37
Stress and Strain Tensors – Deformation and Strain MCEN 5023/ASEN 5012 Chapter 4 Fall, 2006

chap_04

Embed Size (px)

Citation preview

Page 1: chap_04

Stress and Strain Tensors – Deformation and Strain

MCEN 5023/ASEN 5012

Chapter 4

Fall, 2006

Page 2: chap_04

Deformation and StrainDisplacement & Deformation

Deformation: An alteration of shape, as by pressure or stress.

Example:

Displacement: A vector or the magnitude of a vector from the initial position to a subsequent position assumed by a body.

Time 0

Time t

Case 1

Case 2

Case 3

Page 3: chap_04

Deformation and StrainDeformation and Strain

Strain characterizes a deformation

Example: 1D strain L0

L

0

0

LLL

I−

Page 4: chap_04

Deformation and StrainKinematics of Continuous Body

2x

1x

3x 1a

2a

3a

Time 0

Undeformed configurationReference (initial) configurationMaterial configuration

Time 0:

Deformed configurationCurrent configurationSpatial configuration

Time t:

ia

Time t

ix

Page 5: chap_04

Deformation and Strain

Kinematics of Continuous Body

),,,( 321 taaaxx ii =

OR, due to continuous body

),,,( 321 txxxaa ii =

Lagrangian Description:

Eulerian Description:

The motion is described by the material coordinate and time t.

The motion is described by the spatial coordinate and time t.

Page 6: chap_04

Deformation and Strain

),,,( 321 taaaxx ii = ),,,( 321 txxxaa ii =Lagrangian Eulerian

2x

1x1a

2at=0 t=t1 t=t2

(Tacking a material point) (Monitoring a spatial point)

The spatial coordinates of this material point change with time.

Different material points pass this spatial point

Lagrangian vs. Eulerian

Page 7: chap_04

Deformation and Strain

Lagrangian vs. Eulerian

Lagrangian Eulerian

Solid Mechanics Fluid MechanicsSolid Mechanics

Tracking a material point. Tracking a spatial point.

Spatial coordinates are fixed butMaterial points keep changing.

Material point is fixed but the spatial coordinates have to be updated.

Good for constitutive model Not good for constitutive model.

Page 8: chap_04

Deformation and Strain

Kinematics of Continuous Body

2x

1x

3x 1a

2a

3a

Time 0Time t

ia ixiu

Using undeformed configuration as reference:

iii aaaaxaaau −= ),,(),,( 321321

Using deformed configuration as reference:

),,(),,( 321321 xxxaxxxxu iii −=

Page 9: chap_04

Deformation and StrainMeasure the deformation

2x

1x

3x 1a

2a

3a

Time 0Time t

iu

P0

Q0

P

Qiaix

{ }3210 ,, aaaP =

{ }3322110 ,, adaadaadaQ +++=

{ }321 ,, xxxP =

{ }332211 ,, dxxdxxdxxQ +++=

Page 10: chap_04

Deformation and StrainMeasure the deformation

Page 11: chap_04

Deformation and StrainMeasure the deformation

Page 12: chap_04

Deformation and StrainStrain Tensor:

⎟⎟⎠

⎞⎜⎜⎝

⎛−

∂∂

∂∂

= ijj

k

i

kij a

xaxE δ

21

⎟⎟⎠

⎞⎜⎜⎝

∂∂

∂∂

−=j

k

i

kijij x

axae δ

21

Green Strain

Almansi Strain

Page 13: chap_04

Deformation and StrainStrain Tensor:

⎟⎟⎠

⎞⎜⎜⎝

∂∂

∂∂

+∂

∂+

∂∂

=j

k

i

k

i

j

j

iij a

uau

au

auE

21

⎟⎟⎠

⎞⎜⎜⎝

∂∂

∂∂

−∂

∂+

∂∂

=j

k

i

k

i

j

j

iij x

uxu

xu

xue

21

Green Strain

Almansi Strain

Applicable to both small and finite (large) deformation.

Page 14: chap_04

Deformation and StrainPhysical Explanations of Strain Tensor

2x

1x

3x 1a

2a

3a

Time 0Time t

iu

adxd

P0

Q0

P

Q

Page 15: chap_04

Deformation and StrainPhysical Explanations of Strain Tensor

2x

1x

3x 1a

2a

3a

Time 0Time t

iu

adxdP0

Q0

P

Q

Page 16: chap_04

Deformation and StrainPhysical Explanations of Strain Tensor

2x

1x

3x 1a

2a

3a

Time 0Time t

iu

v’v

n n’

Page 17: chap_04

Deformation and Strain

If 11 <<∂∂

<<∂∂

j

i

j

i

xu

au small deformation

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂∂

=i

j

j

iij a

uauE

21

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂∂

=i

j

j

iij x

uxue

21

The quadratic term in Green strain and Almansi strain can be neglected.

Also, in small deformation, the distinction between Lagrangian and Eulerian disappears.

