94
1 George Mason University General Chemistry 212 Chapter 18  Acid-Base Equilibria  Acknowledgements Course Text: Chemistry: the Molecular Nature of Matter and Change, 6 th  ed, 2011, Martin S. Silberberg, McGraw-Hill The Chemistry 211/212 General Chemistry courses taught at George Mason are intended for those students enrolled in a science  /engineering oriented curricula, with particular emphasis on chemistry, biochemistry, and biology The material on these slides is taken primarily from the course text but the instructor has modified, condensed, or otherwise reorganized selected material.  Additional material from other sources may also be included. Interpretation of course material to clarify concepts and solutions to problems is the sole responsibility of this instructor. 7/16/2014

chap18web

Embed Size (px)

Citation preview

Page 1: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 1/94

1

George Mason UniversityGeneral Chemistry 212

Chapter 18 Acid-Base Equilibria

 Acknowledgements

Course Text: Chemistry: the Molecular Nature of Matter andChange, 6th ed, 2011, Martin S. Silberberg, McGraw-Hill

The Chemistry 211/212 General Chemistry courses taught at George

Mason are intended for those students enrolled in a science

 /engineering oriented curricula, with particular emphasis on

chemistry, biochemistry, and biology The material on these slides is

taken primarily from the course text but the instructor has modified,condensed, or otherwise reorganized selected material.

 Additional material from other sources may also be included.

Interpretation of course material to clarify concepts and solutions to

problems is the sole responsibility of this instructor.7/16/2014

Page 2: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 2/94

Chapter 18 – Acid-Base Equilibria  Acids & Bases in Water

 Arrhenius Acid-Base Definition

Bronsted-Lowry Acid-Base Definition

Lewis Acid-Base Definition

 Acid Dissociation Constant

Relative Strengths of Acids & Bases  Autoionization of Water and the pH Scale

 Autoionization and Kw

The pH Scale

Proton Transfer and the Bronsted-Lowry Acid-BaseDefinition

The Conjugate Acid-Base Pair

Met Direction of Acid-Base Reactions7/16/2014 2

Page 3: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 3/94

Chapter 18 – Acid-Base Equilibria Solving Problems Involving Weak-Acid Equilibria

Finding Ka Given Concentrations

Finding Concentrations Given Ka

Extent of Acid Dissociation

Polyprotic Acids

Weak Bases and Their Relation to Weak Acids

 Ammonia & The Amines

 Anions of Weak Acids

The Relation Between Ka & Kb

Molecular Properties and Acid Strength Nonmetal Hydrides

Oxoacids

 Acidity of Hydrated Metal Ions

7/16/2014 3

Page 4: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 4/94

Chapter 18 – Acid-Base Equilibria  Acid-Base Properties of Salt Solutions

Salts That Yield Neutral Solutions

Salts That Yield Acidic Solutions

Salts That Yield Basic Solutions

Salts of Weakly Acidic Cations and Weakly Basic Anions

Salts of Amphoteric Anions

Generalizing the Bronsted-Lowry Concept: The LevelingEffect

Electron-Pair Donation and the Lewis Acid-Base Definition

Molecules as Lewis Acids

Metal Cations as Lewis Acids

Overview of Acid-Base Definitions

7/16/2014 4

Page 5: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 5/94

 Acid & Bases Antoine Lavoisier was one of the first chemists

to try to explain what makes a substance acidic

In 1777, he proposed that oxygen was anessential element in acids

The actual cause of acidity and basicity was

ultimately explained in terms of the effect thesecompounds have in water by Svante Arrheniusin 1884

7/16/2014 5

Page 6: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 6/94

 Acids & Bases

7/16/2014 6

Several concepts of acid-base theory:

The Arrhenius concept

The Bronsted-Lowry concept

The Lewis concept

Page 7: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 7/94

 Acids & Bases

7/16/2014 7

 According to the Arrhenius concept of acids

and bases An acid is a substance that, whendissolved in water, increases theconcentration of Hydrogen ion, H+(aq)

The H+(aq) ion, called the Hydrogen ion isactually chemically bonded to water, that is,H3O

+, called the Hydronium ion

 A base is a substance that whendissolved in water increases theconcentration of the Hydroxide ion,

OH

-

(aq)

Page 8: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 8/94

 Acids & Bases

7/16/2014 8

More About the Hydronium Ion

The Hydronium Ion (H3O+) actually exists as a hydrogen

bonded H9O4+ cluster. The formation of Hydronium ions is

a complex process in aqueous solution

The Hydronium ion has trigonal

pyramidal geometry because all three H-

O-H dihedral bond angles are identical

Page 9: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 9/94

 Acids & Bases

7/16/2014 9

 An Arrhenius acid is any substance which increases  the concentration of Hydrogen ions (H+) in solution.

 Acids generally have a sour taste

HBr(aq) H+(aq) + Br-(aq)

 An  Arrhenius base is any substance which increases  the concentration of Hydroxide ions (OH-) in solution.

Bases generally have a bitter taste KOH(s)   K +(aq) + OH-(aq) 

Hydrogen and Hydroxide ions are important in aqueoussolutions because - Water reacts to form both ions

H2O(l) H+(aq) + OH-(aq) 

HBr and KOH are examples of a strong acid  and astrong base ; strong acids & bases dissociatecompletely

Page 10: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 10/94

 Acids & Bases Monoprotic acids are those acids that are able to donate

one proton per molecule during the process of

dissociation (sometimes called ionization) as shown below(symbolized by HA):

HA(aq) + H2O(l) ⇌ H3O+(aq) + A −(aq)

Common examples of monoprotic acids in mineral acids

include Hydrochloric Acid (HCl) and Nitric Acid (HNO3) Polyprotic acids are able to donate more than one proton

per acid molecule.

