55
Challenges and opportunities for photonic sensing of key atmospheric short lived species W. Chen 1 , R. Maamary 1 , X. Cui 1,2 , T. Wu 1,3 , E. Fertein 1 , C. Coeur 1 , A. Cassez 1 , W. Liu 2 , F. short-lived species Dong 2 , Y. Wang 2 , W. Zhang 2 , X. Gao 2 , G. Zha 4 , Z. Xu 4 , T. Wang 4 1 Laboratory of Physical Chemistry of the Atmosphere, University of the Littoral Opal Coast, France 2 Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, China 3 Key Laboratory of Nondestructive Test, Nanchang Hang Kong University, Nanchang, China 4 Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong

Challenggppes and opportunities for photonic ... - DLS Lab

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Challenggppes and opportunities for photonic ... - DLS Lab

Challenges and opportunities for g ppphotonic sensing of key atmospheric

short lived speciesW. Chen1, R. Maamary1, X. Cui1,2, T. Wu1,3, E. Fertein1, C. Coeur1, A. Cassez1, W. Liu2, F.

short-lived species

Dong2, Y. Wang2, W. Zhang2, X. Gao2, G. Zha4, Z. Xu4, T. Wang4

1Laboratory of Physical Chemistry of the Atmosphere, University of the Littoral Opal Coast, Francey y y p y p2Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, China

3Key Laboratory of Nondestructive Test, Nanchang Hang Kong University, Nanchang, China4Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kongp g g, g g y y, g g

Page 2: Challenggppes and opportunities for photonic ... - DLS Lab
Page 3: Challenggppes and opportunities for photonic ... - DLS Lab

Dunkerque campusDunkerque campus

Page 4: Challenggppes and opportunities for photonic ... - DLS Lab

Outline of Talk Introduction

- Motivation & Challenge- Motivation & Challenge- State of the art spectroscopic technologies- Spectral manipulation

Photonic sensing by IR lasersICOS – FSR – Multipass direct absorption

Photonic sensing by UV-VIS LEDsIBBCEAS

Applications- Field observation- Chemical reaction study in smog chamber- Chemical reaction study in smog chamber

Summary

Page 5: Challenggppes and opportunities for photonic ... - DLS Lab

Motivation

OHO3OHCl

NO3

OXIDATION

GHG, VOCs, BVOCs, HCs, NOx, DMS, …

Page 6: Challenggppes and opportunities for photonic ... - DLS Lab

Motivation(Prinn 2003)

OHO3OHCl

NO3

OXIDATION

GHG, VOCs, BVOCs, HCs, NOx, DMS, …

Page 7: Challenggppes and opportunities for photonic ... - DLS Lab

Motivation[OH] ~ 106 cm‐3 (0.1 pptv)

[O3] ~ 1011 cm‐3 (10 ppbv)NO3 production

3

[NO3] ~ 108 cm‐3 (10 pptv)

[Cl] = 103‐105 cm‐3 (0.1‐10 ppqv)

OH productionO3 production

GHG, VOCs, BVOCs, HCs, NOx, DMS, …

Study of the major atmospheric oxidant budgetStudy of the major atmospheric oxidant budgetis thus very important to understand the abilityof the atmosphere to oxidize trace pollutants (soof the atmosphere to oxidize trace pollutants (socalled “atmospheric oxidant capacity”).

Page 8: Challenggppes and opportunities for photonic ... - DLS Lab

Motivation[OH] ~ 106 cm‐3 (0.1 pptv)

[O3] ~ 1011 cm‐3 (10 ppbv)3

[NO3] ~ 108 cm‐3 (10 pptv)

[Cl] = 103‐105 cm‐3 (0.1‐10 ppqv)

NO3 production

OH productionO3 production

GHG, VOCs, BVOCs, HCs, NOx, DMS, …

Precise concentration assessment of the keyPrecise concentration assessment of the keyatmospheric oxidants and their precursors is veryimportant for understanding & prediction ofimportant for understanding & prediction ofregional air quality and global climate change.

Page 9: Challenggppes and opportunities for photonic ... - DLS Lab

ChallengesNo commercially available instruments for direct concentrationmeasurements. All routine measurements are based on chemicalconversion + measurements with IC FL CL LOPAP HPLCconversion + measurements with IC, FL, CL, LOPAP, HPLC.

