55
Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from http://www-inst.eecs.berkeley.edu/~cs61c/

Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Chap 2.4 - Instruction Representation

Jen-Chang Liu, Spring 2006

Adapted from

http://www-inst.eecs.berkeley.edu/~cs61c/

Page 2: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Review° Instructions:

Arithmetic: add, addi, sub

Memory access: lw, sw

Branch: beq, bne, j

comparison: slt, slti, sltu, sltiu

Page 3: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Review of Lab#2: memory access

.globl main .datastr: .asciiz "abcdABCD"

.textmain: … la $s1, str # $s1=str[0] lb $t2, 0($s1) addi $s1, $s1, 1 # $s1=str[1] lb $t2, 0($s1)

abcdABCD

strstr[1]

li $t0, 1 # i=1lb $t2, $t0($s1) # str[i] Wrong!

Page 4: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Hierarchy of Programming Languages

Low-level

High-level

Java

C

Assembly

Degree ofabstraction operand operation

objects method

variables arithmetic op.functions

registers instruction set

machine binary operation coderegisters

Page 5: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Q: How do we represent instructions

in machine?

Page 6: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Overview° Instructions as Numbers

°R-Format

° I-Format

°Branch instruction: addressing mode

°J-Format

Page 7: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Instructions as Numbers (1/2)°Currently all data we work with is in words (32-bit blocks):

• Each register is a word.•lw and sw both access memory one word at a time.

°So how do we represent instructions?• Remember: Computer only understands 1s and 0s, so “add $t0,$0,$0” is meaningless.

• MIPS wants simplicity: since data is in words, make instructions be words...

Page 8: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Instructions as Numbers (2/2)°One word is 32 bits, so divide instruction word into “fields”.

°Each field tells computer something about instruction.

°We could define different fields for each instruction, but MIPS is based on simplicity, so define 3 basic types of instruction formats:

• R-format

• I-format

• J-format

6 5 5 5 65

6 5 5 16

opcode

6 26

Page 9: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Instruction Formats°J-format: used for j and jal

° I-format: used for instructions with immediates ( 含常數的指令 )•lw and sw (since the offset counts as an immediate)

• the branches (beq and bne)

• (but not the shift instructions; later)

°R-format: used for all other instructions• Registers as operands

Page 10: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Overview° Instructions as Numbers

°R-Format

° I-Format

°Branch instruction: addressing mode

°J-Format

以暫存器為運算單位的指令

Page 11: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

R-Format Instructions (1/5)°Define “fields” of the following number of bits each:

6 5 5 5 65

opcode rs rt rd functshamt

°For simplicity, each field has a name:

° Important: Each field is viewed as a 5- or 6-bit unsigned integer, not as part of a 32-bit integer.

• Consequence: 5-bit fields can represent any number 0-31, while 6-bit fields can represent any number 0-63.

Low-orderbits

high-orderbits

每個 field 看做單獨的數字

Page 12: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

R-Format Instructions (2/5)

°What do these field integer values tell us?•opcode: partially specifies what instruction it is (Note: This number is equal to 0 for all R-Format instructions.)•funct: combined with opcode, this number exactly specifies the instruction

• Question: Why aren’t opcode and funct a single 12-bit field?

• Answer: We’ll answer this later.

opcode rs rt rd functshamt

Page 13: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

R-Format Instructions (3/5)°More fields:

•rs (Source Register): generally used to specify register containing first operand•rt (Target Register): generally used to specify register containing second operand (note that name is misleading)•rd (Destination Register): generally used to specify register which will receive result of computation

opcode rs rt rd functshamt

Page 14: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

R-Format Example°MIPS Instruction:

add $t0,$t1,$t2 =>

add $8,$9,$10

0 9 10 8 32?