Diprotic acids have two potential protons to donate

H2 A(aq) + H2O(l) ⇌ H3O+(aq) + HA −(aq) 

Triprotic acids have three potential protons to donate 

H3 A(aq) + H2O(l) ⇌ H3O+(aq) + H2 A −(aq) 

7/16/2014 10

Page 11: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 11/94

 Acids & Bases

Oxoacids

Oxoacids with one oxygen have the structure: HOYHOCl HOBr HOI

Oxoacids with multiple oxygen have the structure:

(OH)m YOn 

HOClO3  (HClO4) HOClO2  (HOCLO3)

HOClO (HCLO2) HOCL (HClO)

The more oxygen atoms, the greater the acidity; thusHOCLO3 is a stronger acid than HOCl

 Acidity refers to the relative acid strength, i.e. the degreeto which the acid dissociates to form H+ (H3O

+) & OH-

7/16/2014 11

Page 12: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 12/94

Bronsted-Lowry Acids & Bases Brønsted-Lowry Concept of Acids and Bases

In the Brønsted-Lowry concept:

 An Acid is a species that donates protons 

 A Base is a species that accepts protons

 Acids and bases can be ions as well asmolecular substances

 Acid-base reactions are not restricted toaqueous solution

Some species can act as either acids or bases(Amphoteric species) depending on what theother reactant is

7/16/2014 12

Page 13: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 13/94

Bronsted-Lowry Acids & Bases  Amphoteric Species

 A species that can act as either an acid or base is:

 Amphoteric  Water is an important amphoteric species in the acid-

base properties of aqueous solutions

Water can react as an acid by donating a proton toa base 

Water can also react as a base by accepting aproton from an acid 

7/16/2014 13

+ -3 2 4NH (aq) + H O(l) NH (aq) + OH (aq)

H+

+2 3HF(aq) + H O(l) (aq) + H O (aq)F 

 

H+

d d &

Page 14: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 14/94

Bronsted-Lowry Acids & Bases

7/16/2014 14

 AcidH+ donor

BaseH+ acceptor

Lone pairbinds H+ 

Base

H+ acceptor

 Acid

H+ donor

Brønsted-Lowry Concept of Acids and Bases

Proton transfer as the essential feature of a

Brønsted-Lowry acid-base reaction 

Lone pair

binds H+

 

A id & B

Page 15: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 15/94

 Acids & Bases

7/16/2014 15

Bronsted-Lowery Concept  –  Conjugate Pairs

In Bronsted theory, acid and base reactants form:

Conjugate Pairs

The acid (HA) donates a proton to water leaving the

conjugate Base (A-)

The base (H2O) accepts a proton to form the conjugate

acid (H3O+) 

HA(aq) + H2O(l) ⇌  A−(aq) + H3O+(aq) 

 Acid Base Conjugate Conjugate

Base Acid 

Page 16: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 16/94

Bronsted-Lowry Acids & Bases

7/16/2014 16

HNO2(aq) + H2O(l) H3O+  aq) + NO2-(aq)  

Conjugate acid-base pairs are shown connected

Every acid has a conjugate base

Every base has a conjugate acid The conjugate base has one fewer H and one more

 “minus” charge than the acid 

The conjugate acid has one more H and one fewer

minus charge than the base

acid acidbase base

Bronsted-Lowery Acid-Base Conjugate Pairs

BronstedBase

H3O+ is conjugate

acid of base H2O

NO2- is conjugate

base of acid HNO2

Bronsted Acid

B t d L A id & B

Page 17: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 17/94

Bronsted-Lowry Acids & Bases Bronsted-Lowery Acid-Base Conjugate Pairs 

NH3(aq) + H2O(l) NH4+ aq) + OH-(aq)  

7/16/2014 17

base acidacid base

NH4+ is conjugate

acid of base NH3 

OH- is conjugate

base of acid H2O 

Bronsted

Base

Bronsted

 Acid

Donates

Proton

 Accepts

Proton

B t d L A id & B

Page 18: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 18/94

Bronsted-Lowry Acids & Bases

7/16/2014 18

H2S + NH3  NH4+

  +  HS- 

acid base baseacid

HS- is conjugateBase of acid H2S

NH4+ is conjugate

acid of base NH3 

Bronsted-Lowery Acid-Base Conjugate Pairs 

Bronsted

Base

Bronsted

 Acid

Donates

Proton

 Accepts

Proton

B t d L A id & B

Page 19: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 19/94

Bronsted-Lowry Acids & Bases Bronsted_Lowry Concept – The Leveling Effect

 All Bronsted_Lowry acids yield H3O+ ions (Cation)

 All Bronsted_Lowry bases yield OH- ions (Anion)

 All strong acids are equally strong because all of them form

the strongest acid possible - H3O+

Similarly, all strong bases are equally strong because theyform the strongest base possible - OH-

Strong acids and bases dissociate completely yielding H3O+ 

and OH-

 Any acid stronger than H3O+ simply donates a proton to H2O

 Any base stronger than OH- simply accepts proton from H2O

Water exerts a leveling effect on any strong acid orbase by reacting with it to form water ionization

products 7/16/2014 19

P ti P bl

Page 20: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 20/94

Practice Problem Identify the conjugate acid-base pairs in the following:

7/16/2014 20

- -2 - 2-

2 4 3 3 4

H PO (aq) + CO (aq) HCO (aq) + HPO (aq)

- + 2-2 4 4

2- + -

3 3

H PO has one more H than HPO and

CO has one fewer H than HCO

- -

2 4 3

2- 2-

4 3

H PO & HCO are acids

HPO & CO are bases

- 2-

2 4 4H PO / HPO is a conjugate acid -base pair

- 2-

3 3HCO / CO is a conjugate acid -base pair

 Acid Conjugate base

Base Conjugate Acid

L i A id & B

Page 21: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 21/94

Lewis Acids & Bases Lewis Acids & Bases

Some acid base reactions don’t fit the Bronsted-Lowryor Arrhenius classifications

The Lewis acid-base concepts expands the acid class

Such reactions involve a  “sharing”   of electron pairsbetween atoms or ions

Lewis Acid – An electron deficient species (Electrophile) 

that accepts an electron pair

Lewis Base – An electron rich species (Nucleophile) 

that donates an electron pair

7/16/2014 21

L i A id & B

Page 22: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 22/94

Lewis Acids & Bases Lewis Acids & Bases

The product of any Lewis acid-base reaction is called an

 “Adduct” , a single species that contains a new covalentbond (shared electron pair) 

7/16/2014 22

 +  A + : B A - B

  Acid Base

Electrophile Nucleophile Adduct

F F 

H H 

F

B

FF

H

N

HH

An acid is an

electron-pair

acceptor

A base is an

electron-pair

donor

 Adduct

L i A id & B

Page 23: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 23/94

Lewis Acids & Bases Species that do not contain Hydrogen in their formulas, such

as CO2 and Cu++ function as Lewis acids by accepting anelectron pair

The donated proton of a Bronsted-Lowry acid acts as a Lewisacid by accepting an electron pair donated by the base:

The Lewis acids are Yellow and the Lewis bases are Blue infollowing reaction

BF3  + :NH3    BF3NH3 Fe3+  + 6 H2O    Fe(H2O)6

3+ 

HF + H2O    F-  + H3O+

7/16/2014 23

+  - 

L i A id & B

Page 24: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 24/94

Lewis Acids & Bases Solubility Effects

 A Lewis acid-base reaction between nonpolar Diethyl

Ether and normally insoluble Aluminum Chloride

7/16/2014 24

The solubility of Aluminum Chloride in Dimethyl Etherresults from the Oxygen acting as a base by donatingan electron pair to the Aluminum acting as an acidforming a water-soluble polar covalent bond

+

-

Practice Problem

Page 25: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 25/94

Practice ProblemThe following shows ball-and-stick models of the reactantsin a Lewis acid-base reaction.