Main problem : chemical interference due to sample preparation (suchas species separation, trapping, chemical conversion, ionization, pre-p p , pp g, , , pconcentration, etc.) and analytical artifactsPhotonic sensing => non-intrusive measurements with fast time

hi h ifi it ith t dditi l l tiresponse, high specificity without additional sample preparation

- Ultralow concentration : ppb (10-9) - ppq (10-15);Very short lifetime : down to seconds;- Very short lifetime : down to seconds;

- Free of chemical interference;- No standard gas reference available for validation and calibration;No standard gas reference available for validation and calibration;- No spectral data available in the common databases (HITRAN, ..)

High performance probing source detector & sensitive sensing schemeHigh performance probing source-detector & sensitive sensing scheme+

Lab. production of sample & Intercomparison campaigns

Page 10: Challenggppes and opportunities for photonic ... - DLS Lab

CW mid-Infrared Lasers (fdt ro-vibration)DFB Quantum Cascade Lasers (QCL) : 4 - 16 µmCW output power : 10 mW to > 1 W (@ TEC)

~ 20 k$

Interband Cascade Lasers (ICL) : 3 - 6 µm

Limited spectral coverage : < 10 cm-1 20 k$

External cavity QCL : 4.4 - 10.5 µmCW output power : > 70 mWCW output power : 70 mWWide spectral coverage : > 30 cm-1 up to ~ 400 cm-1 ~ 50 k$

Quantum well DFB lasers : 2 9 – 3 5 µmQuantum well DFB lasers : 2.9 3.5 µmCW output power : > 1 mWLimited spectral coverage : < 10 cm-1 < 10 k$

Multi-chip laser sources : 6-13 µm / 3 chipsin pulsed operation

CW mode?p p

Optical parametrical sources: DFG, OPO (powerful tool for lab. study

Page 11: Challenggppes and opportunities for photonic ... - DLS Lab

Broadband light sources g

Xenon arc lamp Light Emitting Diode (LED)Superconituum 

Sourcesp Light Emitting Diode (LED)

(white light)

Spectral Range 185 – 2000 nm 350 – 1550 nm 3 – 7 µm 400 – 2200 nm

Linewidth (FWHM) 180 – 2000 nm ~ 20 nm (UV)> 100 nm (VIS)

0.4 – 2 µm(0.1 ‐ 0.2 max)

400 – 2200 nm

Beam Quality Black body emission Vieing half angle ≤ 40° laser‐like beam qualityBeam Qualityin all direction* 1/2 = ± (7‐70) °

≤ 40 (2 mm @ 633 nm)

Optical Power Output

35 – 300 W 50 ‐ 1000 mW 10 – 500 µW 6 Wp

Cooling Convection cooling TE cooling TE cooling air‐cooling

Cost ~ 5000 € (system) ** 10 – 60 $ ~ 100 $ Some tens of k$

1/2=0.8° 33 mm after collimation; ** ~ 150 € per lamp (75 W)

Page 12: Challenggppes and opportunities for photonic ... - DLS Lab

High sensitivity spectroscopy techniques(high sensitivity => high Signal to Noise Ratio, SNR)(high sensitivity high Signal to Noise Ratio, SNR)

Long optical path length absorption spectroscopy (“S” ) Multipass cell => 100-200 m (ppm-ppb)

Optical cavity (Cavity enhanced spectroscopy :57.6 meter cell : 

17 6 6 & 650OA-ICOS, IBBCEAS, CRDS) => 1-10 km (ppb-ppt)

Low noise spectroscopic detection approaches (“N” )

17 cm x 6.6 cm & 650 g

Low noise spectroscopic detection approaches ( N )1) Light modulation-phase sensitive detection methods: Frequency / Wavelength Modulation Spectroscopy (FMS /q y g p py (

WMS) => BG free

2) Indirect measurements (of absorption induced physical parameterf hi h th b b t ti b i f d)from which the absorber concentration can be inferred) CRDS => BG free Photoacoustic spectroscopy (PAS / QEPAS) => BG free Photoacoustic spectroscopy (PAS / QEPAS) > BG free Faraday rotation spectroscopy (FRS) => BG free

Page 13: Challenggppes and opportunities for photonic ... - DLS Lab

Spectral manipulation : Lineshape fits using Voigt and l f l f d dGalatry profiles for integrated area determination

2.4

1.6

2.0 Raw datana

l (a.

u.)

