81
Jaeger/Blalock 9/25/03 Microelectronic Circuit Design McGraw-Hill Chap 6 - 1 Chapter 6 Introduction to Digital Electronics Microelectronic Circuit Design  Richard C. Jaeger Travis N. Blalock 

Chap6-Introduction to Digital Electronics

Embed Size (px)

Citation preview

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 1/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 1

Chapter 6

Introduction to Digital Electronics

Microelectronic Circuit Design 

Richard C. Jaeger Travis N. Blalock 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 2/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 2

Chapter Goals

• Introduce binary digital logic concepts

• Explore the voltage transfer characteristics of ideal and

nonideal inverters

• Define logic levels and logic states of logic gates• Introduce the concept of noise margin

• Present measures of dynamic performance of logic devices

• Review of Boolean algebra

• Investigate simple transistor, diode, and diode-transistor 

implementations of the inverter and other logic circuits

• Explore basic design techniques of logic circuits

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 3/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 3

Brief History of Digital Electronics

• Digital electronics can be found in many applications inthe form of microprocessors, microcontrollers, PCs, DSPs,and an uncountable number of other systems.

• The design of digital circuits has progressed from resistor-

transistor logic (RTL) and diode-transistor logic (DTL) totransistor-transistor logic (TTL) and emitter-coupled logic(ECL) to complementary MOS (CMOS)

• The density and number of transistors in microprocessors

has increased from 2300 in the 1971 4-bit 4004microprocessor to 25 million in the more recent IA-64 chipand it is projected to reach over one billion transistors by2010

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 4/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 4

Ideal Logic Gates

• Binary logic gates are the most common style of 

digital logic

• The output will consist of either a 0 (low) or a 1 (high)

• The most basic digital building block is the inverter 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 5/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 5

The Ideal Inverter 

The ideal inverter has the following voltage transfer characteristic

(VTC) and is described by the following symbol

V+ and V- are the supply rails, and VH and VL describe

the high and low logic levels at the output

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 6/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 6

Logic Level Definitions

An inverter operating with power supplies at V+ and0 V can be implemented using a switch with a

resistive load

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 7/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 7

Logic Voltage Level Definitions

• VL  – The nominal voltage corresponding to a low-logic

state at the input of a logic gate for vi = VH 

• VH  – The nominal voltage corresponding to a high-logic

state at the output of a logic gate for vi = VL 

• VIL  – The maximum input voltage that will be recognized

as a low input logic level

• VIH  – The maximum input voltage that will be recognized

as a high input logic level

• VOH  – The output voltage corresponding to an inputvoltage of VIL 

• VOL  – The output voltage corresponding to an input

voltage of VIH 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 8/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 8

Logic Voltage Level Definitions (cont.)

 Note that for the VTC of the nonideal inverter, there is now an

undefined logic state

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 9/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 9

 Noise Margins

• Noise margins represent “safety margins” that

 prevent the circuit from producing erroneous

outputs in the presence of noisy inputs

•  Noise margins are defined for low and high inputlevels using the following equations:

 NML = VIL  – VOL

 NMH = VOH  – VIH

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 10/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 10

 Noise Margins (cont.)

• Graphical representation of 

where noise margins are

defined

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 11/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 11

Logic Gate Design Goals

• An ideal logic gate is highly nonlinear that attempts toquantize the input signal to two discrete states, but in anactual gate, the designer should attempt to minimize theundefined input region while maximizing noise margins

• The input should produce a well-defined output, andchanges at the output should have no effect on the input

• Voltage levels of the output of one gate should becompatible with the input levels of a proceeding gate

• The gate should have sufficient fan-out and fan-incapabilities

• The gate should consume minimal power (and area for ICs) and still operate under the design specifications

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 12/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 12

Dynamic Response of Logic Gates

• An important figure of merit to describe logic

gates is their response in the time domain

• The rise and fall times, tf and tr , are measured at

the 10% and 90% points on the transitions between the two states as shown by the following

expressions:

V10% = VL + 0.1ΔV

V90% = VL + 0.9ΔV = VH  – 0.1ΔV 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 13/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 13

Propagation Delay

• Propagation delay describes the amount of time between a

change at the 50% point input to cause a change at the 50%

 point of the output described by the following:

• The high-to-low prop delay, τPHL, and the low-to-high prop

delay, τPLH, are usually not equal, but can be described asan average value:

2

PLHPHLP

   

2

LH50%

V V V 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 14/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 14

Dynamic Response of Logic Gates

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 15/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 15

Power Delay Product

• The power-delay product (PDP) is use as a metric

to describe the amount of energy required to

 perform a basic logic operation and is given by the

following equation when P is the average power dissipated be the logic gate:

P  P  PDP 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 16/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 16

Review of Boolean Algebra

A Z

0 1

1 0

A B Z

0 0 0

0 1 11 0 1

1 1 1

A B Z

0 0 0

0 1 01 0 0

1 1 1

 NOT

Truth Table

OR Truth Table

ANDTruth Table

A B Z

0 0 1

0 1 01 0 0

1 1 0

A B Z

0 0 1

0 1 11 0 1

1 1 0

 NOR Truth Table

 NANDTruth Table

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 17/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 17

Logic Gate Symbols and BooleanExpressions

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 18/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 18

Diode Logic

• Diodes can with resistive loads to implement

simple logic gates

Diode OR gate Diode AND gate

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 19/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 19

Diode Transistor Logic

• Since diode gates are limited to AND and OR functions, the diodes can be combined withtransistors to complete the basic logic functions

such as the following NAND gate

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 20/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 20

 NMOS Logic Design

• MOS transistors (both PMOS and NMOS) can be

combined with resistive loads to create single

channel logic gates

• The circuit designer is limited to altering circuit

topology and width-to-length, or W/L, ratio since

the other factors are dependent upon processing parameters

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 21/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 21

 NMOS Inverter with a Resistive Load

• The resistor R is used

to “pull” the output

high

• MS is the switchingtransistor 

• The size of R and the

W/L ratio of MS arethe design factors that

need to be chosen

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 22/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 22

Load Line Visualization

• The following

illustrates the

operation of the

 NMOS output (vDS)characteristics where

the following

equation describes

the load line

 RiV v  D DD DS 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 23/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 23

 NMOS with Resistive Load DesignExample

• Design a NMOS resistive load inverter for 

 –  VDD = 3.3 V

 –  P = 0.1 mW when VL = 0.2 V

 –  K n = 60 μA/V2 

 –  VTN = 0.75 V

• Find the value of the load resistor R and the W/Lratio of the switching transistor MS 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 24/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 24

Example continued

• First the value of the current through the resistor 

must be determined by using the following:

• The value of the resistor can now be found by the

following which assumes that the transistor is on

or the output is low:

 AV 

mW 

 P 

 I   DD DD  3.303.3

1.0

k  A

V V 

 I 

V V  R

 DD

 L DD 1023.30

2.03.3

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 25/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 25

Example Continued

• For vI = VL = 0.2V, the transistor’s vGS will be less

than the threshold voltage, therefore it will be

operating in the triode region. Using the linear 

equation for a MOSFET, the W/L ratio can befound:

1

1

1

03.1

2.022.075.03.310603.30

2

6

'

 

  

 

         

 

  

 

 

  

 

 L L

TN  H 

n D

 L

 LW  A

V V 

V V  L

W  K  I 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 26/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 26

On-Resistance of MS 

• The NMOS resistive load

inverter can be thought of 

as a resistive divider 

when the output is low,described by the

following expression:

 R R RV V on

on DD L

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 27/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 27

On-Resistance of MS (cont.) 