Write the complete equation for the reaction, including theproduct

Identify each reactant as a Lewis acid or Lewis base

7/16/2014 25

AlCl3  + :NH3    AlCl3:NH3

Lewis acid Lewis base Adduct

 Acceptse- pair

Donatese- pair

Acids & Bases (Summary)

Page 26: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 26/94

 Acids & Bases (Summary)

7/16/2014 26

 Arrhenius acid concept

acid  = proton (H+) producer; base = OH- producer

Formation of Water (H2O) from H+  & OH- 

Bronsted-Lowry concept

Stronger Acid (HA) transfers proton to a stronger base (H2O)

to form weaker acid H3O+) and weaker base (A-) 

Stronger base (NH3) accepts proton from stronger acid (H

2O)

Lewis Concept

Donation and acceptance of an electron pair to form

a covalent bond in an adduct 

+

2 3

-HA(aq) + H O(l) H O (aq) + A (aq)

  + -HCl(aq) H (aq) + Cl (aq)

  + -

3 2 4NH (aq) + H O(l) NH (aq) + OH (aq)

  + -KOH(s) K (aq) + OH (aq)

Acids & Bases

Page 27: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 27/94

 Acids & Bases Self Ionization of Water

Pure water undergoes auto-ionization to produceHydronium and Hydroxide ions

2 H2O(l)   H3O+(aq) + OH-(aq) 

The extent of this process is described by an auto-ionization (ion-product) constant, K w 

The concentrations of Hydronium and Hydroxide ions inany aqueous solution must obey the auto-ionizationequilibrium

Classification of solutions using K w:

 Acidic: [H3O+] > [OH-]

Basic: [H3O+] < [OH-]

Neutral: [H3O+

] = [OH-

]7/16/2014 27

+ - -14w 3K = [H O ][OH ] = 1.0 10

Acids & Bases

Page 28: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 28/94

 Acids & Bases Because of the auto-ionization constant of water, the

amounts of Hydronium and Hydroxide ions are alwaysrelated

For example, pure water at 25 oC,

The Definition of pH The amount of Hydronium ion (H3O

+) in solution isoften described by the pH of the solution

The Definition of pOH

Hydroxide (OH-) can be expressed as pOH

7/16/2014 28

+3pH = - log[H O ]

+ - -14w 3K = [H O ][OH ] = 1.0 10

+ -pH

3[H O ] = 1 10

+ - -73[H O) ] = [OH ] = 1.0 10

-10pOH = - log [OH ]

- -pOH[OH ] = 1 x 10

Acids & Bases

Page 29: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 29/94

 Acids & Bases

pH scale ranges from 0 to 14

The pH of pure water = -log(1.00 X 10-7) = 7.00 

pH = 0.00 - 6.999+  = acidic [H3O+] > [OH-]

pH = 7.00 = neutral [H3O+] = [OH-]

pH = 7.00+  - 14.00 = basic [H3O+] < [OH-]

 Acidic solutions have a lower pH (higher [H3O+] and

a higher pOH (lower [OH-] than basic solutions

7/16/2014 29

Acids & Bases

Page 30: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 30/94

 Acids & Bases Relations among pH, pOH, and pK w 

7/16/2014 30

owpK = pH + pOH = 14 (at 25 C)

+ - -14w 3K = [H O ][OH ] = 1.0 10

+ - -14w 3-log(K ) = - log([H O ][OH ]) = - log(1 10 )

+ - -14w 3-log(K ) = - log[H O ] - log[OH ] = - log(1 10 )

Equilibrium & Acid Base Conjugates

Page 31: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 31/94

Equilibrium & Acid-Base Conjugates

Equilibrium Constants (K) for acids & bases can also beexpressed as pK

Reaction of an Acid (HA) with water as a base

Reaction of a Base (A -) with water as an acid

7/16/2014 31

a 10 apK = - log [K ]

  + -2 3HA(aq) + H O(l) H O (aq) + A

+ -3

a

[H O ][A ]K =

[HA]

-

b -

[HA][OH ]K =

[A ]

- -2A (aq) + H O(l) HA(aq) + OH (aq)

]b 10 bpK = - log [K  

Acid Base Conjugate Acid Conjugate Base

Base Acid Conjugate Acid Conjugate Base

Equilibrium & Acid Base Conjugates

Page 32: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 32/94

Equilibrium & Acid-Base Conjugates Relationship between:

K a  and HA

K b  and A -

Setup two dissociation reactions:

The sum of the two dissociation reactions is theautoionization of water

The overall equilibrium constant is the product of theindividual equilibrium constants

7/16/2014 32

+ -

2 3HA + H O H O + A

- -

2A + H O HA + OH+ -

2 32H O H O + OH (autoionization)

a b w  K × K = K  

+ - -

3

-

[H O ][A ] [HA][OH ]  ×

[HA] [A ]+ -

3= [H O ][OH ]

Equilibrium & Acid Base Conjugates

Page 33: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 33/94

Equilibrium & Acid-Base Conjugates

From this relationship, K a of the acid in a conjugate paircan be computed from K b and vice versa

Reference tables typically have K a  & K b values formolecular species, but not for ions such as F- or

CH3NH3

+

7/16/2014 33

w a bK = K × K  

w a b-log(K ) = - log([K ][K ])

w a b-log(K ) = - log[K ] - log[K ]

o

w a bpK = pK + pK = 14 (at 25 C)

owpK = pH + pOH = 14 (at 25 C)

Equilibrium & Acid Base Conjugates

Page 34: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 34/94

Equilibrium & Acid-Base Conjugates  Acid strength [H3O

+] increases with increasing value of K a

Base strength [OH-] increases with increasing value of k b

 A low pK  corresponds to a high value of K

 A reaction that reaches equilibrium with mostly productspresent (proceeds to far right) has a “low pK” (high K) 

7/16/2014 34

+ -3

a

[H O ][A ]K =

[HA]

-

b -

[HA][OH ]K =

[A ]

a 10 apK = - log [K ]