H 18O

0 4

0.8

1.2

Sign

H2 O

H216O H2

17O

HDO

-0.02

0.00

0.020.4

s

Voigt

2

0 02-0.02

0.00

0.02

Res

idua

ls

Galatry

-0.02

0.00

0.02

Galatry + FS

3662.8 3663.0 3663.2 3663.4 3663.6 3663.8 3664.0

Wavenumber (cm-1)

Page 14: Challenggppes and opportunities for photonic ... - DLS Lab

Spectral manipulation : « Fourier filtering »for cancellation of the oscillation structure in baseline

0.006

Fourier transform of residual spectrum  

Voigt residual Galatry residual (Galatry + FS) residual

0.004

Pow

er

0.0020.000 0.001 0.002 0.003

P

0.0000.000 0.005 0.010 0.015 0.020

Hz

Page 15: Challenggppes and opportunities for photonic ... - DLS Lab

Spectral manipulation : Improvement in t i imeasurement precision

0.215

0.220

0.200

0.205

0.210R

18O

0.84

0.85

0.86

R17

O

0.83

0.138

0.141

0 100 200 300 400 500 600 7000.126

0.129

0.132

0.135

0 100 200 300 400 500 600 700

R2 H

Left panel : Before (left panel) and after (right panel) spectral manipulation

Number Number

up to 3‐fold reduction in standard deviation

Page 16: Challenggppes and opportunities for photonic ... - DLS Lab

Spectral manipulation : « Kalman filtering »

Kalman filtering, originally developed by R.E. Kalman for aerospacenavigation applications (J. Basic Eng. 82 (1960) 35), uses a recursive

d f “t l ” di ti b d th i lprocedure for “true value” prediction based on the previouslydetermined value : filtering out the shot-to-shot real-time noisewhile following the true variation in measured physical quantity.

Page 17: Challenggppes and opportunities for photonic ... - DLS Lab

Time series of the ‐value for 18O, 17O and 2H in water

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

-50

-40-8

-4

0

-60

-50

0

-60

Raw measurement of the ‐value for 18O, 17O, 2H (black dots, in 1‐s), thecorresponding Kalman filter output (red lines, q=150 in 1‐s), and the averagedcorresponding Kalman filter output (red lines, q 150 in 1 s), and the averagedvalue of 30 values (blue dots, in 30‐s).

Kalman filtering : high measurement precision while keeping a fast systemresponse, not affecting the mean value of the data.

Ref. T. Wu, W. Chen et al, Opt. Lett. 35 (2010) 634‐636

Page 18: Challenggppes and opportunities for photonic ... - DLS Lab

Photonic sensingPhotonic sensing b IR lby IR lasers

ICOS FSR Multipass cellICOS – FSR – Multipass cell

Page 19: Challenggppes and opportunities for photonic ... - DLS Lab

OH di l t tiOH radical concentration measurementsmeasurements

Lifetimes :  ~ 1 s in clean air 

< 1 s in polluted environment

Typical concentration : 105 – 107 OH/cm3 or 0.01‐1 ppt @ STP

primary “cleansing agent” removing pollutants in the atmosphere

initiating reactions leading to the production of O3

effecting on the formation of aerosol

Page 20: Challenggppes and opportunities for photonic ... - DLS Lab

Current OH sensing technologiesSpectroscopic methods currently used for measurements of OH :

Long‐path Differential Optical Absorption Spectroscopy (DOAS)

Laser induced Fluorescence Assay by Gas Expansion (FAGE)

FAGEhttp://www.univ‐lille1.fr/umr8522/FAGE

EPA (http://www.clu‐in.org/)

* Self‐calibration* Open path @ atm

Xxxxxxxxx

 Open path @ atm.* km‐long averagedconcentration meas.

* External calibration* Low pressure (~mbar)

DOAS

Low pressure ( mbar)* Local point concentration* Large size

*sensitive to visibility conditions*low spectral & spatial resolution

Page 21: Challenggppes and opportunities for photonic ... - DLS Lab

OH radical monitoringOH radical monitoring

Needs of compact instrument for self‐calibration,Needs of compact instrument for self calibration,direct concentration assessment with highspatial resolution & fast temporal responsespatial resolution & fast temporal response

WMS enhanced OA-ICOS @ 1434 nm(WMS lowering noise / cavity enhancing signal)

FRS @ 2.8 µm(shot noise dominated detection)( )

Page 22: Challenggppes and opportunities for photonic ... - DLS Lab

Production & calibration of OH radicalsThe OH free radical was produced by microwave (MW) discharge in watervapor. The generated OH concentration was determined with the help ofwavelength modulation spectrum using a close-by H2O absorption line.wavelength modulation spectrum using a close by H2O absorption line.