000000 01001 01010 01000 100000?

binary representation:

decimal representation:opcode rs rt rd functshamt

Page 15: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

16000102030405060708090a0b0c0d0e0 f101112131415161718191a1b1c1d1e1 f202122232425262728292a2b2c2d2e2 f303132333435363738393a3b3c3d3e3 f

op(31:26)

jjalbeqbneblezbgtzaddiaddiusltisltiuandiorixoriluiz = 0z = 1z = 2z = 3

lblhlwllwlbulhulwr

sbshswlsw

swr

lwc0lwc1lwc2lwc3

swc0swc1swc2swc3

rs(25:21)mfcz

cfcz

mtcz

ctcz

copzcopz

(16:16)bcztbczt

tlbrtlbwi

tlbwrtlbp

rte

rt (20:16)

bltzbgez

bltzalbgezal

cvt.s.fcvt.d.f

cvt.w.f

c.f.fc.un.fc.eq.fc.ueq.fc.olt.fc.ult.fc.ole.fc.ule.fc.st.fc.ngle.fc.seq.fc.ngl.fc.lt.fc.nge.fc.le.fc.ngt.f

funct(5:0)add.fsub.fmul.fdiv.f

abs.fmov.fneg.f

funct(5:0)sll

srlsra

srlvsravjrjalr

syscallbreak

mfhimthimflomtlo

multmultudivdivu

addaddusubsubuandorxornor

sltsltu

if z = l,f = d

if z = l,f = s

if z = 0

01

funct(4:0)

See p. A-54

Page 16: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

R-Format Instructions (4/5)°Notes about register fields:

• Exactly 5 bits => 0~31 => indicate the register number

°Final field:•shamt: This field contains the amount a shift instruction will shift by. Shifting a 32-bit word by more than 31 is useless, so this field is only 5 bits (so it can represent the numbers 0-31).

• This field is set to 0 in all but the shift instructions.

opcode rs rt rd functshamt

Page 17: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

R-Format Example (cont.)°MIPS Instruction:

add $t0,$t1,$t2 => add $8,$9,$10

0 9 10 8 320

000000 01001 01010 01000 10000000000

binary representation:

Called a Machine Language Instruction

decimal representation:

Hex: 0 1 2 a 4 0 2 0

opcode rs rt rd functshamt

Page 18: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Overview° Instructions as Numbers

°R-Format

° I-Format

°Branch instruction: addressing mode

°J-Format

以常數為運算單位的指令

Page 19: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Instructions (1/5)

°What about instructions with immediates?

• Ideally, MIPS would have only one instruction format (for simplicity): unfortunately, we need to compromise

• 5-bit field only represents numbers up to the value 31: immediates may be much larger than this

°Define new instruction format that is partially consistent with R-format !

Opcode 6 rs 5 rt 5 rd 5 funct 6shamt 5

R-format:

c.f. add $t0, $t1, $t2 addi $t0, $t1, 2

Page 20: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Instructions (2/5)° I-format:

6 5 5 16

opcode rs rt immediate

°Again, each field has a name:

Compared with R-format:

Opcode 6 rs 5 rt 5 rd 5 funct 6shamt 5

Page 21: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Instructions (3/5)°What do these fields mean?

•opcode: same as before except that, since there’s no funct field, opcode uniquely specifies an I-format instruction

• This also answers question of why R-format has two 6-bit fields to identify instruction instead of a single 12-bit field: in order to be consistent with other formats.

Opcode 6 rs 5 rt 5 Immediate 16 bits

Opcode 6 rs 5 rt 5 rd 5 funct 6shamt 5

I

R

Page 22: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Instructions (4/5)

°More fields:•rs: specifies the only register operand (if there is one)•rt: specifies register which will receive result of computation (this is why it’s called the target register “rt”)

opcode rs rt immediate

addi $t0, $t1, 1

Page 23: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Instructions (5/5)°The Immediate Field:

• 16 bits can be used to represent immediate up to 216 different values•addi, slti, sltiu: the immediate is sign-extended to 32 bits in real hardware operation

• lw, sw: immediate = offset- lw $t0, 0($a0)

opcode rs rt Immediate 16 bits

Page 24: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Example

°MIPS Instruction: addi $s5,$s6,-50

=> addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

decimal representation:

binary representation:

Hex: 2 2 d 5 f f c e

opcode rs rt immediate

Page 25: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

16000102030405060708090a0b0c0d0e0 f101112131415161718191a1b1c1d1e1 f202122232425262728292a2b2c2d2e2 f303132333435363738393a3b3c3d3e3 f

op(31:26)

jjalbeqbneblezbgtzaddiaddiusltisltiuandiorixoriluiz = 0z = 1z = 2z = 3

lblhlwllwlbulhulwr

sbshswlsw

swr

lwc0lwc1lwc2lwc3

swc0swc1swc2swc3

rs(25:21)mfcz

cfcz

mtcz

ctcz

copzcopz

(16:16)bcztbczt

tlbrtlbwi

tlbwrtlbp

rte

rt (20:16)

bltzbgez

bltzalbgezal

cvt.s.fcvt.d.f

cvt.w.f

c.f.fc.un.fc.eq.fc.ueq.fc.olt.fc.ult.fc.ole.fc.ule.fc.st.fc.ngle.fc.seq.fc.ngl.fc.lt.fc.nge.fc.le.fc.ngt.f

funct(5:0)add.fsub.fmul.fdiv.f

abs.fmov.fneg.f

funct(5:0)sll

srlsra

srlvsravjrjalr

syscallbreak

mfhimthimflomtlo

multmultudivdivu

addaddusubsubuandorxornor

sltsltu

if z = l,f = d

if z = l,f = s

if z = 0

01

funct(4:0)

Page 26: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Problems (1/3)

°Problem 1: • What if immediates are too big to fit in the immediate field (16 bits only)?

- We need a way to deal with a 32-bit immediate in any I-format instruction.

• How to do this?addi $t0,$t0, 0x2BAB2DCD

16 bits16 bits

Page 27: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Problems (2/3)

°Solution to Problem 1:• Handle it in software (assembler)

• Don’t change the current instructions: instead, add a new instruction to help out

°New instruction:lui register, immediate

• stands for Load Upper Immediate

• takes 16-bit immediate and puts these bits in the upper half (high order half) of the specified register

• sets lower half to 0s 16 16reg.

Page 28: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

I-Format Problems (3/3)°Solution to Problem 1 (continued):

• So how does lui help us?

• Example:addi $t0,$t0, 0x2BAB2DCD

becomes:

lui $a0, 0x2BABori $a0, $a0,

0x2DCD add $t0,$t0,$a0

Why not : li $a0, 0x2BAB2DCD

Page 29: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

How to be an assembler?

°Assembly code:

.data .textmain: bne $t0, $t1, End lui $t3, 0x2BAB ori $t3, $t3, 0x2DCD add $s0, $s1, $t3End:

Page 30: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

step 1

°Choose which formats they are?

°Write down the formats and how many bits for each field

Opcode 6 rs 5 rt 5 rd 5 funct 6shamt 5

R-format

Opcode 6 rs 5 rt 5 Immediate 16

I-format

Page 31: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

step 2

°Write down the encoding of registers

Page 32: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

16000102030405060708090a0b0c0d0e0 f101112131415161718191a1b1c1d1e1 f202122232425262728292a2b2c2d2e2 f303132333435363738393a3b3c3d3e3 f

op(31:26)

jjalbeqbneblezbgtzaddiaddiusltisltiuandiorixoriluiz = 0z = 1z = 2z = 3

lblhlwllwlbulhulwr

sbshswlsw

swr

lwc0lwc1lwc2lwc3

swc0swc1swc2swc3

rs(25:21)mfcz

cfcz

mtcz

ctcz

copzcopz

(16:16)bcztbczt

tlbrtlbwi

tlbwrtlbp

rte

rt (20:16)

bltzbgez

bltzalbgezal

cvt.s.fcvt.d.f

cvt.w.f

c.f.fc.un.fc.eq.fc.ueq.fc.olt.fc.ult.fc.ole.fc.ule.fc.st.fc.ngle.fc.seq.fc.ngl.fc.lt.fc.nge.fc.le.fc.ngt.f

funct(5:0)add.fsub.fmul.fdiv.f

abs.fmov.fneg.f

funct(5:0)sll

srlsra

srlvsravjrjalr

syscallbreak

mfhimthimflomtlo

multmultudivdivu

addaddusubsubuandorxornor

sltsltu

if z = l,f = d

if z = l,f = s

if z = 0

01

funct(4:0)

Step 3: decide opcode

Page 33: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

step 4

°Fill the other fields

Page 34: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Peer Instruction

Which instruction has same representation as 35ten?