]b 10 bpK = - log [K  

Practice Problem

Page 35: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 35/94

Practice Problem Ex. Find K b value for F- 

7/16/2014 35

-4

aK (HF) = 6.8 10 (K values of compounds from table)

a b w

-K (HF) K (F ) = K 

-14

-11w

b -4

a

- K  1.0 10

K (F ) = = = 1.5 10K (HF) 6.8 10

 

2

+ -

3HF + H O H O + F

Acids & Bases

Page 36: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 36/94

 Acids & Bases

7/16/2014 36

The Relationship Between K a and pK a 

Acid Name (Formula) K a at 25oC pK a 

Hydrogen Sulfate ion (HSO4-) 1.0x10-2 

Nitrous Acid (HNO2)

 Acetic Acid (CH3COOH)

Hypobromous Acid (HBrO)

Phenol (C6H5OH)

7.1x10-4 

1.8x10-5 

2.3x10-9 

1.0x10-10

 

1.99

3.15

4.74

8.64

10.00

   A  c   i   d

   S   t  r  e  n  g   t   h

Acids & Bases

Page 37: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 37/94

 Acids & Bases

7/16/2014 37

The pH Scale

Acids & Bases

Page 38: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 38/94

 Acids & Bases Strong Acids & Bases

Strong acids and bases dissociate completely in

aqueous solutionsStrong acids: HCl, HBr, HI, HNO3, H2SO4, HClO4 

Strong bases: all Group I & II Hydroxides

NaOH, KOH, Ca(OH)2, Mg(OH)2 

The term strong has nothing to do with theconcentration of the acid or base, but rather theextent of dissociation

In the case of HCl, the dissociation lies very far to the

right because the conjugate base (Cl-) is extremelyweak, much weaker than water

HCl(aq) + H2O(l)  H3O+(aq) + Cl-(aq) 

H2O is a much stronger base than Cl- and “out

competes it” for available protons 7/16/2014 38

Acids & Bases

Page 39: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 39/94

 Acids & Bases

7/16/2014 39

 Activity Series

Strengths of

acids and bases

Strengthdetermined by K,not concentration

Practice Problem

Page 40: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 40/94

Practice Problem

7/16/2014 40

 A strong monoprotic acid is dissolved in a beaker ofwater. Which of the following pictures best

represents the acid solution.

 Ans: B

 A B C

 A solution of astrong acid containsequal amounts ofH3O

+ and the acid

anion, such as a “Cl-”The monoproticacid is completelydissociated

Hydrohalic Acids – Weak vs Strong

Page 41: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 41/94

Hydrohalic Acids   Weak vs Strong The reason Hydrofluoric acid is weak relative to

the other Hydrohallic Acids (I, Br, Cl) is quite

complicated The material being somewhat beyond the scope

of the discussions we have in the chem 211 &chem 212 courses

It starts out with the short length of the H - Fbond and the very high electronegativity of theFluoride ion

When you take into account the Enthalpy,Entropy, and Free Energy properties (Chapter19), the numbers clearly show a distinctdifference between HF and the other Hydrohalic

acids7/16/2014 41

Hydrohalic Acids – Weak vs Strong

Page 42: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 42/94

Hydrohalic Acids   Weak vs Strong These properties can be summarized as follows:

  Very strong Hydrogen Bonding between theun-ionized Hydrogen Fluoride (HF) moleculesand water molecules

 This energy required to break the H-F bond,

is much greater then for the bonds of theother Hydrohalic Acid bonds

 A large decrease in Entropy when theHydrogen Fluoride molecules react with

water

7/16/2014 42

Hydrohalic Acids – Weak vs Strong

Page 43: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 43/94

Hydrohalic Acids   Weak vs Strong This is particularly noticeable with hydrogen

fluoride because the attractiveness of the

very small fluoride ions produced imposes alot of order on the surrounding watermolecules, and also on nearby hydroxoniumions

The effect falls as the halide ions get bigger

7/16/2014 43

Hydrohalic Acids – Weak vs Strong

Page 44: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 44/94

Hydrohalic Acids   Weak vs Strong Note the values below. Hydrofluoric acid clearly

stands out

The Ka values clearly suggest a weak acid

H TS G Ka

(kJ mol-1) (kJ mol-1) (kJ mol-1) (mol dm-3)

HF -13 -29 +16 1.6 x 10-3

HCl -59 -13 -46 1.2 x 10+8

HBr -63 -4 -59 2.2 x 10

+10

HI -57 +4 -61 5.0 x 10+10

7/16/2014 44

Practice Problem

Page 45: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 45/94

Practice ProblemWhat are the concentrations of Hydronium Ions (H3O

+)

and Hydroxide (OH-) ions in 1.2 M HBr?

HBr + H2O   H3O+  + Br-

7/16/2014 45

- -15[OH ] = 8.3 x 10 M

[HBr] = 1.2 mol / L

+3[H O ] = 1.2 mol / L

+ - -14w 3K = [H O ][OH ] = 1 x 10

-14- w

+3

K  1 x 10 mol / L[OH ] = =1.2 mol / L[H O ]

HBr is a strong acid

and is completelydissociated

 Autoionization of Water

Practice Problem

Page 46: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 46/94

Practice ProblemWhat are the concentrations of Hydronium Ions (H3O

+)

and Hydroxide (OH-) ions in 0.085 M Ca(OH)2?

Ca(OH)2    Ca+2  + 2OH- 

7/16/2014 46

+ -14

3[H O ] = 5.8 x 10 mol / L

2[Ca(OH)] = 0.085 mol / L

-[OH ] = 2 0.085 = 0.17 mol / L

+ - -14w 3K = [H O ][OH ] = 1 10

-14+ w

3 -

K  1 10[H O ] = =

0.17 mol / L[OH ]

Ca(OH)2 is a strongbase and is completelydissociated

 Autoionization of Water

Page 47: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 47/94

Practice Problem

Page 48: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 48/94

Practice ProblemWhat is the pOH of the following solution:?

[H3O+] = 9.3 x 10-4 M

7/16/2014 48

+ -w 3K = [H O ][OH ]

-14- w

+ -4

3

K  1.0 10[OH ] = = = 1.0753 M

[H O ] 9.3 10

 

- -1110 10pOH = -log [OH ] = -log (1.075268 10 )

-1110 10pOH = -(log 1.075268 + log 10 )

pOH = -(0.031516 - 11.0) = 11.0 - 0.031516

pOH = 11

Practice Problem

Page 49: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 49/94

Practice ProblemWhat is the pH of a solution containing 0.00256 M HCl?