0.3 Without MWdischargeH

2O

0.2 0.5

0.6

u.)

discharge MW discharge

in 0.6 mbar H2O

ak h

eigh

t of H

0 0

0.11 2 3 4

0.4

sign

al (a

.u

2f p

ea

[H2O] (1016 molecules/cm3)

-0.1

0.0

2f s

OH OHOHf SOHOHI ][)(2

3568 2 3568 4 3568 6 3568 8 3569 0 3569 2

-0.2 H2O OHf SOHOHI2

][)( 222

3568.2 3568.4 3568.6 3568.8 3569.0 3569.2

Wavenumber (cm-1)

Page 23: Challenggppes and opportunities for photonic ... - DLS Lab

OH radical monitoring by

WMS enhanced OA-ICOS @ 1434 nm(WMS l i i / it h i i l)(WMS lowering noise / cavity enhancing signal)

Page 24: Challenggppes and opportunities for photonic ... - DLS Lab

Cavity Enhanced Absorption Spectroscopy (CEAS)

111

IIN

0

11)(

1c

N

ensi

ty

Intensitydecay rate CRDS

dI1 I2 I3 …… In

Inte

Time

n

nOUT IIIn

tens

ity

« Integrated Cavity Output 

n

1

)()(

)()(1 0

II

dRN

Time

Spectroscopy »

)()( Id

Page 25: Challenggppes and opportunities for photonic ... - DLS Lab

Calibration: determination of the mirror reflectivity R

ICOS is not an absolute

1)()(1 0 IRNtechnique : R () to be known

1)()( Id

N

Experimentally C it h i l l th

R() can be determined by measuring :

p ymeasured spectrumCavity physical length

R() can be determined by measuring :

absorber with known concentration [Environ. Sci. Technol. 40(2006) 6758] ;( ) ] ;

Rayleigh scattering difference of two species (e.g. He and Zeroair) [Atmos. Chem. Phys. 8 (2008)7779] ;) [ y 8 ( ) ] ;

calibrated low‐loss of an optical substrate [Appl. Opt. 48(2009) B159] ;(2009) B159] ;

phase shift CRDS [Rev. Sci. Instrum. 79 (2008) 123110] ;

Page 26: Challenggppes and opportunities for photonic ... - DLS Lab

WM-OA-ICOSSetup

OH line at 6965.19 cm-1

with a line intensity of 6.5 ×10−21 cm -1/(molecule.cm-2)

Using OA-ICOS

WM enhanced OA-ICOSdetection sensitivity by afactor of ~ 12 in SNR.

gwith an effectiveabsorption pathlength of Leff of ~1 2 km => DL of

NEAS : 4 5x10‐12 cm‐1/Hz1/21.2 km => DL of

~ 5x109 OH/cm3

4.5x10 cm /Hz /

Page 27: Challenggppes and opportunities for photonic ... - DLS Lab

OH radical monitoring by

FRS @ 2.8 µm(shot noise dominated detection)

Page 28: Challenggppes and opportunities for photonic ... - DLS Lab

Faraday Rotation Spectroscopy (FRS)The FRS relies on the particular magneto-optic effect observed forparamagnetic species (OH, HO2, CH2O, NO, O2, NO2, etc.) : Interaction ofincident laser beam with the paramagnetic species under a magnetic fieldresults in a rotation of the polarization plane of a linearly polarized laserbeam => FRS signal P()

Th FRS i l d d )2sin2cos1()( 0 LRPP The FRS signal depends on : Molecular line strength, S Optical path length, L

)2sin2cos1(2

)( 0 LRP

and R=k0(n+-n-), responsible for creation

The rotational gyromagneticratio g-factor, g

Magnetic field strength, B

of the FRS signal*

FRS signal Magnetic field strength, B Molecule concentration, C the analyzer

offset angle

CellLLaser

Paramagnetic species

Page 29: Challenggppes and opportunities for photonic ... - DLS Lab

Merits of FRS

FRS strongly enhances the detection sensitivity and selectivity:

Detection of Faraday rotation effect provides selectivity to

paramagnetic species. No interference from diamagnetic species (CO2,p g p g p ( 2,

H2O) in the atmosphere ;

Two nearly crossed polarizers with high extinction ratio provide Two nearly crossed polarizers with high extinction ratio provide

significant reduction of the laser source noise ;

Internal sample modulation through molecular Zeeman energy split

provides excellent suppression of all external noise (like stray

f f )modulation and most importantly interference fringes).