1. add $0, $0, $0

2. subu $s0,$s0,$s0

3. lw $0, 0($0)

4. addi $0, $0, 35

5.  subu $0, $0, $0

6.  Trick question! Instructions are not numbers

Registers numbers and names: 0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7

Opcodes and function fields (if necessary)

add: opcode = 0, funct = 32subu: opcode = 0, funct = 35addi: opcode = 8lw: opcode = 35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

Page 35: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Overview° Instructions as Numbers

°R-Format

° I-Format

°Branch instruction: addressing mode

°J-Format

Page 36: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branches: PC-Relative Addressing (1/5)°Use I-Format

opcode rs rt immediate

°opcode specifies beq , bne

°rs and rt specify registers to compare

°What can immediate specify?•Immediate is only 16 bits

• Label is 32-bit address in memory

• So immediate cannot specify entire address to branch to.(16 bits 定址空間有限)

Ex. beq $t0, $t0, Label

Page 37: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branches: PC-Relative Addressing (2/5)

°How do we usually use branches?• Answer: if-else, while, for

• Loops are generally small: typically up to 50 instructions ( 迴圈程式段落通常不大 )

• Function calls and unconditional jumps are done using jump instructions (j and jal), not the branches.

°Conclusion: a single branch will generally change the PC by a very small amount.

Page 38: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branches: PC-Relative Addressing (3/5)°Solution: PC-Relative Addressing

°16-bit immediate = offset

°Now we can branch +/- 215 bytes from the PC, which should be enough to cover any loop.

…PC

Target address: PC + offset

offset

Page 39: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branches: PC-Relative Addressing (4/5)

°Note: Instructions are words, so they’re word aligned

• So the number of bytes to add to the PC will always be a multiple of 4.( 指令碼的位址都是四的倍數 )

• So specify the immediate in words.

°Now, we can branch +/- 215 words from the PC (or +/- 217 bytes), so we can handle loops 4 times as large.

Page 40: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branches: PC-Relative Addressing (5/5)°Final Calculation:

• If we don’t take the branch:

PC = PC + 4

• If we do take the branch:

PC = (PC + 4) + (immediate * 4)

• Observations- Immediate field specifies the number of

words to jump, which is simply the number of instructions to jump.

- Immediate field can be positive or negative.

- Due to hardware, add immediate to (PC+4), not to PC; will be clearer why later in course

beq(bne) rs, rt, Label

Page 41: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branch Example (1/3)

°MIPS Code:Loop: beq $9,$0,End

add $8,$8,$10addi $9,$9,-1

j LoopEnd:

°Branch is I-Format:opcode = 4 (look up in table)

rs = 9 (first operand)

rt = 0 (second operand)

immediate = ???

Page 42: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

100123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

0123456789

10111213141516171819202122232425262728293031

16000102030405060708090a0b0c0d0e0 f101112131415161718191a1b1c1d1e1 f202122232425262728292a2b2c2d2e2 f303132333435363738393a3b3c3d3e3 f

op(31:26)

jjalbeqbneblezbgtzaddiaddiusltisltiuandiorixoriluiz = 0z = 1z = 2z = 3

lblhlwllwlbulhulwr

sbshswlsw

swr

lwc0lwc1lwc2lwc3

swc0swc1swc2swc3

rs(25:21)mfcz

cfcz

mtcz

ctcz

copzcopz

(16:16)bcztbczt

tlbrtlbwi

tlbwrtlbp

rte

rt (20:16)

bltzbgez

bltzalbgezal

cvt.s.fcvt.d.f

cvt.w.f

c.f.fc.un.fc.eq.fc.ueq.fc.olt.fc.ult.fc.ole.fc.ule.fc.st.fc.ngle.fc.seq.fc.ngl.fc.lt.fc.nge.fc.le.fc.ngt.f

funct(5:0)add.fsub.fmul.fdiv.f

abs.fmov.fneg.f

funct(5:0)sll

srlsra

srlvsravjrjalr

syscallbreak

mfhimthimflomtlo

multmultudivdivu

addaddusubsubuandorxornor

sltsltu

if z = l,f = d

if z = l,f = s

if z = 0

01

funct(4:0)