7/16/2014 49

+ -2 3HCl + H O H O + Cl

+ -3Thus : [HCl] = [H O ] = [Cl ] = 0.00256M

Hydrochloric Acid (HCl) is a strong acid

It dissociates completely in aqueous solution

+3pH = - log[H O ]

pH = - log[0.00256]

pH = - (-2.59) = 2.59

Practice Problem

Page 50: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 50/94

Practice ProblemWhat is the pH of a solution containing 0.00813 M Ca(OH)2?

7/16/2014 50

2Calcium Hydroxide (Ca(OH) ) is a strong base

It dissociates completely in aqueous solution

  +2 -

2Ca(OH) Ca + 2OH

+ -w 3K = [H O ][OH ]

-14+ -13

3 -

Kw 1.0 x 10[H O ] = = = 6.15006 x 10 M

0.01626[OH ]

+2 -2Thus : [Ca(OH) ] = [Ca ] = 2[OH ] = 0.00813 M

-[OH ] = 2× 0.00813 = 0.01626 M

+3pH = - log[H O ]

-13pH = - log[6.15006 x 10 ]

pH = 12.1

Page 51: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 51/94

Page 52: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 52/94

Weak Acid Equilibria Problems

Page 53: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 53/94

Weak Acid Equilibria Problems Construct a “Reaction” table 

Make assumptions that simplify calculations

Usually, “x” is very small relative to initialconcentration of HA

 Assume [HA]init ≈ [HA]eq  & Apply 5% rule

If “x” < 5% [HA]init ; assumption is valid 

Substitute values into K a expression, solve for “x”  

 The Notation System

Brackets – [HA]; [HA]diss; [H3O+]

indicate “Molar” concentrations 

Bracket with “no” subscript refers to molar

concentration of species at equilibrium7/16/2014

Weak Acid Equilibria Assumptions

Page 54: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 54/94

Weak Acid Equilibria Assumptions  Assumptions

The [H3O+] from the “autoionization” of water is

 “Negligible”  

It is much smaller that the [H3O+] from the

dissociation of HA

[H3O+] = [H3O

+]from HA  + [H3O+]from H2O ≈ [H3O

+]from HA

 A weak acid has a small K a 

Therefore, the change in acid concentration can beneglected in the calculation of the equilibriumconcentration of the acid

[HA] = [HA]init  - [HA]dissoc  ≈  [HA]init7/16/2014 54

+ -2 3HA(aq) + H O(l) H O (aq) + A

Weak Acid Equilibria Assumptions

Page 55: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 55/94

Weak Acid Equilibria Assumptions  Assumption Criteria - 2 approaches

7/16/2014 55

initinit

[HA]if < 400, the assumption [HA] [HA] is not justified

Kc  Neglecting x introduces an error > 5% 

initinit

[HA]if > 400, the assumption [HA] [Ha] is justified

Kc  Neglecting x introduces an error < 5%

For [HA]diss  relative to [HA]init

diss init initif [HA] < 5% [HA] , the assumption ([HA] [HA] ) is valid

  + -2 3HA(aq) + H O(l) H O (aq) + A

For Kc relative to [HA]init  (or Kp relative to P A(init)) 

+ -3H O A

K =HA

Practice Problem

Page 56: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 56/94

Practice ProblemWhat is the K a of a 0.12 M solution of Phenylacetic acid (HPAc)

with a pH of 2.62

HPAc(aq) + H2O(l)   [H3O+

](aq) + PAc-

(aq)[H3O

+]from HPAc  + [H3O+]from H2O  ≈ [H3O

+]from HPAc

pH = - log[H3O+]

[H3O+] = 10-pH = 10-2.62 = 2.4 x 10-3 M 

7/16/2014 56

Concentration HPAc(aq)  +  H2O(l)  H3O+ + PAc-

Initial Ci 0.12 - 0 0

  - X - + X +X

Equilibrium C f 0.12 - X - X X

Final Cf 0.12 2.4x10-3  2.4x10-3 

[H3O+] = x = 2.4 x 10-3  M = [PAc] 

HPAc is weak acid  HPAc = 0.12 M – x ≈ 0.12 M+ -3 -3

3a

-[H O ][PAc ] (2.4 x 10 )(2.4 x 10 )K =

[HPAc] 0.12

-5aK = 4.8 x 10

Practice Problem

Page 57: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 57/94

Practice ProblemWhat is the [H3O

+] of a 0.10 M solution of Propanoic Acid(HPr)? K a  = 1.3 x 10-5

7/16/2014 57

+-53

a

-[H O ][Pr ]K = = 1.3 x 10

[HPr]

HPr is a weak acid = [HPr]init  = 0.10 MLet x = [HPr]diss  = [H3O

+]from HPr   = [Pr -]from HPr  

Concentration HPr(aq)  +  H2O(l)  H3O+ + Pr -

Initial Ci 0.10 - 0 0

  - X - + X +XEquilibrium C f 0.10- X - X X

Final Cf 0.10 X X

 Assumption: K a is very small and x is small compared to[HPr]

init

  HPr = 0.10 M  –  x ≈  0.10 M  Con’t 

+ -2 3HPr(aq) + H O H O (aq) + Pr (Aq) 

Practice Problem (con’t)

Page 58: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 58/94

Practice Problem (con t) Substituting into the K a expression and solving for x

7/16/2014 58

-3 + -3 dissx = 1.1 x 10 M = [H O ] = [Pr ] = [HPr]

+

-53a

-[H O ][Pr ] (x)(x)

K = = 1.3 10[HPr] 0.10

  -5x = 0.10 1.3 10

Checking the Assumption: [HBr]diss  < 5% [HBr]init

1.1% < 5% Assumption Valid

-3diss

dissinit

[HPr] 1.1 10 M

For [HPr] : = x 100 = 1.1%[HPr] 0.10M

Page 59: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 59/94

Weak Acid Equilibria

Page 60: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 60/94

Weak Acid Equilibria Polyprotic Acids

 Acids with more than one ionizable proton arepolyprotic acids.