Page 30: Challenggppes and opportunities for photonic ... - DLS Lab

OH monitoring by FRS @ 2.8 µmMiDi h Microwave

cavityPM1 PM2F1 F2 Polarizer AnalyzerCell and Solenoid

H2ODischarge

cell

DFB Laser Detector

AudioAmplifier Lock-in

1f

1f

PC DAQ CardLaser controller

GPIB

Zhao et al., Opt. Express 19 (2011) 2493‐2501 & Appl. Phys. B 109 (2012) 511‐519

RT DFB diode laser at 2.8 µm (nanoplus GmbH) Single-mode tuning range : ~ 5 cm-1

CW laser emission power : ~ 2 mW -tuning coefficients: 0.05 nm/mA & 0.25 nm/K

Solenoid : 25 cm long operating in AC mode at a

Polarizers : high extinction ratio of ξ < 5×10-6

Solenoid : 25 cm long, operating in AC mode at aresonant frequency of 1.302 kHz, with a magneticfield of B ~ 95 Gaussrms

Page 31: Challenggppes and opportunities for photonic ... - DLS Lab

Shot‐noise dominated detection of OH radical

The shot noise N = 4 897 ± 0 292 μV Hz-1/2

2222

221

20 ))((sin))((sin)( NNNNtotSystem noise

- The shot noise N1 = 4.897 ± 0.292 μV Hz 1/2

- The laser noise N2 = 3.298 ± 1.152 μV Hz-1/2

- The detection system noise N0 = 0.433 ± 0.019 μV Hz-y 0 μ1/2

• The total noise at φopt = 6°: /0.78 μV Hz‐1/2

• Operation at ~ 2 theoretical shot‐noise of 0.38 μV/Hz1/2μ /

• A minimum detectable Faraday rotation angle:

1 39 10 7 d H 1/2Shot‐noise

1.39 × 10‐7 rad Hz‐1/2

• System noise is shot‐noise predominated

Laser noise

Detector noise

noise predominated

Page 32: Challenggppes and opportunities for photonic ... - DLS Lab

OH monitoring by FRS

Point-by-point frequency tuning mode1σ MDL : 8.2×108 OH/cm3 in a 25-cmlong single pass cell (lock-in time =100

Fast scanning mode1σ MDL : ~ 5.5×108 OH/cm3 in a 25-cmlong single pass cell.

long single pass cell (lock in time =100ms) (Scan rate : 15 Hz & average time : 50 s)

The prototype instrument shows high potential forThe prototype instrument shows high potential for

field applications: compact, self-calibration, direct

concentration assessment. Longer absorption

pathlength approach to be implemented to lower

the minimum detection limit (~ 106 OH/cm3).57.6 meter cell :

17 cm x 6.6 cm & 650 g

Page 33: Challenggppes and opportunities for photonic ... - DLS Lab

HONO detectionLifetimes:  ~ a few minutesEnvironment: ~ ppbv / indoor: ~10 ppbv / in car: tens of ppbvEnvironment:   ppbv / indoor:  10 ppbv / in car: tens of ppbv

HONO is a very important source of the OH radical. Recentresearches show that the photolysis of HONO accounts for up toresearches show that the photolysis of HONO accounts for up to60% of the integrated OH radical source strengths (Nature 440(2006) 195‐198). Modeled HONO concentrations are often(2006) 195 198). Modeled HONO concentrations are oftensignificantly below field observed values, which suggest a largemissing source of HONO (Science 333 (2011) 1616‐1618) ….

Campaigns: PRIDE‐PRD 2004 (China), BEARPEX 2007 (California),DOMINO 2008 (Spain), CINDI 2009 (The Netherlands), SHARP( p ), ( ),2009 (Houston), CalNex 2010 (California), FIONA 2010 (Spain), ….