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂∂

==i

j

j

iijij x

uxueE

21

Cauchy’s infinitesimal strain tensor

Page 18: chap_04

Deformation and Strain

1

11111 x

uEe∂∂

==

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂∂

==i

j

j

iijij x

uxueE

21

Cauchy’s infinitesimal strain tensor

2

22222 x

uEe∂∂

==

3

33333 x

uEe∂∂

==

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

==2

1

1

21212 2

1xu

xuEe

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

==3

1

1

31313 2

1xu

xuEe

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

==3

2

2

32323 2

1xu

xuEe

Page 19: chap_04

Deformation and Strain

If 11 <<∂∂

<<∂∂

j

i

j

i

xu

au small deformation

Note:

small deformation

In most of the cases,

11 <<∂∂

<<∂∂

j

i

j

i

xu

au

But,

Page 20: chap_04

Deformation and StrainEngineering Strains

Coordinates: x, y, z Displacements: u, v, w

Normal strains:

11exu

x =∂∂

22eyv

y =∂∂

33ezw

z =∂∂

Page 21: chap_04

Deformation and StrainEngineering Strains

Shear Strains:

122exv

yu

xy =∂∂

+∂∂

232eyw

zv

yz =∂∂

+∂∂

132exw

zu

xz =∂∂

+∂∂

Page 22: chap_04

Deformation and Strain

Stretches at small deformation

Page 23: chap_04

Deformation and Strain

Cauchy’s Shear Strain and Engineering Shear Strains

B

A

C

A’

B’C’

x1

x2

dx2

dx1

Page 24: chap_04

Deformation and Strain

Cauchy’s Shear Strain and Engineering Shear Strains

B

A

C

A’

B’C’

x1

x2

dx2

dx1

θ1

θ2

yu

xu

∂∂

=∂∂

=2

11θ

xv

xu

∂∂

=∂∂

=1

22θ

21 θθγ +=xy

( )2112 21 θθ +=e

Page 25: chap_04

Deformation and Strain

Cauchy’s Shear Strain and Engineering Shear Strains

[ ]

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

=⎥⎥⎥

⎢⎢⎢

⎡=

zyzxz

yzyxy

xzxyx

eeeeeeeee

e

εγγ

γεγ

γγε

21

21

21

21

21

21

332313

232212

131211

Tensor

Not a tensor!!!⎥⎥⎥

⎢⎢⎢

zyzxz

yzyxy

xzxyx

εγγγεγγγε

Engineering Strain

Page 26: chap_04

Deformation and Strain

Transformation of Coordinate System

In general

ijjkikij ee ββ=′

Page 27: chap_04

Deformation and Strain

Transformation of Coordinate System – 2D

2X ′

1X ′

1e′

2e′

2X

1X 1e

2e

θ

( ) ( ) 1222

112212

222

12112

22

222

12112

11

sincoscossin

coscossin2sin

sincossin2cos

eeee

eeee

eeee

θθθ

θθθθ

θθθθ

−+−=′

+−=′

++=′

Page 28: chap_04

Deformation and Strain

Transformation of Coordinate System – 2D Mohr Circle

Page 29: chap_04

Deformation and Strain

Strain Invariants

Page 30: chap_04

Deformation and Strain

Strain Deviations

Mean Strain331332211

=++

=eeee

Strain deviation tensor Iee 0e−=′

ijijij eee δ0−=′

Octahedral Shear Strain

( ) ( ) ( ) ( )231

223

212

21133

23322

222110 6

32 eeeeeeeee +++−+−+−=γ

Page 31: chap_04
Page 32: chap_04

Deformation and Strain

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂∂

==i

j

j

iijij x

uxueE

21

Determine Displacement Fields from Strains

Questions: Can the displacements be determined uniquely?

Page 33: chap_04

Deformation and Strain

211

1 3xxxu

+=∂∂ 2

12

1 xxu

=∂∂

The strain fields are inconsistent because

312

12

1

1

2

=∂∂

∂=⎟⎟

⎞⎜⎜⎝

⎛∂∂

∂∂

xxu

xu

x 121

12

2

1

1

2xxx

uxu

x=

∂∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

21

12

12

12

xxu

xxu

∂∂∂

≠∂∂

Determine Displacement Fields from Strains

Page 34: chap_04

Deformation and Strain

Compatibility of Strain Fields

A

B C

D

Undeformed

A

B C

D

Compatible strain fields

A

BC

D

C’

Incompatible strain fields

A

B C

D

C’

Page 35: chap_04

Deformation and Strain

Integrability Condition

In general

( )211

1 , xxfxu

=∂∂ ( )21

2

1 , xxgxu

=∂∂

Integrability condition ( Compatibility of strain fields )

12 xg

xf

∂∂

=∂∂

21

12

12

12

xxu

xxu

∂∂∂

=∂∂

Integration of strain fields yields unique displacement components.

Page 36: chap_04

Deformation and Strain

Compatibility of Strain Fields

1

111 x

ue∂∂

=2

222 x

ue∂∂

= ⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

=2

1

1

212 2

1xu

xue

Page 37: chap_04

Deformation and Strain

Compatibility of Strain Fields

0,,,, =−−+ ikjljlikijklklij eeee

St. Venant Equations of Compatibility

Totally 81 equations, but only 6 are essential.

12,1211,2222,11 2eee =+ 12,1313,1211,2323,11 eeee ++−=

23,2322,3333,22 2eee =+

13,1311,3333,11 2eee =+

21,2323,2122,1313,22 eeee ++−=

31,3232,3133,1212,33 eeee ++−=