One proton at a time dissociates from the acidmolecule

Each dissociation step has a different K aH3PO4(aq) + H2O(l)   H2PO4

-  + H3O+(aq)

H2PO4-(aq) + H2O(l)   HPO4

-2  + H3O+(aq)

HPO4-2(aq) + H2O(l)   PO4

-3  + H3O+(aq)

7/16/2014 60

- +-32 4 3

a13 4

[H PO ][H O ]K = = 7.2 x 10

[H PO ]

-2 +-8

4 3a2 -2 4

[HPO ][H O ]K = = 6.3 x 10[H PO ]

-3 +-134 3

a3 -4

[PO ][H O ]K = = 4.2 x 10

[HPO ]

Weak Acid Equilibria

Page 61: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 61/94

Weak Acid Equilibria

7/16/2014 61

Successive dissociation equilibrium constants (Ka)for polyprotic acids have significantly lower values

Ka1 >> Ka2 >> Ka3

Practice Problem

Page 62: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 62/94

act ce ob e Calculate the following for 0.05 M Ascorbic Acid (H2 Asc):

[H2 Asc], [HAsc-], [Asc2-], pH

K a1 = 1.0 x 10-5  K a2 = 5 x 10-12 

7/16/2014 62

- +2 2 3H Asc(aq) + H O(l) HAsc (aq) + H O (aq)

 - 2- +2 3HAsc (aq) + H O(l) Asc (aq) + H O (aq)

-] +-53

a12

[HAsc ][H O ]K = = 1.0 10

[H Asc]

2-] +-123

a2-

[Asc ][H O ]K = = 5.0 10

[HAsc ]

+ + -a1 a2 3 2 3K >> K [H O ] from H Asc > > [H O ] from HAsc

a1 2

2 init 2 eq

Because K is small, the amount of H Asc that dissociates can be neglected

relative to initial conc : [H Asc] [H Asc] = 0.05 M Con’t 

Practice Problem (con’t) 

Page 63: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 63/94

( )

7/16/2014 63

Concentration H2Asc(aq)  +  H2O(l)  H3O+ + HAsc-

Initial Ci 0.05 - 0 0

  - X - + X +X

Equilibrium C f 0.05 - X - X X

Final C f 0.05 7.1x10-4

7.1x10-4

2

2

+ +a2 a1 3 from HAsc 3 from H Asc

+ +

3 from H Asc 3

Assumptions :

Because K << K , [H O ] [H O ]

[H O ] [H O ]

 

a1 2 init 2 2 init

2

Because K is small, [H Asc] - x = [H Asc] [H Asc] Thus,

  [H Asc] = 0.050M - x 0.050 M

 + - 2

-53

a1 2

[H O ][HAsc ] xK = = 1 x 10

[H Asc] 0.050

- + -43x = [HAsc ] [H O ] 7.1 10 M

+ -43pH = - log[H O ] = - log(7.1 10 ) = 3.15

Con’t 

Practice Problem (con’t) 

Page 64: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 64/94

( ) Calculate [Asc2-]

7/16/2014 64

2-] +-123

a2 -

[Asc ][H O ]

K = = 5.0 x 10[HAsc ]

-2-] a2

+3

(K )[HAsc ][Asc ] =

[H O ]

-12 -42-] -12

-4

(5 x 10 )(7.1 x 10 )[Asc ] = = 5 10 M

7.1 x 10

Weak Bases & Relation to Weak Acids

Page 65: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 65/94

Base – Any species that accepts a proton (Bronsted)

In water the base accepts a proton from water acting as

an acid (water is amphoteric) and leaves behind a OH- ion

7/16/2014 65

+ -

c2

[BH ][OH ]K =

[B][H O]

The water term is treated as a constant in aqueousreactions and is incorporated into the value of K c

+ -

c 2 b

[BH ][OH ]K [H O] = K =

[B]

b bpK = -logK 

Base strength increases with increasing K b (pK b deceases)

+ -2B(aq) + H O(l) BH (aq) + OH (aq)

Weak Base Equilibria

Page 66: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 66/94

q  Ammonia is the simplest Nitrogen-containing compound

that acts as a weak base in water

 Ammonium Hydroxide (NH4OH) in aqueous solutionconsists largely of unprotonated NH3 molecules, as itssmall K b indicates:

7/16/2014 66

+ -3 2 4NH (aq) + H O(l) NH (aq) + OH (aq)

+ - + -4 4

b

3 2 3

NH OH NH OHK = =

NH H O NH

-5bK = 1.76×10

Weak Base Equilibria

Page 67: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 67/94

qIn a 1.0 M NH3 solution:

The NH3 is about 99.58% undissociated

If one or more of the Hydrogen atoms in ammonia isreplaced by an “organic” group (designated as R), an  “Amine”  results:

The Nitrogen atom in each compound has a “lone-pair”of unbonded electrons, a Bronsted Base characteristic,i.e., the electron pair(s) can accept protons

7/16/2014 67

- + -34[OH ] = [NH ] = 4.2 x 10 M

Primary

 Amine

Secondary

 Amine

Tertiary

 Amine

Weak Base Equilibria

Page 68: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 68/94

q

7/16/2014 68

Practice Problem

Page 69: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 69/94

What is the pH of a 1.5 M solution of Dimethylamine(CH3)2NH? K b  = 5.9 x 10-4

7/16/2014 69

+ -3 2 2 3 2 2(CH ) NH(aq) + H O(l) (CH ) NH (aq) + OH (aq)

+ -3 2 2

b3 2

[(CH ) NH ][OH ]K =

[(CH ) NH]

Concentration(CH3)2NH(aq

+  H2O(l)  (CH3)2NH2(aq) + H3O+

Initial Ci 1.5 - 0 0

  - X - + X +X

Equilibrium C f 1.5 - X - X X

-

b wBecause K > > K , the [OH ] from the autoionization of water is negligible,thus,

 

3 2 init 3 2 reacting 3 2 3 2 init[(CH ) NH] - [(CH ) NH] = [(CH ) NH] [(CH ) NH]

Con’t 

- + -from base 3 2 2[OH ] = [(CH ) NH ] = [OH ]

bBecause K is small, assume the amount of Amine reacting is small, thus

Practice Problem (con’t) 

Page 70: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 70/94

( )Since K b is small: [(CH3)2NH]init    [(CH3)2NH]: thus,

7/16/2014 70

1.5 M - x 1.5 M

  + - 2

-43 2 2b

3 2

[(CH ) NH ][OH ] xK = = 5.9 x 10

[(CH ) NH] 1.5

- -2x = [OH ] 3.0 x 10

 -2

3.0 x 10 M  x 100 = 2.0% (< 5%; assumption is justified)

1.5 M

Checking the assumptions:

3init

-4

b

[B] 1.5= = 2.5 x 10 > 400

K  5.9 x 10

Calculating pH:

+ -13

3pH = - log[H O ] = - log(3.3 10 ) = (13 - 0.52) = 12.48

-14

+ -13w

3 - - 2

K  1.0 10[H O ] = = = 3.3 10 M

[OH ] 3.0 10

 Anions of Weak Acids & Bases

Page 71: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 71/94

The anions of weak acids are Bronsted-Lowry bases

7/16/2014 71

- -2F (aq) + H O(l) HF(aq) + OH (aq)