Needs to better understand the contribution of HONO to theNeeds to better understand the contribution of HONO to theatmospheric photochemical processes and the OH budget

Page 34: Challenggppes and opportunities for photonic ... - DLS Lab

Quantitative analyses of HONOyAccurate and precise in situ assessment of HONO concentrationis hence highly desirable Quantitative analysis of HONO isis hence highly desirable. Quantitative analysis of HONO isusually made in the aqueous phase after wet chemicalconversion or in the gas phase using spectroscopic techniques.

Chemical instruments (denuder, mist chamber or stripping coil +IC FL CL LOPAP HPLC) : typically cheap easy to use and veryIC, FL, CL, LOPAP, HPLC) : typically cheap, easy to use and verysensitive (down to ~ pptv) with a time resolution of minutes tohours. Unquantified chemical interferences and samplinginduced artifacts. Validation and calibration of chemicalinstruments against spectroscopic instruments are of paramounti timportance.

Spectroscopic instruments (TDLS, IBBCEA, DOAS) : free ofsampling artifacts & chemical interference, self‐calibration.

Page 35: Challenggppes and opportunities for photonic ... - DLS Lab

HONO generation & quantification

(with alkaline coating)NaNO2

C2Air HONO

QCL sensor

C1H2SO4

495

C1= [NOx] + [HONO] + Adsorption lossesC2 = [NOx] + Adsorption losses

NaNO2 + H2SO4 = NaHSO4 + HONOHONO ↔ NO + NO2 + H2O

475

480

485

490

without denuder

cent

ratio

n/pp

m C1

ppm

31:31

33:11

34:51

36:31

38:11

39:51

41:31

43:11

460

465

470

NO

x co

nc

denuder with alkaline coating

C2

[HONO] = C1 – C2

17:31

17:33

17:34

17:36

17:38

17:39

17:41

17:43

Time/s

Page 36: Challenggppes and opportunities for photonic ... - DLS Lab

QCL-based HONO Sensor

QCL sensor

Leff=125 m

f = 5 cmVIGO

PVMI-4TE-10.6

Leff=125 m

f 10(FSR=0.03 cm-1) f = 10 cm

VIGO: PVMI- 10.6

1σ det. Sen. (1 s) :HONO : < 400 pptCH4 : 4 ppb

8 µm CW QCL (Maxion Technologies, Inc.)

0 2 0

0 .2 5

23

Spectrosc. : C = 25.6 ppm

CH4 : 4 ppb

0 .1 0

0 .1 5

0 .2 0

Abs

orba

nce

2

4

Denuder: 22. 0 ppm

0 0 0

0 .0 10 .0 0

0 .0 5

dual

A

1 2 5 4 .8 1 2 5 4 .9 1 2 5 5 .0 1 2 5 5 .1-0 .0 1

0 .0 0

Res

id

F req u en cy/cm -1

Page 37: Challenggppes and opportunities for photonic ... - DLS Lab

Sensing by Light Emitting 

Diodes (LED)Diodes (LED)

HONO, NO2 &NO3 radical monitoring

Page 38: Challenggppes and opportunities for photonic ... - DLS Lab

Structured absorptions in the visible and UV t l i (fdl l t i t iti )spectral region (fdl electronic transition)

Strong and structured broadband molecular absorptions in the VIS and UVregions arising from the fdl electronic transition allow for high sensitivityregions, arising from the fdl electronic transition, allow for high sensitivitydetection of multiple key atmospheric species at the ppbv‐pptv levels.

Page 39: Challenggppes and opportunities for photonic ... - DLS Lab

Sensitive spectroscopic approaches in the VIS and UV 

Differential Optical Absorption Spectroscopy (DOAS) Long pathlength absorption (~ km) Using broadband light for multiple species detection Low spatial resolution Cumbersome (L ~ km) Low spatial resolution - Cumbersome (LBase ~ km)

Cavity Ringdown Spectroscopy (CRDS) C it h d l ff ti thl th ( k ) Cavity enhanced long effective pathlength (~ km) High spatial resolution - Compact (LBase ~ m) Narrow laser spectral coverage, limited for multi-species detection Narrow laser spectral coverage, limited for multi species detection

Broadband Cavity Enhanced Spectroscopy (BBCEAS) C it h (hi h ti l l ti f ti i ) Cavity enhance (high spatial resolution for reactive species) :