Page 43: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branch Example (2/3)

°MIPS Code:Loop: beq $9,$0,End

addi $8,$8,$10addi $9,$9,-1j Loop

End:

°Immediate Field:• Number of instructions to add to (or subtract from) the PC, starting at the instruction following the branch.

• In this case, immediate = 3* test this in PCspim, set bare machine in the setting

PC+4

3 inst.

Page 44: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Branch Example (3/3)°MIPS Code:

Loop: beq $9,$0,Endaddi $8,$8,$10

addi $9,$9,-1j Loop

End:

4 9 0 3

decimal representation:

binary representation:

000100 01001 00000 0000000000000011

Page 45: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Big Idea: Stored-Program Concept

°Computers built on 2 key principles:

1) Instructions are represented asnumbers.

2) Therefore, entire programs can be stored in memory to be read or written just like numbers (data).

Page 46: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Consequence #1: Everything Addressed

°Since all instructions and data are stored in memory as numbers, everything has a memory address: instructions, data words

• both branches and jumps use these

°C pointers are just memory addresses

°One register keeps address of instruction being executed: “Program Counter” (PC)

• Basically a pointer to memory: Intel calls it Instruction Address Pointer, which is better

Page 47: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Consequence #2: Binary Compatibility°Programs are distributed in binary form• Programs bound to specific instruction set

• Different version for Macintosh and IBM PC

°New machines want to run old programs (“binaries”) as well as programs compiled to new instructions

Page 48: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Review

°Machine Language Instruction: 32 bits representing a single MIPS instruction

opcode rs rt rd functshamtopcode rs rt immediate

R

Iopcode target addressJ

° Instructions formats are kept as similar as possible.

Page 49: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Jump instruction

°J-format

°General address: 32 bits

6 bits Target:26 bits

PC

31… 28

26 bits 00

wordalignment

Page 50: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

J-Format Instructions (1/5)°For branches, we assumed that we won’t want to branch too far, so we can specify change in PC.

• beq, bne

°For general jumps (j and jal), we may jump to anywhere in memory.

• Ideally, we could specify a 32-bit memory address to jump to.

• Unfortunately, we can’t fit both a 6-bit opcode and a 32-bit address into a single 32-bit word, so we compromise.

opcode target addressJ

Page 51: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

J-Format Instructions (2/5)°Define “fields” of the following number of bits each:

6 bits 26 bits

opcode target address

°As usual, each field has a name:

°Key Concepts• Keep opcode field identical to R-format and I-format for consistency.

• Combine all other fields to make room for target address.

Page 52: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

J-Format Instructions (3/5)

°For now, we can specify 26 bits of the 32-bit bit address.

°Optimization:• Note that, just like with branches, jumps will only jump to word aligned addresses, so last two bits are always 00 (in binary).

• So let’s just take this for granted and not even specify them.

Page 53: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

J-Format Instructions (4/5)°For now, we can specify 28 bits of the 32-bit address.

°Where do we get the other 4 bits?• By definition, take the 4 highest order bits from the PC.

• Technically, this means that we cannot jump to anywhere in memory, but it’s adequate 99.9999…% of the time, since programs aren’t that long.

• If we absolutely need to specify a 32-bit address, we can always put it in a register and use the jr instruction.

Page 54: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

J-Format Instructions (5/5)

°Summary:• New PC = PC[31..28]

|| target address (26 bits) || 00

• Note: II means concatenation4 bits || 26 bits || 2 bits = 32-bit address

PC

31… 28

26 bits 00

Page 55: Chap 2.4 - Instruction Representation Jen-Chang Liu, Spring 2006 Adapted from cs61c

Addressing mode

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+