 - -2A (aq) + H O(l) HA(aq) + OH (aq)

-F , anion of weak acid HF, acts as weak base

and accepts a proton to form HF

-

b -

[HF][OH ]K =

[F ]

-Base (A ) accepts a proton from water to form conjuate acid (HA)

 Anions of Weak Acids & Bases

Page 72: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 72/94

The acidity of HF vs F-

HF is a weak acid, very little dissociates

 Very little H3O+ and F- produced

Water autoionization also contributes H3O

+

 and OH

-

,but in much smaller amounts than H3O+ from HF

The Acidity of a solution is influenced mainly by the

H3O+ from HF and OH- from water

7/16/2014 72

+ -

2 32H O(l) H O (aq) + OH (aq)

+ -

2 3HF(aq) + H O(l) H O (aq) + F (aq)

  (solution acidic)2

+ -

3 from HF from H O[H O ] >> [OH ]

 Anions of Weak Acids & Bases

Page 73: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 73/94

Basicity of A -(aq)

Consider 1 M solution of NaF

Salt dissociates completely to yield stoichiometricconcentrations of F- , assume Na+ is spectator ion

Some of the F- reacts with water to form OH- 

Water autoionization also contributes H3O+ and OH-,

but in much smaller amounts than OH- from reactionof F- and H2O

7/16/2014 73

+ -

2 32H O(l) H O (aq) + OH (aq)

-   (solution basic)+

2

-

from F 3 from H O[OH ] >> [H O ]

- -

2

F (aq) + H O(l) HF(aq) + OH (aq)

-

b -

[HF][OH ]K =

[F ]

Page 74: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 74/94

Practice Problem

Page 75: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 75/94

What is the pH of 0.25 M Sodium Acetate (CH3COONa)?

K a of Acetic Acid (HAc) is 1.8 x 10-5

7/16/2014 75

Sodium Acetate, a Sodium salt, is water soluble

- -init [Ac ] [Ac ] = 0.25 MInitial concentration of Acetate,

-- -

2 b -

[HAc][OH ]Ac (aq) + H O(l) HAc(aq) + OH (aq) K = [Ac ]

Concentration Ac-(aq)  +  H2O(l)  HAc(aq) + OH-

Initial Ci 0.25 - 0 0

  - X - + X +X

Equilibrium C f 0.25 - X - X X

-14-10w

b -5a

K  1.0 x 10K = = = 5.6 x 10

K  1.8 x 10

bBecause K is small, 0.25 M - x = 0.25 M Con’t 

Practice Problem

Page 76: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 76/94

7/16/2014 76

- 2-10b -

[HAc][OH ] XK = = 5.6 x 100.25[Ac ]

- -5X = [OH ] 1.2 x 10 M

-14+ -10

3 - -5

Kw 1 10[H O ] = = = 8.3 10 M

[OH ] 1.2 10

+ -103pH = - log[H O ] = - log(8.3 10 ) = 9.08

pH of 0.25 M Sodium Acetate (Con’t) 

 Acid Strength

Page 77: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 77/94

g Trends in Acid Strength of Nonmetal Hydrides

7/16/2014 77

 As the electronegativity of thenonmetal (E) bonded to theionizable proton increases(left to right), the acidityincreases

 As the length of the E-H bondincreases (top to bottom), thebond strength decreases, sothe acidity increases

The “strong” monoprotichalide acids (HCl, HBr, HI) areequally strong

Note: (HF) is a weak acid)

 Acid Strength in Oxoacids

Page 78: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 78/94

Oxoacids

 An Oxoacid is an acid that contains Oxygen

To be more specific, it is an acid that:

contains oxygen

contains at least one other element (S, N, X)

has at least one Hydrogen atom (acid hydrogen)bound to oxygen

forms an ion by the loss of one or more protons

acidity of an Oxoacid is not related to bond strength

as in nonmetal hydrides

7/16/2014 78

Page 79: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 79/94

 Acid Strength in Oxoacids

Page 80: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 80/94

For oxoacids with the same number of oxygen atomsaround E, acid strength increases with the electronegativityof E

K a(HOCl) = 2.9x10-8    K a(HOBr) = 2.3x10-9    K a(HOI) = 2.3x10-11 

For oxoacids with different numbers of oxygen atomsaround a given E, acid strength increases with the number

of oxygen atoms.

K a  (HOCl Hypochorous acid) = 2.9x10-8  (Weak) 

K a  (HOCLO Chlorous acid) = 1.12x10-2

K a  (HOCLO2 Chloric acid) ≈ 1  K a  (HOCLO3  Perchloric acid) = > 107  (Strong) 

7/16/2014 80

 Acidity of Hydrated Metal Ions

Page 81: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 81/94

 Aqueous solution of certain metal ions are acidic

 As the MX species dissolves in water, the ions separate

and become bonded to a specific number of watermolecules – Hydration

If the metal ion, M+, is “small and highly charged (high

charge density), the hydrated metal ion transfers an H+ ion from a bonded water molecule to water (Bronstedacid) forming H3O

+

The bound H2O that releases the proton, becomes a

bound OH

-

 ion The released proton forms Hydronium Ion with water

making solution Acidic

7/16/2014 81

n+1 -3 n 2 2 x 3M(NO ) (s) + xH O(l) M(H O) + nNO (aq)

n+1 (n-1)+ +2 x 2 2 x-1 3M(H O) (aq) + H O(l) M(H O) OH (aq) + H O (aq)

 Acidity of Hydrated Metal Ions

Page 82: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 82/94

7/16/2014 82

 Al(H2O)5OH2+  Al(H2O)63+ 

The acidic behavior of the hydrated Al3+ ion.

H2O

H3O+ 

Electron density

drawn toward Al3+ 

Nearby Base (H2O) attracts proton from one of theWater molecules in the hydrated Al ion producinga Hydronium ion (H3O

+)

Soln is Acidic

+

OH-

Practice Problem

Page 83: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 83/94

Explain with equations and calculations whether an aqueous solution of

each salt is acidic, basic, or neutral.