=> Long effective pathlength (~ km) & Compact (LBase ~ m)

Broadband light => Simultaneous multi-species measurement

Page 40: Challenggppes and opportunities for photonic ... - DLS Lab

Open path IBBCEAS of HONO & NO2 detection @ 365 nmNo wall losses or heterogeneous production of HONONo wall losses or heterogeneous production of HONO

1 MDC (90 s) :

HONO : 430 pptv

NO2 : 1 ppbv

Wu et al., Appl. Phys. B106 (2012) 501–509

Page 41: Challenggppes and opportunities for photonic ... - DLS Lab

Simultaneous concentration retrieval of multiple species

Nonlinear least‐square fitting based on the Levenberg‐Marquardt algorithm

Polynomial function for slowvariations with wavelength: Known after (1) baseline(2) Rayleigh & Mie scattering

calibration

1

)()()(1)()()( 02

21022

II

dRaaann NONOHONOHONO

Reference spectra Cavity physical length

Experimentally measured spectrum

T t i t ti bTarget species concentrations can besimultaneously retrieved by a multivariate fit

Page 42: Challenggppes and opportunities for photonic ... - DLS Lab

Simultaneous measurement of HONO and NO2(using multivariate fit of ref to exp spectrum)(using multivariate fit of ref.  to exp. spectrum)

20 )()(1)()(1 aaannIR

Ref. ()Exp. spectrum

21022 )()(1)(

aaannId NONOHONOHONO

Baseline

Page 43: Challenggppes and opportunities for photonic ... - DLS Lab

Determination of the cavity mirrors’ reflectivity:  R()

diluted NO2 spectra : toobtain relative R () profile O2-O2 Ref.

pure O2‐O2 spectra : todetermine absolute R () NO2 Ref.

O2-O2 spectrum

NO2 spectrum

Relative R() Absolute R()

By using measured absorption spectra of 100 ppbv NO2 (generated with a gasdilution calibrator Sabio instruments) and pure O the max cavity mirror’s

( ) ( )

dilution calibrator, Sabio instruments) and pure O2, the max. cavity mirror sreflectivity was determined to be ~0.99916, which corresponded to an effectivepathlength of ~2.1 km (based on a cavity length of L=1.76 m).

Page 44: Challenggppes and opportunities for photonic ... - DLS Lab

Applications

Field observation of HONO & NO in sub- Field observation of HONO & NO2 in sub-

urban @ 356 nm

NO & NO radical monitoring for kinetic NO2 & NO3 radical monitoring for kinetic

study in smog chamber @ 660 nm

Page 45: Challenggppes and opportunities for photonic ... - DLS Lab

1) Field application in a Hong Kong CampaignH K P l t h i U i it & E i t l P t ti D t t f H KHong Kong Polytechnic University & Environmental Protection Department of Hong Kong

Tung ChungPoly U

(sub‐urban site)Poly U

Hok TsuiLong‐term backgroundsite on south‐easternHong Kong Island(since 1993)

Page 46: Challenggppes and opportunities for photonic ... - DLS Lab

HONO : IBBCEAS vs. LOPAP(HONO converted into color azo dye & det in long path abs )(HONO converted into color azo dye & det. in long path abs.)

NO2 : IBBCEAS vs. BL-NOx analyzer

DL: 0.3 ppbv in 120 s

DL: 1 ppbv in 120 sDetection sensitivity1 detection limits (120 s) :DL: 1 ppbv in 120 s 1 detection limits (120 s) :HONO: 300 pptvNO2 : 1 ppbv

Chen et al., SPIE Newsroom (2013) DOI: 10.1117/2.1201301.004689

Precision: < 10%

Time series of HONO and NO2 concentrations measured by IBBCEAS, LOPAPand blue light (BL) based NOx analyzer at the TC site on 12‐14th May 2012.

Page 47: Challenggppes and opportunities for photonic ... - DLS Lab

Field observation of HONO concentration variation

@ ~ 6 PM @ ~ 7 AMCO combustion tracer

=> HONO from traffic emissionHeterogeneous nighttime formationfrom NO2 hydrolysis on surfaces

Page 48: Challenggppes and opportunities for photonic ... - DLS Lab

2) Monitoring NO3 & NO2 in a smog chamberThe most important nighttime oxidant with lifetimes: in seconds inThe most important nighttime oxidant with lifetimes: in seconds in 

daytime & in minutes in nighttime / Typical concentration : 5‐400 ppt

2 m X 2 m X 2 m in plexiglas, illuminated with10 fluorescence tubes (400–800 nm, 40 W).