 

  

 

 

  

 

2

1

' DS TN GS n

 D

 DS on

vV v

 L

W  K 

i

v R

When the NMOS resistive load inverter’s output is

low, the On-Resistance of the NMOS can be

calculated with the following expression:

 Note that R on should be kept small compared to R toensure that VL remains low, and also that its value is

nonlinear which has a dependence on vDS 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 28/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 28

 Noise Margin Analysis

• The following equations can be used to determine

the various parameters needed to determine the

noise margin of NMOS resistive load inverters

 R K 

V V 

 R K V 

 R K V V 

 R K V V 

 R K V V 

n

 DDOL

n

 DD

n

TN  IH 

n

 DDOH 

n

TN  IL

3

2

63.11

2

1

1

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 29/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 29

Load Resistor Problems

• For completelyintegrated circuits, R must be implemented onchip using the shownstructure

• Using the givenequation, it can be seen

that resistors take up alarge area of silicon asin an example 95k Ωresistor  

1

9500

001.0

10195 4

cm

cmk  Rt 

 L

tW 

 L R

  

  

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 30/81

Jaeger/Blalock 9/25/03 

Microelectronic Circuit DesignMcGraw-Hill

Chap 6 - 30

Using Transistors in Place of a Resistor 

•  NMOS load w/a) gate connected

to the source b) gate connected

to groundc) gate connected

to VDD 

d) gate biased to

linear region

e) a depletionmode NMOS

 Note that a) and b)are not useful

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 31/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 31

Static Design of the NMOS SaturatedLoad Inverter 

Schematic for a NMOS

saturated load inverter 

Cross-section for a NMOS

saturated load inverter 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 32/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 32

 NMOS Saturated Load Inverter DesignStrategy

• Given VDD, VL, and the power level, find IDD from VDD and

 power 

• Assume MS off, and find high output voltage level VH

• Use the value of VH for the gate voltage of MS andcalculate (W/L)S of the switching transistor based on the

design values of IDD and VL

• Find (W/L)L (load transistor) based on IDD and VL

• Check the operating region assumptions of MS and ML for vo = VL

• Verify design with a SPICE simulations

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 33/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 33

 NMOS Saturated Load Inverter DesignExample

• Design an saturated load inverter given the

following specifications:

 

 A I 

V V 

V V 

 DD

 L

 DD

 30

2.0

3.3

V V V 

V  A K 

 F 

TOTN 

n

6.02

5.0

75.0

/25 2'

 

 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 34/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 34

 NMOS Saturated Load Inverter DesignExample

• First find VH 

V V V 

V V 

V V V V V V 

 H 

 H  H 

 F  F  H TO DDTNL DD H 

01.4,11.2

6.06.05.075.03.3

22

   

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 35/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 35

 NMOS Saturated Load Inverter DesignExample

• For vo = VL,MS is

off (triode

region) and ML is

in saturation, findthe W/L ratios of 

the two

transistors

19.2

1

81.02.03.3102530

81.06.06.02.05.075.0

1

76.4

2.02

2.075.011.2102530

2

26

2'

6

'

 

  

 

  

  

 

  

 

 

  

 

 

  

 

 

  

 

 

  

   

  

 

 L

 L

TNL

TNLGSL

 L

n DL

 L L

TN  H 

n DS 

 L

 L

W  A

V V 

V V  L

W  K  I 

 L

 L

W  A

V V 

V V  L

W  K  I 

 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 36/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 36

 NMOS Saturated Load Inverter Design Noise Margin Analysis

• The basic noise margin equations are still the same as for 

 previous inverters, but there are different expressions for the

components

OL R

TNLOL DDOLTNS  IH 

 L

S  R

 F  F OLTOTNL

 R

TNL DDOL

TNL DD H OH 

TNS  IL

V  K 

V V V V V V 

 LW  LW  K 

V V V 

 K 

V V V 

V V V V 

V V 

22

)/()/(

22

31

   

The equations can be written as a

quadratic equation,but an iterative

 process must be used to solve for VOL 

and VTNL

1) Choose an initial VOL 

2) Calculate the corresponding VTNL 

3) Update VOL 

4) Repeat 2 and 3 until the system

converges

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 37/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 37