1. Fe3+

(HCOO1-

)3  (Iron Formate)Fe(HCOO)3(s) + n H2O(l) →  Fe(H2O)n

3+(aq) + 3 HCOO – (aq)

Fe(H2O)n3+(aq) + H2O(l) ⇆  Fe(H2O)n-1OH2+(aq) + H3O

+(aq)

HCOO – (aq) + H2O(l) ⇆ OH – (aq) + HCOOH(aq)

K a (Fe3+) = 6 x 10 –3  K a (HCOOH) = 1.8 X 10-4  (Appendix C)

K b (HCOO –) = Kw / K a (HCOOH) = (1.0 x 10 –14) / (1.8 x 10 –4)

K b (HCOO –) = 5.6 x 10 –11 (unrounded)

K a (Fe3+) > K b (HCOO –) (6 x 10 –3  > 5.6 x 10 –11)

Solution is Acidic

7/16/2014 83

Practice Problem

Page 84: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 84/94

2. KHCO3  (Potassium Bicarbonate)

KHCO3(s) + H2O(l) →  K +(aq) + HCO3 – (aq)

HCO3 – (aq) + H2O(l) ⇆  H3O

+(aq) + CO32 – (aq)

HCO3 – (aq) + H2O(l) ⇆ OH – (aq) + H2CO3(aq)

Potassium (Group 1A) is fully hydrated in aqueous solution and does

not participate in an acid/base reactionOnly the Bicarbonate (anion of weak acid) is considered in acidity

determination

K a (HCO3 –) = 4.7 x 10-11  From Appendix C 

K b (HCO3 –) = K w / Ka (HCO3

-) = (1.0 x 10 –14) / (4.7 x 10 –11)

K b (HCO3 –) = 2.1 x 10-4

Since K b (HCO3 –) > K a (HCO3

 –) (2.1 x 10-4  > 4.7 x 10-11)

Solution is basic

7/16/2014 84

Practice Problem

Page 85: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 85/94

3.0 K 2S (Potassium Sulfide)

K 2S(s) + H2O(l) ⇆ 2 K +(aq) + S2 – (aq)

S2 – (aq) + H2O(l) ⇆ OH – (aq) + HS – (aq) basic

Potassium (Group 1A) is fully hydrated in aqueous solution and does

not participate in an acid/base reaction

Only the Sulfide (S2-) (anion of weak acid) is considered in aciditydetermination

K a (S2-) = 9.0 x 10-8  (H2S from table)

K b (S2-) = K w / K a (S

2-) = (1.0 x 10 –14) / (9.0 x 10 –8)

K b (S2-) = 1.1 x 10-7

Since K b (S2-) > K a (S

2-) Solution is basic 

7/16/2014 85

 Acid-Base Properties – Salt Solutions

Page 86: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 86/94

Neutral Salt Solutions

Salts consisting of the Anion of a Strong Acid and the

Cation of a Strong Base yield a neutral solutionsbecause the ions do not react with water

Nitrate (NO3-) is a weaker base than water (H2O) ;

reaction goes to completion as the NO3

-

 becomes fullyhydrated; does not react with water

Sodium becomes full hydrated; does not react with

water

Na+ & NO3- do not react with water, leaving just the

 “autoionization of water, i.e., a neutral solution

7/16/2014 86

2H O(l) + -NaOH(s) Na (aq) + OH (aq)

2H O + - + -

3 3 3NaNO (s) Na (aq) + NO (aq) + H O (aq) + OH (aq)

- +3 2 3 3HNO (l) + H O(l) NO (aq) + H O (aq)

+ -

2 32H O H O + OH

 Acid-Base Properties – Salt Soln

Page 87: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 87/94

Salts that produce Acidic Solutions

 A salt consisting of the anion of a strong acid and the

cation of a weak base yields an acidic solution The cation acts as a weak acid

The anion does not react with water (previous slide)

In a solution of NH4Cl, the NH4+ ion that forms from

the weak base, NH3, is a weak acid The Chloride ion, the anion from a strong acid does

not react with water

7/16/2014 87

2H O + -

4 2 4NH Cl(s) + H O NH (aq) + Cl

 + +4 2 3 3NH (aq) + H O NH (aq) + H O (Acidic)

 Acid-Base Properties – Salt Soln

Page 88: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 88/94

Salts that produce Basic Solutions

 A salt consisting of the anion of a weak acid and the

cation of a strong base yields a basic solution The anion acts as a weak base

The cation does not react with water

The anion of the weak acid accepts a proton from

water to yield OH- ion, producing a “Basic” solution 

7/16/2014 88

2H O + -

3 2 3CH COONa(s) + H O Na (aq) + CH COO (aq)

  (dissoluton & hydration)

 - -3 2 3CH COO + H O(l) CH COOH(aq) + OH (Basic)

  (reaction of weak base - Acetate Anion))

Page 89: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 89/94

Salts of Weakly Acidic Cations andW kl B i A i

Page 90: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 90/94

Weakly Basic Anions

7/16/2014 90

Ex. NH4CN - Acidic or Basic? (Con’t) 

Compare K a of NH4+  & K b  of CN-

Recall: Molecular compounds only in tables of K a & K b -14

+ -10w

a 4 -5

b 3

K  1.0 x 10K of NH = = = 5.7 x 10

K of NH 1.76 x 10

-14

- -5w

b -5

a

K  1.0 x 10K of CN = = = 1.6 x 10

K of HCN 6.2 x 10

Magnitude of K b  (K b > K a)  (1.6 x 10-5  / 5.7 x 10-10  = 3 x 104)

Kb of CN-  >> Ka of NH4+  Solution is Basic 

 Acceptance of proton from H2O by CN- proceeds much further than

the donation of a proton to H2O by NH4+

Salts of Weakly Acidic Cations andW kl B i A i

Page 91: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 91/94

Weakly Basic Anions

7/16/2014 91

Page 92: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 92/94

Equation Summary

Page 93: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 93/94

7/16/2014 93

-

2 3HA + H O H O + A

- -

2A + H O HA + OH

+ -

2 32H O H O + OH

a b w

  K × K = K = 14

- -

+ -3

3-

[H O+][A ] [HA][OH ]  × = [H O ][OH ]

[HA] [A ]

a 10 apK = -log [K ]

+ -

3a [H O ][A ]K =[HA]

+ -

b

[BH ][OH ]K =

[B]]b bpK = -log[K 

w a b-log(K ) = - log([K ][K ])

w a b-log(K ) = - log[K ] - log[K ]

a-pK a[K ] = 1 x 10

b-pK 

b[K ] = 1 10

ow a bpK = pK + pK = 14 (at 25 C)

Equation Summary

Page 94: chap18web

8/12/2019 chap18web

http://slidepdf.com/reader/full/chap18web 94/94

initinit

[A]if > 400, the assumption [HA] [Ha] is justified.

Kc  Neglecting x introduces an error < 5%

diss init initif [HA] < 5% [HA] , the assumption ([HA] [HA] ) is valid

diss

init

[HA] ]Percent HA dissociated = x 100

[HA]