University of Cincinnati 141

    Equilibrium Equations:

    0

    or

    ,0

    )6(,0

    ,0

    , =+

    =+

    +

    +

    =+

    +

    +

    =+

    +

    +

    ijij

    z

    zzyzx

    y

    yzyyx

    x

    xzxyx

    f

    fzyx

    fzyx

    fzyx

    Boundary Conditions (BCs):

    )traction(

    )7()(,

    )(,

    jiji

    ii

    uii

    nt

    tractionspecifiedontt

    ntdisplacemespecifiedonuu

    =

    ==

    Stress Analysis:

    Solving equations in (6) under the BCs in (7).

    p

    n

    u

    )(

    +=u

  • 8/3/2019 Chapt 06 Lect01

    5/6

    Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

    1999 Yijun Liu, University of Cincinnati 142

    II. Finite Element Formulation

    Displacement Field:

    i

    N

    ii

    i

    N

    ii

    N

    iii

    wNw

    vNv

    uNu

    =

    =

    =

    =

    =

    =

    1

    1

    1

    )8(

    Nodal values

    In matrix form:

    )9(

    )13(

    )33()13(

    2

    2

    2

    1

    1

    1

    21

    21

    21

    0000

    00000000

    =

    N

    N

    w

    v

    uw

    v

    u

    NN

    NNNN

    w

    vu

    M

    L

    L

    L

    or dNu=

    Using relations (5) and (8), we can derive the strain vector

    =B d(61) (63N)(3N1)

  • 8/3/2019 Chapt 06 Lect01

    6/6

    Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

    1999 Yijun Liu, University of Cincinnati 143

    Stiffness Matrix:

    )10(= vT

    dvBEBk

    (3N) (3N6)(66)(63N)

    Numerical quadratures are often needed to evaluate the

    above integration.

    Rigid-body motions for 3-D bodies (6 components):

    3 translations, 3 rotations.

    These rigid-body motions (singularity of the system of

    equations) must be removed from the FEA model to ensure the

    quality of the analysis.