 NMOS Inverter with a Linear LoadDevice

• This alternative inverter has a load transistor that is biased with VGG

defined by thefollowing:

• This causes the loadtransistor to operate inthe linear region

TNL DDGG V V V 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 38/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 38

 NMOS Inverter with a Depletion-modeLoad

• With the addition of a

depletion-mode NMOS

(VTH < 0V), it is possible

to configure an inverter as shown

• VGSL = 0 V for this

configuration meaning

that ML is always

operating in saturation

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 39/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 39

Design of a NMOS Inverter with aDepletion-mode Load

• To find (W/L)L given iDL:

• To find (W/L)S where VH = VDD use the same

technique as used for the resistor load inverter:

2'

2 TNL L

n

 DL

V  L

W  K i

 

  

 

 L L

TN  H 

n D V V 

V V  L

W  K  I 

  

  

  

  

2

'

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 40/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 40

 Noise Margins of a NMOS Inverter witha Depletion-mode Load

 R

TNLTNS  IH 

 R

TNLOL

 LS  R

 R R

TNL

TNS  IL

 R

 RTNL DDOH 

 K 

V V V 

 K 

V V 

 LW  LW  K 

 K  K 

V V V 

 K 

 K V V V 

3

23

)//()/(

11

2

 

  

 

The first two equations

assume the MS is saturated

and ML is in triode

The last two equations

assume the MS and ML arein triode

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 41/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 41

 NMOS Inverter Summary

• Resistive load inverter takes up too much area for and IC

design

• The saturated load configuration is the simplest design, but

VH

never reaches VDD

and has a slow switching speed

• The linear load inverter fixes the speed and logic level

issues, but it requires an additional power supply for the

load gate

• The depletion-mode NMOS load requires the most

 processing steps, but needs the smallest area to achieve the

highest speed, VH = VDD, and best combination of noise

margins

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 42/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 42

Typical Inverter Characteristic

Inverter w/

Resistor

Load

Saturated

Load

Inverter

Linear

Load

Inverter

Inverter w/

Depletion-

Mode Load

VH 5.0 V 3.4 V 5.0 V 5.0 V

VL 0.25 V 0.25 V 0.25 V 0.25 V

 NML 0.34 V 0.32 V 0.02 V 0.69 V

 NMH 1.43 V 0.69 V 2.78 V 2.25 VArea (μm2)  9500 6.92 9.36 4.21

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 43/81

Jaeger/Blalock 9/25/03  Microelectronic Circuit DesignMcGraw-Hill Chap 6 - 43

 NOR Gates

Simplified switch model for 

the NOR gate with A on

Two-input NOR gate

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 44/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 44

 NAND Gates

Simplified switch model

for the NOR gate with Aand B on (right)

Two-input NAND gate

(left)

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 45/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 45

 NAND Gate Device Size Selection

• The NAND switching transistors can be sized based on the

depletion-mode load inverter 

• To keep the low voltage level to be comparable to the

inverter, the desired R ON of MA and MB must be 0.5R ON of MS,Inverter  

• This can be accomplished by approximately doubling the

(W/L)A and (W/L)B

• The sizes can also be chosen by using the design value of VL and using the following equation:

DS TN GS 

n DS  DS TN GS 

n D vV v L

W  K vvV v

 L

W  K i

 

  

 

 

  

  '' 5.0

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 46/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 46

 NAND Gate Device Size Selection(continued)

• Two sources of error that arise are the facts that

VSB and VGS of the two transistors do not equal.