Page 49: Challenggppes and opportunities for photonic ... - DLS Lab

Real time monitoring photochemical processes in smog chamberin smog chamber

NO3 + NO2 N2O5

NO3 wall lossesO3 + NO2 NO3 + O2

Page 50: Challenggppes and opportunities for photonic ... - DLS Lab

Temporal profiles of NO3, NO2 and O3 concentrations measured byIBBCEAS (red) for kinetic study of the NO + NO ↔ N O system toIBBCEAS (red) for kinetic study of the NO3 + NO2 ↔ N2O5 system todetermine reaction rate constants

Wu et al., EST (2013)

Page 51: Challenggppes and opportunities for photonic ... - DLS Lab

Temporal profiles of NO3, NO2 and O3 concentrations measured byIBBCEAS (red) for kinetic study of the NO + NO ↔ N O system toIBBCEAS (red) for kinetic study of the NO3 + NO2 ↔ N2O5 system todetermine reaction rate constants

Wu et al., EST (2013)

Page 52: Challenggppes and opportunities for photonic ... - DLS Lab

SummaryContrary to long‐lived species such as GHG, monitoring ofstrongly reactive short‐lived species (concentration, flux, verticalprofile) represent a real challenge in terms of sensitivity,accuracy, precision, time response, interference from sampling /

l ti l tif t lib tianalytical artifacts, calibration, ….

Very low‐cost UV‐VIS LED sources permitslti l i tifi ti ith hi hmultiple species quantification with high

sensitivity

Mid‐IR LASER offers the unique advantageof real time spectroscopic analysis of theisotopic composition of the key atmospheric 80

90100110

isotopic composition of the key atmosphericspecies, which is crucial for study of theorigin, evolution and dispersion of theseh i l i i th t h f ll

0

2

4

3040506070

Tran

smis

sion

(%)

13CH4

12CH4

chemical species in the atmosphere for wellunderstanding tropospheric process. 2885,38 2885,40 2885,42 2885,44 2885,46 2885,48

-6

-4

-2

Wave number (cm-1)

Spectroscopic measurement of 12C/13C ratio of CH4

Page 53: Challenggppes and opportunities for photonic ... - DLS Lab

CollaboratorsW. Zhao, T. Wu, X. Cui, C. Lengignon, R. Maamary, E.Fertein, C. Coeur, A. Cassez Université du Littoral Côte d’Opale,France

G. Wysocki Electrical Engineering Department, Princeton University, USA

G. Zha, Zheng Xu, T. Wang Department of Civil and StructuralEngineering, The Hong Kong Polytechnic University, China

Y. Wang, W. Zhang, X. Gao, W. Liu, F. Dong Anhui Institute ofOptics & Fine Mechanics, Hefei, China

The IRENI program of the Région Nord‐Pas de Calais.

The Program of the Groupement de Recherche InternationalSAMIA between CNRS (France), RFBR (Russia) and CAS (China)

The FR‐ANR & US‐NSF International Program

Page 54: Challenggppes and opportunities for photonic ... - DLS Lab

Thank You

Q ti & C t Questions & Comments ….

Page 55: Challenggppes and opportunities for photonic ... - DLS Lab

MIOMD 2014MIOMD 2014Infrared Optoelectronics : Materials and Devices

O b 5 8 2014 M lli FRANCEOctober 5-8, 2014, Montpellier, FRANCE

Infrared Emission and Detection:Interband and inter‐subband physics/modeling, material growth and characterization, and deviceprocessing. Novel architectures. Non‐linear technologies. Radiation effects. Systems components.

Infrared Integrated Systems:Monolithic and heterogeneous integration of lasers, detectors, and passive components.

Scene illumination, standoff chemical‐specific imaging, environmental monitoring, LIDAR, free‐space communication.

I f d A li i f I f d E i i / D iInfrared Applications of Infrared Emission / Detection:Applications of infrared detectors and lasers.

New in MIOMD 2014: larger “Sensing session”New in MIOMD 2014: larger Sensing session

3 µm