22
Chaos Definition and Classification Alexander Coxe Physics 603; Classical Mechanics Old Dominion University

Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

ChaosDefinition and Classification

Alexander Coxe

Physics 603; Classical MechanicsOld Dominion University

Page 2: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Contents

Terminology

Defining ChaosSensitive DependenceTopological TransitivityDense Periodic Orbits

ClassificationEquilibriaLyapunov Numbers and Exponents

References

Page 3: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Terminology

• Map: a single valued f (x) : F→ F on some set F.

• Iteration: application of a map eg f (3)(x) = f (f (f (x))).

• Orbit: S(x) = {x , x1, x2, · · · } = {x , f (x), f (f (x), · · · }.• Fixed point: x0 =⇒ f (x0) = x0.

• Periodic orbit: an orbit with f (n)(xp) = xp for n ≥ 0.

Page 4: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Terminology

• Map: a single valued f (x) : F→ F on some set F.

• Iteration: application of a map eg f (3)(x) = f (f (f (x))).

• Orbit: S(x) = {x , x1, x2, · · · } = {x , f (x), f (f (x), · · · }.• Fixed point: x0 =⇒ f (x0) = x0.

• Periodic orbit: an orbit with f (n)(xp) = xp for n ≥ 0.

Page 5: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Terminology

• Map: a single valued f (x) : F→ F on some set F.

• Iteration: application of a map eg f (3)(x) = f (f (f (x))).

• Orbit: S(x) = {x , x1, x2, · · · } = {x , f (x), f (f (x), · · · }.

• Fixed point: x0 =⇒ f (x0) = x0.

• Periodic orbit: an orbit with f (n)(xp) = xp for n ≥ 0.

Page 6: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Terminology

• Map: a single valued f (x) : F→ F on some set F.

• Iteration: application of a map eg f (3)(x) = f (f (f (x))).

• Orbit: S(x) = {x , x1, x2, · · · } = {x , f (x), f (f (x), · · · }.• Fixed point: x0 =⇒ f (x0) = x0.

• Periodic orbit: an orbit with f (n)(xp) = xp for n ≥ 0.

Page 7: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Terminology

• Map: a single valued f (x) : F→ F on some set F.

• Iteration: application of a map eg f (3)(x) = f (f (f (x))).

• Orbit: S(x) = {x , x1, x2, · · · } = {x , f (x), f (f (x), · · · }.• Fixed point: x0 =⇒ f (x0) = x0.

• Periodic orbit: an orbit with f (n)(xp) = xp for n ≥ 0.

Page 8: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Definition

A map is deemed “chaotic” if it has the following properties:

• Sensitive dependence on initial conditions,

• Topological transitivity,

• Dense periodic orbits.

Similarly, a chaotic orbit is not periodic, stationary, ordivergent.

Chaos is a property of orbits typical of systems with nonlineardynamics.

Page 9: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Definition

A map is deemed “chaotic” if it has the following properties:

• Sensitive dependence on initial conditions,

• Topological transitivity,

• Dense periodic orbits.

Similarly, a chaotic orbit is not periodic, stationary, ordivergent.

Chaos is a property of orbits typical of systems with nonlineardynamics.

Page 10: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Definition

A map is deemed “chaotic” if it has the following properties:

• Sensitive dependence on initial conditions,

• Topological transitivity,

• Dense periodic orbits.

Similarly, a chaotic orbit is not periodic, stationary, ordivergent.

Chaos is a property of orbits typical of systems with nonlineardynamics.

Page 11: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Definition

A map is deemed “chaotic” if it has the following properties:

• Sensitive dependence on initial conditions,

• Topological transitivity,

• Dense periodic orbits.

Similarly, a chaotic orbit is not periodic, stationary, ordivergent.

Chaos is a property of orbits typical of systems with nonlineardynamics.

Page 12: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Sensitive DependenceDefinition

For any orbit of any map sensitive dependence on initial conditionsmeans that for |x1 − x2| < ε for ε as small as we like,|f (n)(x1)− f (n)(x2)| > δ for any δ > 0 we choose.

In the words of Edward Lorenz, “Chaos: When the presentdetermines the future, but the approximate present does notapproximately determine the future.”

Page 13: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Sensitive DependenceExample

A very simple example of a map with sensitive dependence oninitial conditions is a doubling map: f (x) = 2x .

Figure 1: Double Steps

Page 14: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Topological TransitivityDefinition

A map is topologically transitive if for any two nonempty sets Aand B, there is some integer n such that f (n)(A) ∩ B 6= 0.In other words, any value plugged into a topologically transitivemap may produce any other value (at all) if the map is iteratedenough times.

Page 15: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Topological TransitivityExample

The logistic map xn+1 = rxn(1− xn):

Figure 2: Logistic Map

This is a bifurcation plot. 0 < r < 4 is on the horizontal axis, and0 < x < 1 is on the vertical axis. For 0 < r <∼ 3 there is only afixed point, but for ∼ 3 < r <∼ 3.5 there is a period 2 orbit.

Page 16: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

Dense Periodic OrbitsDefinition

Density of periodic orbits means that no matter what startingvalue is chosen (x , for f (n)(x)), the distance between x and apoint on some periodic orbit is arbitrarily small: that is for anyε > 0, |x − xR | < ε for some xR .

Page 17: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

ClassificationEquilibria: Stability

The stability of any orbit S of a map f is determined by thefirst derivative of the map over the orbit. That is to say

• if (f (n))′(x1) < 1 then S(x1) = f (n)(x1) is an attractive orbit:

• if (f (n))′(x1) > 1 then S(x1) = f (n)(x1) is a source.

Page 18: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

ClassificationEquilibria: Stability

The stability of any orbit S of a map f is determined by thefirst derivative of the map over the orbit. That is to say

• if (f (n))′(x1) < 1 then S(x1) = f (n)(x1) is an attractive orbit:

• if (f (n))′(x1) > 1 then S(x1) = f (n)(x1) is a source.

Page 19: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

ClassificationEquilibria: Stability

The stability of any orbit S of a map f is determined by thefirst derivative of the map over the orbit. That is to say

• if (f (n))′(x1) < 1 then S(x1) = f (n)(x1) is an attractive orbit:

• if (f (n))′(x1) > 1 then S(x1) = f (n)(x1) is a source.

Page 20: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

ClassificationLorenz Attractor

Figure 3: Lorenz Attractor

The Lorenz attractor is a chaotic orbit with (f (n))′(x) < 1.

Page 21: Chaos - Definition and Classificationww2.odu.edu/~skuhn/PHYS603/Coxe_Chaos_abbrev.pdf · 2020-03-23 · Contents Terminology De ning Chaos Sensitive Dependence Topological Transitivity

ClassificationLyapunov Numbers and Exponents

Lyapunov numbers and exponents are a measure of the stability ofan orbit. The Lyapunov exponent λ = ln L where L is theLyapunov number.

For any point on any orbit {x1, x2, x3, · · · }, the Lyapunov numberis given by:

L(x1) = limn→∞

(|f ′(x1)| · · · |f ′(xn)|)1/n.

So the Lyapunov Exponent is:

λ(x1) = limn→∞

1

nln(|f ′(x1)| · · · |f ′(xn)|)