These factors should be considered for proper gate

design

• The technique used to calculate the size of the load

transistor for the depletion-mode load inverter is

the exact same as for this NAND gate

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 47/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 47

Layout of the NMOS Depletion-Mode NOR and NAND Gates

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 48/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 48

Complex NMOS Logic Design

An advantage of NMOS technology is that it is simple to design

complex logic functions based on the NOR and NAND gates

The circuit in thefigure has the logic

function:

Y = A + BC + BD

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 49/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 49

Complex Logic Gate Transistor Sizing

• There are two ways to find the W/L ratios of the

switching transistors

1) Using the worst case (longest) path and choosing theW/L ratio such that the R ON of the multiple legs match

similar to the technique used to find the W/L ratios in

the NAND Gate

2) Partitioning the circuit into series sub-networks, and

make the equivalent on-resistances equal

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 50/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 50

Complex Logic Gate Transistor Sizing

The figure on the leftshows the worst casetechnique to find thesizes where(W/L)S=2.06 is thereference inverter ratiofor this technology andthe longest path is 3transistors are in series

The figure on the rightshows the partitioning

technique to find thesizes which gives two4.12/1 ratios in serieswhich is 2(2.06/1)

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 51/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 51

Static Power Dissipation

• Static Power Dissipation is the average power 

dissipation of a logic gate when the output is in both

the high and low states

• IDDH = current in the circuit for vO = VH 

• IDDL = current in the circuit for vO = VL

• Since IDDH = 0 A for vO = VH:

2 DDL DD DDH  DD

av I V  I V  P 

2

 DDL DDav

 I V  P 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 52/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 52

Dynamic Power Dissipation

• Dynamic Power Dissipation is the power 

dissipated during the process of charging and

discharging the load capacitance connected to the

logic gate

DischargingCharging

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 53/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 53

Dynamic Power Dissipation

• Based on the energy equation, the energy delivered to

the capacitor can be found by:

• The energy stored by the capacitor is:

• The energy lost in the resistive elements is given by:

2

)(

)0(0

)()(  DD

C  DD DD D CV dvt iV C dt t iV  E C 

2

2

 DD D

CV  E 

2

2

 DDS  D L

CV  E  E  E 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 54/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 54

Dynamic Power Dissipation

• The total energy lost in the first charging and

discharging of the capacitor through resistive elements

is given by:

• Thus it can be seen that for every cycle (frequency)

that the gate is changed, the dynamic power 

dissipation is given by:

2

22

22DD

 DD DDTD CV CV CV  E 

 f  CV  P   DD D

2

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 55/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 55

Power Scaling in MOS Logic

• By reducing the W/L of the load and switching

transistors of an inverter, it is possible to reduce

the power dissipation by the same factor without

sacrificing VH and VL. This same concept worksfor increasing the power which will increase the

dynamic response.

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 56/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 56

Power Scaling in MOS Logic

a) Original Saturated Load Inverter 

 b) Saturated Load inverter designed to operate at 1/3 the power 

c) Original Depletion-Mode Inverter 

d) Depletion-mode inverter designed to operate at twice the power 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 57/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 57

Dynamic Behavior Capacitance in MOS Logic Circuits

• The MOS device has thecapacitances CSB, CGS, CDB,and CGD that need to beconsidered for dynamic

response analysis, butdepending on theconfiguration, some of themwill be shorted out as seen inthe first figure

• The capacitance seen at anode can be lumped together as seen in the second figure

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 58/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 58

Fan-out Limitations

• Static design constraints are not usually important

for MOS logic circuits since they normally drive

capacitive loads (i.e. the gate of a MOS)

• As the number of gates the output (fan-out) of alogic device has to drive, the load capacitance

increases, and the time response decreases

• This notion implies that the fan-out that a logic

circuit can drive will be limited to time delay

tolerances of the circuit

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 59/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 59

Dynamic Response of the NMOSInverter with a Resistive Load

• The rise and fall times and propagation delays are

given by the relationships:

where R and C are the resistance and capacitance

seen at the output

 RC 

 RC t t 

 PHL PLH 

 f  r 

69.0

2.2

  

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 60/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 60

Dynamic Response of the NMOSInverter with a Resistive Load

• There are four 

important times

that need to be

considered whencharacterizing the

dynamic response

of a logic circuit

which are denotet1  – t4 in the figure 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 61/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 61

Dynamic Response of the NMOSInverter with a Resistive Load

• It is also possible to calculate τPHL and tf by a

 piecewise analysis technique, and are given by the

following equations:

 

  

  

  

 

 

  

 

TNS  H 

TNS 

 H 

TNS  H onS  f  

TNS  H 

TNS 

 L H 

TNS  H onS  PHL

V V 

V V 

V V 

V V V C  Rt t t 

V V 

V V 

V V C  Rt t t t 

1.022

9.0

9.02ln

214ln)(

14

2233 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 62/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 62

 NMOS Inverter with a Depletion-ModeLoad Dynamic Response

• Just as in the resistive

load inverter, the

depletion-mode load

inverter has the same

dynamic responsecharacteristics that need

to be considered, and

has four times that

needed for calculations

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 63/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 63

 NMOS Inverter with a Depletion-ModeLoad Dynamic Response

• The following are the basic equations for calculating

dynamic response characteristics

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

TNL

 LTNL H TNLonLr 

TNS  H 

TNS 

 H 

TNS  H 

onS  f  

TNL

 LTNL H 

 L H 

TNLonL PLH 

TNS  H 

TNS 

 L H 

TNS  H onS  PHL

V V V V 

V C  Rt t t 

V V 

V V 

V V 

V V V 

C  Rt 

V V V 

V V 

V C  Rt t t 

V V 

V V 

V V C  Rt t t t 

1.021

20ln

1.02

29.0

9.02

ln

214ln

214ln)(

14

223

2233

 

 

i h l i d

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 64/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 64

 NMOS Inverter with a Depletion-ModeLoad Dynamic Response Example

• Find tf , tr , τPHL, τPLH and τ p for a depletion-mode

load inverter where:

 –  (W/L)S = 2.06/1 and (W/L)L = 1/2.15

 –  CLOAD = 0.1 pF –  VTNS = 1 V and VTNL = -3 V

 –  VDD = 5 V and VL = 0.25 V

 –  K S = (2.06)(25 10-6 A/V2)

 –  K L = (25 10-6 A/V2)/2.15

 –  Neglect body effect

OS i h l i d

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 65/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 65

 NMOS Inverter with a Depletion-ModeLoad Dynamic Response Example

• First find the on-resistances of the two NMOS

 

 

 

 

 

  

 

 AV  K  R

 AV V  K  R

TNL L

onL

TNS  H S 

onS 

7.28

3

15.2

25

11

85.4

152506.2

11

2

2

 

 

NMOS I i h D l i M d

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 66/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 66

 NMOS Inverter with a Depletion-ModeLoad Dynamic Response Example

• It is now possible to calculate the propagation

delays

ns

ns pF k 

V V V 

V V 

V C  R

ns pF k 

V V 

V V 

V V C  R

 PHL PLH  p

 PLH 

TNL

 LTNL H 

 L H 

TNLonL PLH 

 PHL

TNS  H 

TNS 

 L H 

TNS  H onS  PHL

58.22

56.4)59.1)(1.0)(7.28(

214ln

590.0)22.1)(1.0)(85.4(

214ln

 

  

 

 

  

 

   

 

 

 

 

NMOS I i h D l i M d

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 67/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 67

 NMOS Inverter with a Depletion-ModeLoad Dynamic Response Example

ns pF k t 

V V V V 

V C  Rt 

ns pF k t 

V V 

V V 

V V 

V V V C  Rt 

TNL

 LTNL H TNL

onLr 

 f  

TNS  H 

TNS 

 H 

TNS  H onS  f  

47.9)03.3)(1.0)(7.28(

1.021

20ln

25.1)57.2)(1.0)(85.4(

1.022

9.0

9.02ln

 

  

 

 

 

 

 

 

 

 

 

The rise and fall times can be calculated in the following

manner 

NMOS I i h S d L d

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 68/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 68

 NMOS Inverter with a Saturated LoadDynamic Response

• The following are the basic equations for calculating

dynamic response characteristics and can be used in a

similar manner as the previous example

C  Rt 

V V 

V V 

V V 

V V V C  Rt 

C  R

V V 

V V 

V V C  R

onLr 

TNS  H 

TNS 

 H 

TNS  H onS  f  

onL PLH 

TNS  H 

TNS 

 L H 

TNS  H onS  PHL

9

160

1.022

9.0

9.02ln

2

214ln

 

 

 

 

 

 

 

 

 

  

 

 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 69/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 69

Comparison of Load Devices

• The current has

 been normalized

to 50 μ Afor

vo

=VOL

=0.25V

isthefigurefor

thevarious

typesof

inverters 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 70/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 70

Comparison of Load Devices

• Body effect degrades the performance of the loaddevice

• The saturated load devices have the poorest τPLH since they have the lowest load current delivery

• The saturated load devices also reach zero current before the output reaches 5 V

• The linear load device is faster than the saturated

load device, but still slower than the resistive loadinverter.

• The fastest τPLH is from the depletion-mode device

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 71/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 71

Comparison of Load Devices

Simulated fall times for a

0.1 pF load

Simulated rise times for 

a 0.1 pF load

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 72/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 72

Propagation Delay Design Example

• Design depletion-mode load inverter with a

 propagation delay (τP) of 2 ns, and find (W/L)S,

(W/L)L tf , and tr such that:

 –  CLOAD = 10 pF –  VTNS = 1 V and VTNL = -3 V

 –  VDD = 5 V, VH = 5 V and VL = 0.25 V

 –  Base on a reference inverter with:

• (W/L)S = 2.06/1

• (W/L)L = 1/2.15

 –  Use equations from Table 6.14

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 73/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 73

Propagation Delay Design Example

1

26643.4

1

1.60

25

10503.1

10503.1)30(

6.1

)15(43.4

2.1

)2(2

10

43.443.4)15.2(06.2

6.12.1

22

6.12.1

2

2

3

2

3

 

  

 

 

  

 

 

  

 

 LS  L

 L

S  L

 L

TNLGSLTNS  H 

 L

S  L

onLonS  p

 L

 L

 AV  A

 L

 A

ns

 pF  K 

 K  K  K  K 

V V V V 

 K 

 K  K 

C C  RC  R

 

 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 74/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 74

Propagation Delay Design Example

ns

V V  K  L

C t 

ns

V V  K 

 L

C t 

TNS  H S 

 f  

TNLGSL L

 L

977.06.2

32.73.3

 

  

 

 

 

 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 75/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 75

Propagation Delay Design Example

• Repeat the example, but use Table 6.16 to include

 body effect

• First a scaling factor is needed to match this

design problems specifications

1551.0

10

2

1.3

1

2

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 pF 

 pF 

ns

ns

 P 

 P 

 

 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 76/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 76

Propagation Delay Design Example

nsns

nsns

t t t 

nsns

nsns

t t t 

 L

 L

 L

 L

 P 

 P  f   f  

 P 

 P r r 

 L L

S S 

97.01.3

25.1

4.81.3

213

1

1.72

15.2

1

155

1

319

1

06.2155

1

212

1

212

12

12

 

  

 

 

  

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

  

 

 

 

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 77/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 77

PMOS Logic

• PMOS logic circuits predated NMOS logic circuit, but

were replaced since they are usually operate at slower 

speeds (note the change in the power supplies)

Resistive Load Saturated Load Linear Load Depletion-mode Load

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 78/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 78

PMOS NAND and NOR Gates

 NOR Gate NAND Gate

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 79/81

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 80/81

Jaeger/Blalock 

9/25/03 

Microelectronic Circuit Design

McGraw-Hill

Chap 6 - 80

Silicon Art Examples

7/27/2019 Chap6-Introduction to Digital Electronics

http://slidepdf.com/reader/full/chap6-introduction-to-digital-electronics 81/81

End of Chapter 6